Nektar++
PengRobinsonEoS.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: PengRobinsonEoS.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Peng-Robinson equation of state
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include "PengRobinsonEoS.h"
36
37using namespace std;
38
39namespace Nektar
40{
41
44 "PengRobinson", PengRobinsonEoS::create,
45 "Peng-Robinson equation of state.");
46
49 : EquationOfState(pSession)
50{
51 pSession->LoadParameter("Tcrit", m_Tc);
52 pSession->LoadParameter("Pcrit", m_Pc);
53 pSession->LoadParameter("AcentricFactor", m_omega);
54
55 m_a = 0.45724 * m_gasConstant * m_gasConstant * m_Tc * m_Tc / m_Pc;
56 m_b = 0.0778 * m_gasConstant * m_Tc / m_Pc;
57 m_fw = 0.37464 + 1.54226 * m_omega - 0.2699 * m_omega * m_omega;
58}
59
61 const NekDouble &e)
62{
63 return GetTemperatureKernel(rho, e);
64}
65
67{
68 return GetTemperatureKernel(rho, e);
69}
70
72 const NekDouble &e)
73{
74 return GetPressureKernel(rho, e);
75}
76
78{
79 return GetPressureKernel(rho, e);
80}
81
83 const NekDouble &e)
84{
85 NekDouble T = GetTemperature(rho, e);
86 NekDouble logTerm = LogTerm(rho);
87 // Entropy for an ideal gas
88 NekDouble sIg =
89 m_gasConstant / (m_gamma - 1) * log(T) - m_gasConstant * log(rho);
90
91 // First sqrt(Alpha) = 1+_w*(1-sqrt(Tr)) and sqrt(Tr)
92 NekDouble sqrtA = sqrt(Alpha(T));
93 NekDouble sqrtTr = sqrt(T / m_Tc);
94
95 NekDouble deltaS = m_gasConstant * log(1 - m_b * rho);
96 deltaS += m_a * sqrtA * m_fw * logTerm * (sqrtTr / T) / (m_b * sqrt(8));
97
98 return sIg + deltaS;
99}
100
102 const NekDouble &e)
103{
104 NekDouble T = GetTemperature(rho, e);
105 NekDouble dPde = GetDPDe_rho(rho, e);
106
107 // First calculate the denominator 1/rho^2 + 2*b/rho - b^2
108 // and alpha = [1+f_w*(1-sqrt(Tr))]^2
109 NekDouble denom = 1.0 / (rho * rho) + 2.0 * m_b / rho - m_b * m_b;
110 NekDouble alpha = Alpha(T);
111
112 // Calculate dPdrho_T
113 NekDouble dPdrho_T =
114 m_gasConstant * T / ((1.0 - m_b * rho) * (1.0 - m_b * rho)) -
115 2 * m_a * alpha * rho * (1 + m_b * rho) /
116 ((denom * rho * rho) * (denom * rho * rho));
117
118 // Calculate dedrho_T
119 NekDouble dedrho_T =
120 -m_a * sqrt(alpha) * (1.0 + m_fw) / (denom * rho * rho);
121
122 // The result is dPdrho_e = dPdrho_T - dPde_rho * dedrho_T
123 return dPdrho_T - dPde * dedrho_T;
124}
125
127 const NekDouble &e)
128{
129 NekDouble T = GetTemperature(rho, e);
130 NekDouble logTerm = LogTerm(rho);
131
132 // First calculate the denominator 1/rho^2 + 2*b/rho - b^2
133 // and sqrt(Alpha) = 1+f_w*(1-sqrt(Tr))
134 NekDouble denom = 1.0 / (rho * rho) + 2.0 * m_b / rho - m_b * m_b;
135 NekDouble sqrtA = sqrt(Alpha(T));
136
137 // Compute cv = dedT_rho
138 NekDouble cv = m_gasConstant / (m_gamma - 1) -
139 m_a / (2 * m_b * sqrt(8)) * logTerm * (m_fw * (1 + m_fw)) /
140 sqrt(T * m_Tc);
141
142 // Now we obtain dPdT_rho
143 NekDouble dPdT = m_gasConstant / (1.0 / rho - m_b) +
144 m_a / sqrt(T * m_Tc) * m_fw * sqrtA / denom;
145
146 // The result is dPde_rho = dPdT_rho / cv
147 return dPdT / cv;
148}
149
151 const NekDouble &p)
152{
153 NekDouble denom = 1.0 / (rho * rho) + 2.0 * m_b / rho - m_b * m_b;
154 NekDouble logTerm = LogTerm(rho);
155 // First we solve for the temperature, which can be expressed as
156 // A * (T^1/2)^2 + B * T^1/2 + C = 0
157 NekDouble A, B, C;
158
159 A = m_gasConstant / (1.0 / rho - m_b) -
160 (m_a * m_fw * m_fw) / (denom * m_Tc);
