Nektar++
MappingExtrapolate.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: MappingExtrapolate.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Abstract base class for MappingExtrapolate.
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37namespace Nektar
38{
39/**
40 * Registers the class with the Factory.
41 */
44 "Mapping", MappingExtrapolate::create, "Mapping");
45
50 const SolverUtils::AdvectionSharedPtr advObject)
51 : StandardExtrapolate(pSession, pFields, pPressure, pVel, advObject)
52{
54
55 // Load solve parameters related to the mapping
56 // Flags determining if pressure/viscous terms should be treated implicitly
57 m_session->MatchSolverInfo("MappingImplicitPressure", "True",
58 m_implicitPressure, false);
59 m_session->MatchSolverInfo("MappingImplicitViscous", "True",
60 m_implicitViscous, false);
61
62 // Relaxation parameter for pressure system
63 m_session->LoadParameter("MappingPressureRelaxation", m_pressureRelaxation,
64 1.0);
65}
66
67/**
68 *
69 */
72{
73 if (m_HBCnumber > 0)
74 {
75 size_t cnt, n;
76 size_t physTot = m_fields[0]->GetTotPoints();
77 size_t nvel = m_fields.size() - 1;
78
80 // Remove previous correction
81 for (cnt = n = 0; n < m_PBndConds.size(); ++n)
82 {
83 if (m_PBndConds[n]->GetUserDefined() == "H")
84 {
85 size_t nq = m_PBndExp[n]->GetNcoeffs();
86 Vmath::Vsub(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1,
87 &(m_bcCorrection[cnt]), 1,
88 &(m_PBndExp[n]->UpdateCoeffs()[0]), 1);
89 cnt += nq;
90 }
91 }
92
93 // Calculate new correction
94 Array<OneD, NekDouble> Jac(physTot, 0.0);
95 m_mapping->GetJacobian(Jac);
96
97 Array<OneD, Array<OneD, NekDouble>> correction(nvel);
101 for (size_t i = 0; i < nvel; i++)
102 {
103 wk[i] = Array<OneD, NekDouble>(physTot, 0.0);
104 gradP[i] = Array<OneD, NekDouble>(physTot, 0.0);
105 correction[i] = Array<OneD, NekDouble>(physTot, 0.0);
106 }
107
108 // Calculate G(p)
109 for (size_t i = 0; i < nvel; ++i)
110 {
112 gradP[i]);
113 if (m_fields[0]->GetWaveSpace())
114 {
115 m_fields[0]->HomogeneousBwdTrans(physTot, gradP[i], wk[i]);
116 }
117 else
118 {
119 Vmath::Vcopy(physTot, gradP[i], 1, wk[i], 1);
120 }
121 }
122 m_mapping->RaiseIndex(wk, correction); // G(p)
123
124 // alpha*J*(G(p))
125 if (!m_mapping->HasConstantJacobian())
126 {
127 for (size_t i = 0; i < nvel; ++i)
128 {
129 Vmath::Vmul(physTot, correction[i], 1, Jac, 1, correction[i],
130 1);
131 }
132 }
133 for (size_t i = 0; i < nvel; ++i)
134 {
135 Vmath::Smul(physTot, m_pressureRelaxation, correction[i], 1,
136 correction[i], 1);
137 }
138
139 if (m_pressure->GetWaveSpace())
140 {
141 for (size_t i = 0; i < nvel; ++i)
142 {
143 m_pressure->HomogeneousFwdTrans(physTot, correction[i],
144 correction[i]);
145 }
146 }
147 // p_i - alpha*J*div(G(p))
148 for (size_t i = 0; i < nvel; ++i)
149 {
150 Vmath::Vsub(physTot, gradP[i], 1, correction[i], 1, correction[i],
151 1);
152 }
153
154 // Get value at boundary and calculate Inner product
158 for (n = cnt = 0; n < m_PBndConds.size(); ++n)
159 {
160 // High order boundary condition;
161 if (boost::iequals(m_PBndConds[n]->GetUserDefined(), "H"))
162 {
163 m_fields[0]->GetBndElmtExpansion(n, BndElmtExp);
164
165 // Obtaining fields on BndElmtExp
166 for (int i = 0; i < m_bnd_dim; i++)
167 {
168 m_fields[0]->ExtractPhysToBndElmt(n, correction[i],
169 correctionElmt[i]);
170 }
171
172 Vals = m_bcCorrection + cnt;
173 // Getting values on the edge and filling the correction
174 for (int i = 0; i < m_bnd_dim; i++)
175 {
176 m_fields[0]->ExtractElmtToBndPhys(n, correctionElmt[i],
177 BndValues[i]);
178 }
179 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Vals);
180
181 // Get offset for next terms
182 cnt += m_PBndExp[n]->GetNcoeffs();
183 }
184 }
185
186 // Apply new correction
187 for (size_t cnt = n = 0; n < m_PBndConds.size(); ++n)
188 {
