Nektar++
MappingExtrapolate.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: MappingExtrapolate.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Abstract base class for MappingExtrapolate.
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37namespace Nektar
38{
39/**
40 * Registers the class with the Factory.
41 */
44 "Mapping", MappingExtrapolate::create, "Mapping");
45
50 const SolverUtils::AdvectionSharedPtr advObject)
51 : StandardExtrapolate(pSession, pFields, pPressure, pVel, advObject)
52{
54
55 // Load solve parameters related to the mapping
56 // Flags determining if pressure/viscous terms should be treated implicitly
57 m_session->MatchSolverInfo("MappingImplicitPressure", "True",
58 m_implicitPressure, false);
59 m_session->MatchSolverInfo("MappingImplicitViscous", "True",
60 m_implicitViscous, false);
61
62 // Relaxation parameter for pressure system
63 m_session->LoadParameter("MappingPressureRelaxation", m_pressureRelaxation,
64 1.0);
65}
66
68{
69}
70
71/**
72 *
73 */
76{
77 if (m_HBCnumber > 0)
78 {
79 size_t cnt, n;
80 size_t physTot = m_fields[0]->GetTotPoints();
81 size_t nvel = m_fields.size() - 1;
82
84 // Remove previous correction
85 for (cnt = n = 0; n < m_PBndConds.size(); ++n)
86 {
87 if (m_PBndConds[n]->GetUserDefined() == "H")
88 {
89 size_t nq = m_PBndExp[n]->GetNcoeffs();
90 Vmath::Vsub(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1,
91 &(m_bcCorrection[cnt]), 1,
92 &(m_PBndExp[n]->UpdateCoeffs()[0]), 1);
93 cnt += nq;
94 }
95 }
96
97 // Calculate new correction
98 Array<OneD, NekDouble> Jac(physTot, 0.0);
99 m_mapping->GetJacobian(Jac);
100
101 Array<OneD, Array<OneD, NekDouble>> correction(nvel);
105 for (size_t i = 0; i < nvel; i++)
106 {
107 wk[i] = Array<OneD, NekDouble>(physTot, 0.0);
108 gradP[i] = Array<OneD, NekDouble>(physTot, 0.0);
109 correction[i] = Array<OneD, NekDouble>(physTot, 0.0);
110 }
111
112 // Calculate G(p)
113 for (size_t i = 0; i < nvel; ++i)
114 {
116 gradP[i]);
117 if (m_fields[0]->GetWaveSpace())
118 {
119 m_fields[0]->HomogeneousBwdTrans(physTot, gradP[i], wk[i]);
120 }
121 else
122 {
123 Vmath::Vcopy(physTot, gradP[i], 1, wk[i], 1);
124 }
125 }
126 m_mapping->RaiseIndex(wk, correction); // G(p)
127
128 // alpha*J*(G(p))
129 if (!m_mapping->HasConstantJacobian())
130 {
131 for (size_t i = 0; i < nvel; ++i)
132 {
133 Vmath::Vmul(physTot, correction[i], 1, Jac, 1, correction[i],
134 1);
135 }
136 }
137 for (size_t i = 0; i < nvel; ++i)
138 {
139 Vmath::Smul(physTot, m_pressureRelaxation, correction[i], 1,
140 correction[i], 1);
141 }
142
143 if (m_pressure->GetWaveSpace())
144 {
145 for (size_t i = 0; i < nvel; ++i)
146 {
147 m_pressure->HomogeneousFwdTrans(physTot, correction[i],
148 correction[i]);
149 }
150 }
151 // p_i - alpha*J*div(G(p))
152 for (size_t i = 0; i < nvel; ++i)
153 {
154 Vmath::Vsub(physTot, gradP[i], 1, correction[i], 1, correction[i],
155 1);
156 }
157
158 // Get value at boundary and calculate Inner product
162 for (n = cnt = 0; n < m_PBndConds.size(); ++n)
163 {
164 // High order boundary condition;
165 if (boost::iequals(m_PBndConds[n]->GetUserDefined(), "H"))
166 {
167 m_fields[0]->GetBndElmtExpansion(n, BndElmtExp);
168
169 // Obtaining fields on BndElmtExp
170 for (int i = 0; i < m_bnd_dim; i++)
171 {
172 m_fields[0]->ExtractPhysToBndElmt(n, correction[i],
173 correctionElmt[i]);
174 }
175
176 Vals = m_bcCorrection + cnt;
177 // Getting values on the edge and filling the correction
178 for (int i = 0; i < m_bnd_dim; i++)
179 {
180 m_fields[0]->ExtractElmtToBndPhys(n, correctionElmt[i],
181 BndValues[i]);
182 }
183 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Vals);
184
185 // Get offset for next terms
186 cnt += m_PBndExp[n]->GetNcoeffs();
187 }
188 }
189
190 // Apply new correction
191 for (size_t cnt = n = 0; n < m_PBndConds.size(); ++n)
