Nektar++
SkewSymmetricAdvection.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: SkewSymmetricAdvection.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Evaluation of the Navier Stokes advective term
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar
40{
43 "SkewSymmetric", SkewSymmetricAdvection::create, "Skew Symmetric");
44
45/**
46 *
47 */
49
50{
51}
52
53/**
54 *
55 */
57{
58}
59
60/**
61 *
62 */
66{
67 Advection::v_InitObject(pSession, pFields);
68
69 m_homogen_dealiasing = pSession->DefinesSolverInfo("dealiasing");
70 pSession->MatchSolverInfo("ModeType", "SingleMode", m_SingleMode, false);
71 pSession->MatchSolverInfo("ModeType", "HalfMode", m_HalfMode, false);
72}
73
74/**
75 *
76 */
78 const int nConvectiveFields,
80 const Array<OneD, Array<OneD, NekDouble>> &advVel,
81 const Array<OneD, Array<OneD, NekDouble>> &inarray,
83 [[maybe_unused]] const NekDouble &time,
84 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pFwd,
85 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pBwd)
86{
87 // use dimension of Velocity vector to dictate dimension of operation
88 int ndim = advVel.size();
89 int nqtot = fields[0]->GetTotPoints();
90 ASSERTL1(nConvectiveFields == inarray.size(),
91 "Number of convective fields and Inarray are not compatible");
92
94 for (int i = 0; i < ndim; ++i)
95 {
96 if (fields[i]->GetWaveSpace() && !m_SingleMode && !m_HalfMode)
97 {
98 velocity[i] = Array<OneD, NekDouble>(nqtot, 0.0);
99 fields[i]->HomogeneousBwdTrans(nqtot, advVel[i], velocity[i]);
100 }
101 else
102 {
103 velocity[i] = advVel[i];
104 }
105 }
106
107 for (int n = 0; n < nConvectiveFields; ++n)
108 {
109 // ToDo: here we should add a check that V has right dimension
110
111 int nPointsTot = fields[0]->GetNpoints();
112 Array<OneD, NekDouble> gradV0, gradV1, gradV2, tmp, Up;
113
114 gradV0 = Array<OneD, NekDouble>(nPointsTot);
115 tmp = Array<OneD, NekDouble>(nPointsTot);
116
117 // Evaluate V\cdot Grad(u)
118 switch (ndim)
119 {
120 case 1:
121 fields[0]->PhysDeriv(inarray[n], gradV0);
122 Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1, outarray[n],
123 1);
124 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1, gradV0,
125 1);
126 fields[0]->PhysDeriv(gradV0, tmp);
127 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n], 1);
128 Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n], 1);
129 break;
130 case 2:
131 gradV1 = Array<OneD, NekDouble>(nPointsTot);
132 fields[0]->PhysDeriv(inarray[n], gradV0, gradV1);
133 Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1, outarray[n],
134 1);
135 Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1, outarray[n],
136 1, outarray[n], 1);
137 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1, gradV0,
138 1);
139 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1, gradV1,
140 1);
141 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0], gradV0,
142 tmp);
143 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n], 1);
144 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1], gradV1,
145 tmp);
146 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n], 1);
147 Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n], 1);
148 break;
149 case 3:
150 gradV1 = Array<OneD, NekDouble>(nPointsTot);
151 gradV2 = Array<OneD, NekDouble>(nPointsTot);
152
153 fields[0]->PhysDeriv(inarray[n], gradV0, gradV1, gradV2);
154
155 // outarray[n] = 1/2(u*du/dx + v*du/dy + w*du/dz + duu/dx +
156 // duv/dy + duw/dz)
157
158 if (m_homogen_dealiasing == true &&
159 fields[0]->GetWaveSpace() == false)
160 {
161 fields[0]->DealiasedProd(nPointsTot, velocity[0], gradV0,
162 gradV0);
163 fields[0]->DealiasedProd(nPointsTot, velocity[1], gradV1,
164 gradV1);
165 fields[0]->DealiasedProd(nPointsTot, velocity[2], gradV2,
166 gradV2);
167 Vmath::Vadd(nPointsTot, gradV0, 1, gradV1, 1, outarray[n],
168 1);
169 Vmath::Vadd(nPointsTot, gradV2, 1, outarray[n], 1,
170 outarray[n], 1);
171 fields[0]->DealiasedProd(nPointsTot, inarray[n],
172 velocity[0], gradV0);
173 fields[0]->DealiasedProd(nPointsTot, inarray[n],
174 velocity[1], gradV1);
175 fields[0]->DealiasedProd(nPointsTot, inarray[n],
