Nektar++
RedlichKwongEoS.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: RedlichKwongEoS.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Redlich-Kwong equation of state
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include "RedlichKwongEoS.h"
36
37using namespace std;
38
39namespace Nektar
40{
41
44 "RedlichKwong", RedlichKwongEoS::create,
45 "Redlich-Kwong equation of state.");
46
49 : EquationOfState(pSession)
50{
51 pSession->LoadParameter("Tcrit", m_Tc);
52 pSession->LoadParameter("Pcrit", m_Pc);
53
54 m_a = 0.42748 * m_gasConstant * m_gasConstant * m_Tc * m_Tc / m_Pc;
55 m_b = 0.08664 * m_gasConstant * m_Tc / m_Pc;
56}
57
59 const NekDouble &e)
60{
61 return GetTemperatureKernel(rho, e);
62}
63
65{
66 return GetTemperatureKernel(rho, e);
67}
68
70 const NekDouble &e)
71{
72 return GetPressureKernel(rho, e);
73}
74
76{
77 return GetPressureKernel(rho, e);
78}
79
81 const NekDouble &e)
82{
83 NekDouble T = GetTemperature(rho, e);
84 NekDouble logTerm = LogTerm(rho);
85 // Entropy for an ideal gas
86 NekDouble sIg =
87 m_gasConstant / (m_gamma - 1) * log(T) - m_gasConstant * log(rho);
88
89 NekDouble deltaS = m_gasConstant * log(1 - m_b * rho);
90 deltaS -= m_a * Alpha(T) * logTerm / (2 * m_b * T);
91
92 return sIg + deltaS;
93}
94
96 const NekDouble &e)
97{
98 NekDouble T = GetTemperature(rho, e);
99 NekDouble alpha = Alpha(T);
100 NekDouble dPde = GetDPDe_rho(rho, e);
101
102 // Calculate dPdrho_T
103 NekDouble dPdrho_T =
104 m_gasConstant * T / ((1.0 - m_b * rho) * (1.0 - m_b * rho)) -
105 m_a * alpha * rho * (m_b * rho + 2) /
106 ((1 + m_b * rho) * (1 + m_b * rho));
107
108 // Calculate dedrho_T
109 NekDouble dedrho_T = -3 * m_a * alpha / (2 * (1 + m_b * rho));
110
111 // The result is dPdrho_e = dPdrho_T - dPde_rho * dedrho_T
112 return dPdrho_T - dPde * dedrho_T;
113}
114
116 const NekDouble &e)
117{
118 NekDouble T = GetTemperature(rho, e);
119 NekDouble alpha = Alpha(T);
120 NekDouble logTerm = LogTerm(rho);
121
122 // First calculate the denominator 1/rho^2 + 2*b/rho - b^2
123 // and sqrt(Alpha) = 1+f_w*(1-sqrt(Tr))
124 NekDouble denom = 1.0 / (rho * rho) + m_b / rho;
125
126 // Compute cv = dedT_rho
127 NekDouble cv = m_gasConstant / (m_gamma - 1) +
128 3 * m_a * alpha * logTerm / (4 * m_b * T);
129
130 // Now we obtain dPdT_rho
131 NekDouble dPdT =
132 m_gasConstant / (1.0 / rho - m_b) + m_a * alpha / (denom * 2 * T);
133
134 // The result is dPde_rho = dPdT_rho / cv
135 return dPdT / cv;
136}
137
139 const NekDouble &p)
140{
141 NekDouble logTerm = LogTerm(rho);
142 // First calculate the temperature, which can be expressed as
143 // (T^1/2)^3 + A* T^1/2 + B = 0
144 NekDouble A, B;
145
146 A = -p * (1.0 / rho - m_b) / m_gasConstant;
147 B = -m_a * sqrt(m_Tc) * (1.0 / rho - m_b) /
148 (1.0 / (rho * rho) + m_b / rho) / m_gasConstant;
149
150 // Use ideal gas solution as starting guess for iteration
151 NekDouble sqrtT = sqrt(p / (rho * (m_gamma - 1)));
152 // Newton-Raphson iteration to find T^(1/2)
153 NekDouble tol = 1e-6;
154 NekDouble maxIter = 100;
155 NekDouble residual = 1;
156 NekDouble f, df;
157 unsigned int cnt = 0;
158 while (abs(residual) > tol && cnt < maxIter)
159 {
160 f = sqrtT * sqrtT * sqrtT + A * sqrtT + B;
161 df = 3 * sqrtT * sqrtT + A;
162 residual = f / df;
163 sqrtT -= residual;
164 ++cnt;