192 {
193 if (m_PBndConds[n]->GetUserDefined() == "H")
194 {
195 size_t nq = m_PBndExp[n]->GetNcoeffs();
196 Vmath::Vadd(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1,
197 &(m_bcCorrection[cnt]), 1,
198 &(m_PBndExp[n]->UpdateCoeffs()[0]), 1);
199 cnt += nq;
200 }
201 }
202 }
203}
204
206 const Array<OneD, const Array<OneD, NekDouble>> &fields,
207 const Array<OneD, const Array<OneD, NekDouble>> &N, NekDouble kinvis)
208{
209 if (m_mapping->HasConstantJacobian() && !m_implicitViscous)
210 {
211 Extrapolate::v_CalcNeumannPressureBCs(fields, N, kinvis);
212 }
213 else
214 {
215 size_t physTot = m_fields[0]->GetTotPoints();
216 size_t nvel = m_fields.size() - 1;
217 size_t i, n, cnt;
218
221
224 // Get transformation Jacobian
225 Array<OneD, NekDouble> Jac(physTot, 0.0);
226 m_mapping->GetJacobian(Jac);
227 // Declare variables
231 Array<OneD, Array<OneD, NekDouble>> fields_new(nvel);
233 // Temporary variables
234 Array<OneD, NekDouble> tmp(physTot, 0.0);
235 Array<OneD, NekDouble> tmp2(physTot, 0.0);
236 for (int i = 0; i < m_bnd_dim; i++)
237 {
238 N_new[i] = Array<OneD, NekDouble>(physTot, 0.0);
239 }
240 for (i = 0; i < nvel; i++)
241 {
242 Q_field[i] = Array<OneD, NekDouble>(physTot, 0.0);
243 fields_new[i] = Array<OneD, NekDouble>(physTot, 0.0);
244 }
245
246 // Multiply convective terms by Jacobian
247 for (int i = 0; i < m_bnd_dim; i++)
248 {
249 if (m_fields[0]->GetWaveSpace())
250 {
251 m_fields[0]->HomogeneousBwdTrans(physTot, N[i], N_new[i]);
252 }
253 else
254 {
255 Vmath::Vcopy(physTot, N[i], 1, N_new[i], 1);
256 }
257 Vmath::Vmul(physTot, Jac, 1, N_new[i], 1, N_new[i], 1);
258 if (m_fields[0]->GetWaveSpace())
259 {
260 m_fields[0]->HomogeneousFwdTrans(physTot, N_new[i], N_new[i]);
261 }
262 }
263
264 // Get velocity in physical space
265 for (i = 0; i < nvel; i++)
266 {
267 if (m_fields[0]->GetWaveSpace())
268 {
269 m_fields[0]->HomogeneousBwdTrans(physTot, fields[i],
270 fields_new[i]);
271 }
272 else
273 {
274 Vmath::Vcopy(physTot, fields[i], 1, fields_new[i], 1);
275 }
276 }
277
278 // Calculate appropriate form of the CurlCurl operator
279 m_mapping->CurlCurlField(fields_new, Q_field, m_implicitViscous);
280
281 // If viscous terms are treated explicitly,
282 // add grad(U/J \dot grad J) to CurlCurl
284 {
285 m_mapping->DotGradJacobian(fields_new, tmp);
286 Vmath::Vdiv(physTot, tmp, 1, Jac, 1, tmp, 1);
287
288 bool wavespace = m_fields[0]->GetWaveSpace();
289 m_fields[0]->SetWaveSpace(false);
290 for (int i = 0; i < m_bnd_dim; i++)
291 {
292 m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], tmp,
293 tmp2);
294 Vmath::Vadd(physTot, Q_field[i], 1, tmp2, 1, Q_field[i], 1);
295 }
296 m_fields[0]->SetWaveSpace(wavespace);
297 }
298
299 // Multiply by Jacobian and convert to wavespace (if necessary)
300 for (int i = 0; i < m_bnd_dim; i++)
301 {
302 Vmath::Vmul(physTot, Jac, 1, fields_new[i], 1, fields_new[i], 1);
303 Vmath::Vmul(physTot, Jac, 1, Q_field[i], 1, Q_field[i], 1);
304 if (m_fields[0]->GetWaveSpace())
305 {
306 m_fields[0]->HomogeneousFwdTrans(physTot, fields_new[i],
307 fields_new[i]);
308 m_fields[0]->HomogeneousFwdTrans(physTot, Q_field[i],
309 Q_field[i]);
310 }
311 }
312
314 for (n = cnt = 0; n < m_PBndConds.size(); ++n)
315 {
316 // High order boundary condition;
317 if (boost::iequals(m_PBndConds[n]->GetUserDefined(), "H"))
318 {
319 m_fields[0]->GetBndElmtExpansion(n, BndElmtExp);
320 size_t nq = BndElmtExp->GetTotPoints();
321
322 // Obtaining fields on BndElmtExp
323 for (int i = 0; i < m_bnd_dim; i++)
324 {
325 m_fields[0]->ExtractPhysToBndElmt(n, fields_new[i],
326 Velocity[i]);
327 m_fields[0]->ExtractPhysToBndElmt(n, N_new[i],
328 Advection[i]);
329 m_fields[0]->ExtractPhysToBndElmt(n, Q_field[i], Q[i]);
330 }
331
332 // Mounting advection component into the high-order condition