161 B = 2 * m_a / denom * m_fw * (1.0 + m_fw) / sqrt(m_Tc);
162 C = -m_a * (1.0 + m_fw) * (1 + m_fw) / denom - p;
163
164 // Solve for T^1/2 (positive root)
165 NekDouble T = (-B + sqrt(B * B - 4 * A * C)) / (2 * A);
166 T = T * T;
167
168 // Calculate alpha(T))
169 NekDouble alpha = Alpha(T);
170 // sqrt(Tr)
171 NekDouble sqrtTr = sqrt(T / m_Tc);
172 // Calculate internal energy
173 return m_gasConstant * T / (m_gamma - 1) +
174 m_a / (m_b * sqrt(8)) * logTerm *
175 (alpha + sqrt(alpha) * m_fw * sqrtTr);
176}
177
179 const NekDouble &T)
180{
181 // First solve for the compressibility factor Z using the cubic equation
182 // Z^3 + k1 * Z^2 + k2 * Z + k3 = 0
183 // for PengRobinson:
184 // k1 = B-1, k2 = A - 2*B - 3*B^2, k3 = - AB + B^2 + B^3
185 // where A = a*alpha(T)*P/(RT)^2, B = bP/(RT)
186 NekDouble A = m_a * Alpha(T) * p / (m_gasConstant * m_gasConstant * T * T);
187 NekDouble B = m_b * p / (m_gasConstant * T);
188
189 NekDouble k1 = B - 1.0;
190 NekDouble k2 = A - 2 * B - 3 * B * B;
191 NekDouble k3 = -A * B + B * B + B * B * B;
192
193 // Use ideal gas (Z=1) as starting guess for iteration
194 NekDouble Z = 1.0;
195 // Newton-Raphson iteration to find Z
196 NekDouble tol = 1e-6;
197 NekDouble maxIter = 100;
198 NekDouble residual = 1;
199 NekDouble f, df;
200 unsigned int cnt = 0;
201 while ((fabs(residual) > tol) && cnt < maxIter)
202 {
203 f = Z * Z * Z + k1 * Z * Z + k2 * Z + k3;
204 df = 3 * Z * Z + 2 * k1 * Z + k2;
205 residual = f / df;
206 Z -= residual;
207 ++cnt;
208 }
209 if (cnt == maxIter)
210 {
211 cout << "Newton-Raphson in PengRobinsonEoS::v_GetRhoFromPT did not "
212 "converge in "
213 << maxIter << " iterations (residual = " << residual << ")"
214 << endl;
215 }
216
217 // Now calculate rho = p/(ZRT)
218 return p / (Z * m_gasConstant * T);
219}
220
221} // namespace Nektar
Encapsulates equations of state allowing us to obtain thermodynamic properties: most relations are in...
NekDouble GetTemperature(const NekDouble &rho, const NekDouble &e)
Calculate the temperature.
NekDouble GetDPDe_rho(const NekDouble &rho, const NekDouble &e)
Calculate the partial derivative of P(rho,e) with respect to e.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
PengRobinsonEoS(const LibUtilities::SessionReaderSharedPtr &pSession)
static std::string className
Name of the class.
static EquationOfStateSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
Creates an instance of this class.
T GetTemperatureKernel(const T &rho, const T &e)
T GetPressureKernel(const T &rho, const T &e)
NekDouble v_GetPressure(const NekDouble &rho, const NekDouble &e) final
NekDouble v_GetEFromRhoP(const NekDouble &rho, const NekDouble &p) final
NekDouble v_GetDPDe_rho(const NekDouble &rho, const NekDouble &e) final
NekDouble v_GetTemperature(const NekDouble &rho, const NekDouble &e) final
NekDouble v_GetRhoFromPT(const NekDouble &rho, const NekDouble &p) final
NekDouble v_GetDPDrho_e(const NekDouble &rho, const NekDouble &e) final
T Alpha(const T &temp)
NekDouble v_GetEntropy(const NekDouble &rho, const NekDouble &e) final
std::shared_ptr< SessionReader > SessionReaderSharedPtr
EquationOfStateFactory & GetEquationOfStateFactory()
Declaration of the equation of state factory singleton.
tinysimd::simd< NekDouble > vec_t
double NekDouble
STL namespace.
scalarT< T > log(scalarT< T > in)
Definition: scalar.hpp:303
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294