189 if (m_PBndConds[n]->GetUserDefined() == "H")
190 {
191 size_t nq = m_PBndExp[n]->GetNcoeffs();
192 Vmath::Vadd(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1,
193 &(m_bcCorrection[cnt]), 1,
194 &(m_PBndExp[n]->UpdateCoeffs()[0]), 1);
195 cnt += nq;
196 }
197 }
198 }
199}
200
202 const Array<OneD, const Array<OneD, NekDouble>> &fields,
203 const Array<OneD, const Array<OneD, NekDouble>> &N, NekDouble kinvis)
204{
205 if (m_mapping->HasConstantJacobian() && !m_implicitViscous)
206 {
207 Extrapolate::v_CalcNeumannPressureBCs(fields, N, kinvis);
208 }
209 else
210 {
211 size_t physTot = m_fields[0]->GetTotPoints();
212 size_t nvel = m_fields.size() - 1;
213 size_t i, n, cnt;
214
217
220 // Get transformation Jacobian
221 Array<OneD, NekDouble> Jac(physTot, 0.0);
222 m_mapping->GetJacobian(Jac);
223 // Declare variables
227 Array<OneD, Array<OneD, NekDouble>> fields_new(nvel);
229 // Temporary variables
230 Array<OneD, NekDouble> tmp(physTot, 0.0);
231 Array<OneD, NekDouble> tmp2(physTot, 0.0);
232 for (int i = 0; i < m_bnd_dim; i++)
233 {
234 N_new[i] = Array<OneD, NekDouble>(physTot, 0.0);
235 }
236 for (i = 0; i < nvel; i++)
237 {
238 Q_field[i] = Array<OneD, NekDouble>(physTot, 0.0);
239 fields_new[i] = Array<OneD, NekDouble>(physTot, 0.0);
240 }
241
242 // Multiply convective terms by Jacobian
243 for (int i = 0; i < m_bnd_dim; i++)
244 {
245 if (m_fields[0]->GetWaveSpace())
246 {
247 m_fields[0]->HomogeneousBwdTrans(physTot, N[i], N_new[i]);
248 }
249 else
250 {
251 Vmath::Vcopy(physTot, N[i], 1, N_new[i], 1);
252 }
253 Vmath::Vmul(physTot, Jac, 1, N_new[i], 1, N_new[i], 1);
254 if (m_fields[0]->GetWaveSpace())
255 {
256 m_fields[0]->HomogeneousFwdTrans(physTot, N_new[i], N_new[i]);
257 }
258 }
259
260 // Get velocity in physical space
261 for (i = 0; i < nvel; i++)
262 {
263 if (m_fields[0]->GetWaveSpace())
264 {
265 m_fields[0]->HomogeneousBwdTrans(physTot, fields[i],
266 fields_new[i]);
267 }
268 else
269 {
270 Vmath::Vcopy(physTot, fields[i], 1, fields_new[i], 1);
271 }
272 }
273
274 // Calculate appropriate form of the CurlCurl operator
275 m_mapping->CurlCurlField(fields_new, Q_field, m_implicitViscous);
276
277 // If viscous terms are treated explicitly,
278 // add grad(U/J \dot grad J) to CurlCurl
280 {
281 m_mapping->DotGradJacobian(fields_new, tmp);
282 Vmath::Vdiv(physTot, tmp, 1, Jac, 1, tmp, 1);
283
284 bool wavespace = m_fields[0]->GetWaveSpace();
285 m_fields[0]->SetWaveSpace(false);
286 for (int i = 0; i < m_bnd_dim; i++)
287 {
288 m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], tmp,
289 tmp2);
290 Vmath::Vadd(physTot, Q_field[i], 1, tmp2, 1, Q_field[i], 1);
291 }
292 m_fields[0]->SetWaveSpace(wavespace);
293 }
294
295 // Multiply by Jacobian and convert to wavespace (if necessary)
296 for (int i = 0; i < m_bnd_dim; i++)
297 {
298 Vmath::Vmul(physTot, Jac, 1, fields_new[i], 1, fields_new[i], 1);
299 Vmath::Vmul(physTot, Jac, 1, Q_field[i], 1, Q_field[i], 1);
300 if (m_fields[0]->GetWaveSpace())
301 {
302 m_fields[0]->HomogeneousFwdTrans(physTot, fields_new[i],
303 fields_new[i]);
304 m_fields[0]->HomogeneousFwdTrans(physTot, Q_field[i],
305 Q_field[i]);
306 }
307 }
308
310 for (n = cnt = 0; n < m_PBndConds.size(); ++n)
311 {
312 // High order boundary condition;
313 if (boost::iequals(m_PBndConds[n]->GetUserDefined(), "H"))
314 {
315 m_fields[0]->GetBndElmtExpansion(n, BndElmtExp);
316 size_t nq = BndElmtExp->GetTotPoints();
317
318 // Obtaining fields on BndElmtExp
319 for (int i = 0; i < m_bnd_dim; i++)
320 {
321 m_fields[0]->ExtractPhysToBndElmt(n, fields_new[i],
322 Velocity[i]);
323 m_fields[0]->ExtractPhysToBndElmt(n, N_new[i],
324 Advection[i]);
325 m_fields[0]->ExtractPhysToBndElmt(n, Q_field[i], Q[i]);
326 }
327
328 // Mounting advection component into the high-order condition
329 for (int i = 0; i < m_bnd_dim; i++)
