Nektar++
RiemannInvariantBC.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: RiemannInvariantBC.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Riemann invariant boundary condition
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include "RiemannInvariantBC.h"
36
37using namespace std;
38
39namespace Nektar
40{
41
44 "RiemannInvariant", RiemannInvariantBC::create,
45 "Riemann invariant boundary condition.");
46
50 const Array<OneD, Array<OneD, NekDouble>> &pTraceNormals,
51 const Array<OneD, Array<OneD, NekDouble>> &pGridVelocity,
52 const int pSpaceDim, const int bcRegion, const int cnt)
53 : CFSBndCond(pSession, pFields, pTraceNormals, pGridVelocity, pSpaceDim,
54 bcRegion, cnt)
55{
56 // Calculate VnInf
57 int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
58 m_VnInf = Array<OneD, NekDouble>(nTracePts, 0.0);
59
60 // Computing the normal velocity for characteristics coming
61 // from outside the computational domain
62 for (int i = 0; i < m_spacedim; i++)
63 {
64 Vmath::Svtvp(nTracePts, m_velInf[i], m_traceNormals[i], 1, m_VnInf, 1,
65 m_VnInf, 1);
66 }
67}
68
71 [[maybe_unused]] Array<OneD, Array<OneD, NekDouble>> &physarray,
72 [[maybe_unused]] const NekDouble &time)
73{
74 int i, j;
75 int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
76 int nDimensions = m_spacedim;
77
78 const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
79
80 NekDouble gammaInv = 1.0 / m_gamma;
81 NekDouble gammaMinusOne = m_gamma - 1.0;
82 NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
83
84 // Computing the normal velocity for characteristics coming
85 // from inside the computational domain
86 Array<OneD, NekDouble> Vn(nTracePts, 0.0);
87 Array<OneD, NekDouble> Vel(nTracePts, 0.0);
88 for (i = 0; i < nDimensions; ++i)
89 {
90 Vmath::Vdiv(nTracePts, Fwd[i + 1], 1, Fwd[0], 1, Vel, 1);
91 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
92 }
93
94 // Computing the absolute value of the velocity in order to compute the
95 // Mach number to decide whether supersonic or subsonic
96 Array<OneD, NekDouble> absVel(nTracePts, 0.0);
97 m_varConv->GetAbsoluteVelocity(Fwd, absVel);
98
99 // Get speed of sound
101 Array<OneD, NekDouble> soundSpeed(nTracePts);
102
103 m_varConv->GetPressure(Fwd, pressure);
104 m_varConv->GetSoundSpeed(Fwd, soundSpeed);
105
106 // Get Mach
107 Array<OneD, NekDouble> Mach(nTracePts, 0.0);
108 Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
109 Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
110
111 // Auxiliary variables
112 int eMax;
113 int e, id1, id2, nBCEdgePts, pnt;
114 NekDouble cPlus, rPlus, cMinus, rMinus, VDBC, VNBC;
115 Array<OneD, NekDouble> velBC(nDimensions, 0.0);
116 Array<OneD, NekDouble> rhoVelBC(nDimensions, 0.0);
117 NekDouble rhoBC, EBC, cBC, sBC, pBC;
118
119 eMax = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize();
120
121 // Loop on m_bcRegions
122 for (e = 0; e < eMax; ++e)
123 {
124 nBCEdgePts = m_fields[0]
125 ->GetBndCondExpansions()[m_bcRegion]
126 ->GetExp(e)
127 ->GetTotPoints();
128
129 id1 =
130 m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetPhys_Offset(e);
131 id2 =
132 m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset + e]);
133
134 // Loop on the points of the m_bcRegion
135 for (i = 0; i < nBCEdgePts; i++)
136 {
137 pnt = id2 + i;
138
139 // Impose inflow Riemann invariant
140 if (Vn[pnt] <= 0.0)
141 {
142 // Subsonic flows
143 if (Mach[pnt] < 1.00)
144 {
145 // + Characteristic from inside
146 cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
147 rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
148
149 // - Characteristic from boundary
150 cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
151 rMinus = m_VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
152 }
153 else
154 {
155 // + Characteristic from inside
156 cPlus = sqrt(m_gamma * m_pInf / m_rhoInf);
157 rPlus = m_VnInf[pnt] + 2.0 * cPlus * gammaMinusOneInv;
158
159 // + Characteristic from inside
160 cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
161 rMinus = m_VnInf[pnt] - 2.0 * cPlus * gammaMinusOneInv;
162 }
163
164 // Riemann boundary variables
165 VNBC = 0.5 * (rPlus + rMinus);
166 cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
167 VDBC = VNBC - m_VnInf[pnt];
168
169 // Thermodynamic boundary variables
170 sBC = m_pInf / (pow(m_rhoInf, m_gamma));
171 rhoBC = pow((cBC * cBC) / (m_gamma * sBC), gammaMinusOneInv);