176 velocity[2], gradV2);
177 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
178 gradV0, tmp);
179 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
180 1);
181 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
182 gradV1, tmp);
183 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
184 1);
185 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
186 gradV2, tmp);
187 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
188 1);
189 Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n],
190 1);
191 }
192 else if (fields[0]->GetWaveSpace() == true &&
193 m_homogen_dealiasing == false)
194 {
195 Up = Array<OneD, NekDouble>(nPointsTot);
196 // vector reused to avoid even more memory requirements
197 // names may be misleading
198 fields[0]->HomogeneousBwdTrans(nPointsTot, gradV0, tmp);
199 Vmath::Vmul(nPointsTot, tmp, 1, velocity[0], 1, outarray[n],
200 1); // + u*du/dx
201 fields[0]->HomogeneousBwdTrans(nPointsTot, gradV1, tmp);
202 Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[1], 1,
203 outarray[n], 1, outarray[n], 1); // + v*du/dy
204 fields[0]->HomogeneousBwdTrans(nPointsTot, gradV2, tmp);
205 Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[2], 1,
206 outarray[n], 1, outarray[n], 1); // + w*du/dz
207
208 fields[0]->HomogeneousBwdTrans(nPointsTot, inarray[n], Up);
209 Vmath::Vmul(nPointsTot, Up, 1, velocity[0], 1, gradV0, 1);
210 Vmath::Vmul(nPointsTot, Up, 1, velocity[1], 1, gradV1, 1);
211 Vmath::Vmul(nPointsTot, Up, 1, velocity[2], 1, gradV2, 1);
212
213 fields[0]->SetWaveSpace(false);
214 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
215 gradV0, tmp); // duu/dx
216 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
217 1);
218 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
219 gradV1, tmp); // duv/dy
220 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
221 1);
222 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
223 gradV2, tmp); // duw/dz
224 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
225 1);
226 fields[0]->SetWaveSpace(true);
227
228 Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, tmp, 1);
229 fields[0]->HomogeneousFwdTrans(nPointsTot, tmp,
230 outarray[n]);
231 }
232 else if (fields[0]->GetWaveSpace() == false &&
233 m_homogen_dealiasing == false)
234 {
235 Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
236 outarray[n], 1);
237 Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1,
238 outarray[n], 1, outarray[n], 1);
239 Vmath::Vvtvp(nPointsTot, gradV2, 1, velocity[2], 1,
240 outarray[n], 1, outarray[n], 1);
241 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
242 gradV0, 1);
243 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1,
244 gradV1, 1);
245 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[2], 1,
246 gradV2, 1);
247 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
248 gradV0, tmp);
249 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
250 1);
251 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
252 gradV1, tmp);
253 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
254 1);
255 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
256 gradV2, tmp);
257 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
258 1);
259 Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n],
260 1);
261 }
262 else
263 {
264 ASSERTL0(false,
265 "Dealiasing is not allowed in combination "
266 "with the Skew-Symmetric advection form for "
267 "efficiency reasons.");
268 }
269 break;
270 default:
271 ASSERTL0(false, "dimension unknown");
272 }
273
274 Vmath::Neg(nqtot, outarray[n], 1);
275 }
276}
277
278} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static SolverUtils::AdvectionSharedPtr create(std::string)
Creates an instance of this class.
static std::string className
Name of class.
void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
Initialises the advection object.
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:81
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
Definition: Advection.cpp:295
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:87
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
STL namespace.