165 }
166 if (cnt == maxIter)
167 {
168 cout << "Newton-Raphson in RedlichKwongEoS::v_GetEFromRhoP did not "
169 "converge in "
170 << maxIter << " iterations (residual = " << residual << ")"
171 << endl;
172 }
173
174 // Calculate T
175 NekDouble T = sqrtT * sqrtT;
176
177 // Calculate internal energy
178 return m_gasConstant * T / (m_gamma - 1) -
179 3 * m_a * Alpha(T) / (2 * m_b) * logTerm;
180}
181
183 const NekDouble &T)
184{
185 // First solve for the compressibility factor Z using the cubic equation
186 // Z^3 + k1 * Z^2 + k2 * Z + k3 = 0
187 // for RedlichKwong:
188 // k1 = -1.0, k2 = A - B - B^2, k3 = -AB
189 // where A = a*alpha(T)*P/(RT)^2, B = bP/(RT)
190 NekDouble A = m_a * Alpha(T) * p / (m_gasConstant * m_gasConstant * T * T);
191 NekDouble B = m_b * p / (m_gasConstant * T);
192
193 NekDouble k1 = -1.0;
194 NekDouble k2 = A - B - B * B;
195 NekDouble k3 = -A * B;
196
197 // Use ideal gas (Z=1) as starting guess for iteration
198 NekDouble Z = 1.0;
199 // Newton-Raphson iteration to find Z
200 NekDouble tol = 1e-6;
201 NekDouble maxIter = 100;
202 NekDouble residual = 1;
203 NekDouble f, df;
204 unsigned int cnt = 0;
205 while (abs(residual) > tol && cnt < maxIter)
206 {
207 f = Z * Z * Z + k1 * Z * Z + k2 * Z + k3;
208 df = 3 * Z * Z + 2 * k1 * Z + k2;
209 residual = f / df;
210 Z -= residual;
211 ++cnt;
212 }
213 if (cnt == maxIter)
214 {
215 cout << "Newton-Raphson in RedlichKwongEoS::v_GetRhoFromPT did not "
216 "converge in "
217 << maxIter << " iterations (residual = " << residual << ")"
218 << endl;
219 }
220
221 // Now calculate rho = p/(ZRT)
222 return p / (Z * m_gasConstant * T);
223}
224
225} // namespace Nektar
Encapsulates equations of state allowing us to obtain thermodynamic properties: most relations are in...
NekDouble GetTemperature(const NekDouble &rho, const NekDouble &e)
Calculate the temperature.
NekDouble GetDPDe_rho(const NekDouble &rho, const NekDouble &e)
Calculate the partial derivative of P(rho,e) with respect to e.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
T GetTemperatureKernel(const T &rho, const T &e)
static std::string className
Name of the class.
NekDouble v_GetDPDrho_e(const NekDouble &rho, const NekDouble &e) final
RedlichKwongEoS(const LibUtilities::SessionReaderSharedPtr &pSession)
static EquationOfStateSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
Creates an instance of this class.
T Alpha(const T &temp)
NekDouble v_GetRhoFromPT(const NekDouble &rho, const NekDouble &p) final
NekDouble v_GetDPDe_rho(const NekDouble &rho, const NekDouble &e) final
NekDouble v_GetTemperature(const NekDouble &rho, const NekDouble &e) final
NekDouble v_GetEntropy(const NekDouble &rho, const NekDouble &e) final
T GetPressureKernel(const T &rho, const T &e)
NekDouble v_GetPressure(const NekDouble &rho, const NekDouble &e) final
NekDouble v_GetEFromRhoP(const NekDouble &rho, const NekDouble &p) final
std::shared_ptr< SessionReader > SessionReaderSharedPtr
EquationOfStateFactory & GetEquationOfStateFactory()
Declaration of the equation of state factory singleton.
tinysimd::simd< NekDouble > vec_t
double NekDouble
STL namespace.
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298
scalarT< T > log(scalarT< T > in)
Definition: scalar.hpp:303
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294