172 pBC = rhoBC * cBC * cBC * gammaInv;
173
174 // Kinetic energy initialiasation
175 NekDouble EkBC = 0.0;
176
177 // Boundary velocities
178 for (j = 0; j < nDimensions; ++j)
179 {
180 velBC[j] = m_velInf[j] + VDBC * m_traceNormals[j][pnt];
181 rhoVelBC[j] = rhoBC * velBC[j];
182 EkBC += 0.5 * rhoBC * velBC[j] * velBC[j];
183 }
184
185 // Boundary energy
186 EBC = pBC * gammaMinusOneInv + EkBC;
187
188 // Imposing Riemann Invariant boundary conditions
189 (m_fields[0]
190 ->GetBndCondExpansions()[m_bcRegion]
191 ->UpdatePhys())[id1 + i] = rhoBC;
192 for (j = 0; j < nDimensions; ++j)
193 {
194 (m_fields[j + 1]
195 ->GetBndCondExpansions()[m_bcRegion]
196 ->UpdatePhys())[id1 + i] = rhoVelBC[j];
197 }
198 (m_fields[nDimensions + 1]
199 ->GetBndCondExpansions()[m_bcRegion]
200 ->UpdatePhys())[id1 + i] = EBC;
201 }
202 else // Impose outflow Riemann invariant
203 {
204 // Subsonic flows
205 if (Mach[pnt] < 1.00)
206 {
207 // + Characteristic from inside
208 cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
209 rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
210
211 // - Characteristic from boundary
212 cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
213 rMinus = m_VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
214 }
215 else
216 {
217 // + Characteristic from inside
218 cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
219 rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
220
221 // + Characteristic from inside
222 cMinus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
223 rMinus = Vn[pnt] - 2.0 * cPlus * gammaMinusOneInv;
224 }
225
226 // Riemann boundary variables
227 VNBC = 0.5 * (rPlus + rMinus);
228 cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
229 VDBC = VNBC - Vn[pnt];
230
231 // Thermodynamic boundary variables
232 sBC = pressure[pnt] / (pow(Fwd[0][pnt], m_gamma));
233 rhoBC = pow((cBC * cBC) / (m_gamma * sBC), gammaMinusOneInv);
234 pBC = rhoBC * cBC * cBC * gammaInv;
235
236 // Kinetic energy initialiasation
237 NekDouble EkBC = 0.0;
238
239 // Boundary velocities
240 for (j = 0; j < nDimensions; ++j)
241 {
242 velBC[j] = Fwd[j + 1][pnt] / Fwd[0][pnt] +
243 VDBC * m_traceNormals[j][pnt];
244 rhoVelBC[j] = rhoBC * velBC[j];
245 EkBC += 0.5 * rhoBC * velBC[j] * velBC[j];
246 }
247
248 // Boundary energy
249 EBC = pBC * gammaMinusOneInv + EkBC;
250
251 // Imposing Riemann Invariant boundary conditions
252 (m_fields[0]
253 ->GetBndCondExpansions()[m_bcRegion]
254 ->UpdatePhys())[id1 + i] = rhoBC;
255 for (j = 0; j < nDimensions; ++j)
256 {
257 (m_fields[j + 1]
258 ->GetBndCondExpansions()[m_bcRegion]
259 ->UpdatePhys())[id1 + i] = rhoVelBC[j];
260 }
261 (m_fields[nDimensions + 1]
262 ->GetBndCondExpansions()[m_bcRegion]
263 ->UpdatePhys())[id1 + i] = EBC;
264 }
265 }
266 }
267}
268
269} // namespace Nektar
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:71
NekDouble m_rhoInf
Definition: CFSBndCond.h:106
NekDouble m_pInf
Definition: CFSBndCond.h:107
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:98
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:94
Array< OneD, NekDouble > m_velInf
Definition: CFSBndCond.h:109
NekDouble m_gamma
Parameters of the flow.
Definition: CFSBndCond.h:105
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:113
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:100
int m_offset
Offset.
Definition: CFSBndCond.h:115
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:92
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
void v_Apply(Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time) override
static CFSBndCondSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const Array< OneD, Array< OneD, NekDouble > > &pGridVelocity, const int pSpaceDim, const int bcRegion, const int cnt)
Creates an instance of this class.
RiemannInvariantBC(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const Array< OneD, Array< OneD, NekDouble > > &pGridVelocity, const int pSpaceDim, const int bcRegion, const int cnt)
static std::string className
Name of the class.
Array< OneD, NekDouble > m_VnInf
Reference normal velocity.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
double NekDouble
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.hpp:352
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
STL namespace.
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294