333 for (int i = 0; i < m_bnd_dim; i++)
334 {
335 MountHOPBCs(nq, kinvis, Q[i], Advection[i]);
336 }
337
338 Pvals = (m_pressureHBCs[m_intSteps - 1]) + cnt;
339 Uvals = (m_iprodnormvel[m_intSteps]) + cnt;
340
341 // Getting values on the edge and filling the pressure boundary
342 // expansion and the acceleration term. Multiplication by the
343 // normal is required
344 for (int i = 0; i < m_bnd_dim; i++)
345 {
346 m_fields[0]->ExtractElmtToBndPhys(n, Q[i], BndValues[i]);
347 }
348 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Pvals);
349
350 for (int i = 0; i < m_bnd_dim; i++)
351 {
352 m_fields[0]->ExtractElmtToBndPhys(n, Velocity[i],
353 BndValues[i]);
354 }
355 m_PBndExp[n]->NormVectorIProductWRTBase(BndValues, Uvals);
356
357 // Get offset for next terms
358 cnt += m_PBndExp[n]->GetNcoeffs();
359 }
360 }
361 }
362 // If pressure terms are treated implicitly, we need to multiply
363 // by the relaxation parameter, and zero the correction term
365 {
368 m_pressureHBCs[m_intSteps - 1], 1);
369 }
371}
372} // namespace Nektar
Array< OneD, Array< OneD, NekDouble > > m_pressureHBCs
Storage for current and previous levels of high order pressure boundary conditions.
Definition: Extrapolate.h:247
int m_bnd_dim
bounday dimensionality
Definition: Extrapolate.h:220
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
Definition: Extrapolate.h:204
virtual void v_CalcNeumannPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &fields, const Array< OneD, const Array< OneD, NekDouble > > &N, NekDouble kinvis)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Velocity fields.
Definition: Extrapolate.h:201
Array< OneD, Array< OneD, NekDouble > > m_iprodnormvel
Storage for current and previous levels of the inner product of normal velocity.
Definition: Extrapolate.h:251
int m_intSteps
Maximum points used in pressure BC evaluation.
Definition: Extrapolate.h:241
Array< OneD, MultiRegions::ExpListSharedPtr > m_PBndExp
pressure boundary conditions expansion container
Definition: Extrapolate.h:226
void MountHOPBCs(int HBCdata, NekDouble kinvis, Array< OneD, NekDouble > &Q, Array< OneD, const NekDouble > &Advection)
Definition: Extrapolate.h:383
Array< OneD, const SpatialDomains::BoundaryConditionShPtr > m_PBndConds
pressure boundary conditions container
Definition: Extrapolate.h:223
LibUtilities::SessionReaderSharedPtr m_session
Definition: Extrapolate.h:193
static GLOBAL_MAPPING_EXPORT MappingSharedPtr Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Return a pointer to the mapping, creating it on first call.
Definition: Mapping.cpp:266
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
MappingExtrapolate(const LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields, MultiRegions::ExpListSharedPtr pPressure, const Array< OneD, int > pVel, const SolverUtils::AdvectionSharedPtr advObject)
Array< OneD, NekDouble > m_bcCorrection
static std::string className
Name of class.
GlobalMapping::MappingSharedPtr m_mapping
void v_CalcNeumannPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &fields, const Array< OneD, const Array< OneD, NekDouble > > &N, NekDouble kinvis) override
static ExtrapolateSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, MultiRegions::ExpListSharedPtr &pPressure, const Array< OneD, int > &pVel, const SolverUtils::AdvectionSharedPtr &advObject)
Creates an instance of this class.
void v_CorrectPressureBCs(const Array< OneD, NekDouble > &pressure) override
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:81
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:87
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
std::shared_ptr< Advection > AdvectionSharedPtr
A shared pointer to an Advection object.
Definition: Advection.h:54
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:48
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220