330 {
331 MountHOPBCs(nq, kinvis, Q[i], Advection[i]);
332 }
333
334 Pvals = (m_pressureHBCs[m_intSteps - 1]) + cnt;
335 Uvals = (m_iprodnormvel[m_intSteps]) + cnt;
336
337 // Getting values on the edge and filling the pressure boundary
338 // expansion and the acceleration term. Multiplication by the
339 // normal is required
340 for (int i = 0; i < m_bnd_dim; i++)
341 {
342 m_fields[0]->ExtractElmtToBndPhys(n, Q[i], BndValues[i]);
343 }
344 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Pvals);
345
346 for (int i = 0; i < m_bnd_dim; i++)
347 {
348 m_fields[0]->ExtractElmtToBndPhys(n, Velocity[i],
349 BndValues[i]);
350 }
351 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Uvals);
352
353 // Get offset for next terms
354 cnt += m_PBndExp[n]->GetNcoeffs();
355 }
356 }
357 }
358 // If pressure terms are treated implicitly, we need to multiply
359 // by the relaxation parameter, and zero the correction term
361 {
364 m_pressureHBCs[m_intSteps - 1], 1);
365 }
367}
368
369} // namespace Nektar
Array< OneD, Array< OneD, NekDouble > > m_pressureHBCs
Storage for current and previous levels of high order pressure boundary conditions.
Definition: Extrapolate.h:277
int m_bnd_dim
bounday dimensionality
Definition: Extrapolate.h:250
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
Definition: Extrapolate.h:234
virtual void v_CalcNeumannPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &fields, const Array< OneD, const Array< OneD, NekDouble > > &N, NekDouble kinvis)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Velocity fields.
Definition: Extrapolate.h:231
Array< OneD, Array< OneD, NekDouble > > m_iprodnormvel
Storage for current and previous levels of the inner product of normal velocity.
Definition: Extrapolate.h:281
int m_intSteps
Maximum points used in pressure BC evaluation.
Definition: Extrapolate.h:271
Array< OneD, MultiRegions::ExpListSharedPtr > m_PBndExp
pressure boundary conditions expansion container
Definition: Extrapolate.h:256
void MountHOPBCs(int HBCdata, NekDouble kinvis, Array< OneD, NekDouble > &Q, Array< OneD, const NekDouble > &Advection)
Definition: Extrapolate.h:107
Array< OneD, const SpatialDomains::BoundaryConditionShPtr > m_PBndConds
pressure boundary conditions container
Definition: Extrapolate.h:253
LibUtilities::SessionReaderSharedPtr m_session
Definition: Extrapolate.h:223
static GLOBAL_MAPPING_EXPORT MappingSharedPtr Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Return a pointer to the mapping, creating it on first call.
Definition: Mapping.cpp:264
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
MappingExtrapolate(const LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields, MultiRegions::ExpListSharedPtr pPressure, const Array< OneD, int > pVel, const SolverUtils::AdvectionSharedPtr advObject)
Array< OneD, NekDouble > m_bcCorrection
static std::string className
Name of class.
GlobalMapping::MappingSharedPtr m_mapping
void v_CalcNeumannPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &fields, const Array< OneD, const Array< OneD, NekDouble > > &N, NekDouble kinvis) override
static ExtrapolateSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, MultiRegions::ExpListSharedPtr &pPressure, const Array< OneD, int > &pVel, const SolverUtils::AdvectionSharedPtr &advObject)
Creates an instance of this class.
void v_CorrectPressureBCs(const Array< OneD, NekDouble > &pressure) override
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:81
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:87
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
std::shared_ptr< Advection > AdvectionSharedPtr
A shared pointer to an Advection object.
Definition: Advection.h:54
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:47
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220