Nektar++
StdExpansion2D.h
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: StdExpansion2D.h
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Daughter of StdExpansion. This class contains routine
32// which are common to 2D expansion. Typically this inolves physiocal
33// space operations.
34//
35///////////////////////////////////////////////////////////////////////////////
36
37#ifndef STDEXP2D_H
38#define STDEXP2D_H
39
41
42namespace Nektar::StdRegions
43{
44class StdExpansion2D : virtual public StdExpansion
45{
46public:
48 const LibUtilities::BasisKey &Ba,
49 const LibUtilities::BasisKey &Bb);
52 STD_REGIONS_EXPORT ~StdExpansion2D() override = default;
53
54 // Generic operations in different element
55
56 /** \brief Calculate the 2D derivative in the local
57 * tensor/collapsed coordinate at the physical points
58 *
59 * This function is independent of the expansion basis and can
60 * therefore be defined for all tensor product distribution of
61 * quadrature points in a generic manner. The key operations are:
62 *
63 * - \f$ \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \f$ \n
64 * - \f$ \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \f$
65 *
66 * \param inarray array of physical points to be differentiated
67 * \param outarray_d0 the resulting array of derivative in the
68 * \f$\eta_1\f$ direction will be stored in outarray_d0 as output
69 * of the function
70 * \param outarray_d1 the resulting array of derivative in the
71 * \f$\eta_2\f$ direction will be stored in outarray_d1 as output
72 * of the function
73 *
74 * Recall that:
75 * \f$
76 * \hspace{1cm} \begin{array}{llll}
77 * \mbox{Shape} & \mbox{Cartesian coordinate range} &
78 * \mbox{Collapsed coord.} &
79 * \mbox{Collapsed coordinate definition}\\
80 * \mbox{Quadrilateral} & -1 \leq \xi_1,\xi_2 \leq 1
81 * & -1 \leq \eta_1,\eta_2 \leq 1
82 * & \eta_1 = \xi_1, \eta_2 = \xi_2\\
83 * \mbox{Triangle} & -1 \leq \xi_1,\xi_2; \xi_1+\xi_2 \leq 0
84 * & -1 \leq \eta_1,\eta_2 \leq 1
85 * & \eta_1 = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \eta_2 = \xi_2 \\
86 * \end{array} \f$
87 */
89 const Array<OneD, const NekDouble> &inarray,
90 Array<OneD, NekDouble> &outarray_d0,
91 Array<OneD, NekDouble> &outarray_d1);
92
97
98 // find derivative of u (inarray) at all coords points
100 const Array<OneD, NekDouble> &coord,
101 const Array<OneD, const NekDouble> &inarray,
102 std::array<NekDouble, 3> &firstOrderDerivs)
103 {
104 const int nq0 = m_base[0]->GetNumPoints();
105 const int nq1 = m_base[1]->GetNumPoints();
106
107 const NekDouble *ptr = &inarray[0];
108 Array<OneD, NekDouble> deriv0(nq1, 0.0);
109 Array<OneD, NekDouble> phys0(nq1, 0.0);
110
111 for (int j = 0; j < nq1; ++j, ptr += nq0)
112 {
113 phys0[j] =
114 StdExpansion::BaryEvaluate<0, true>(coord[0], ptr, deriv0[j]);
115 }
116 firstOrderDerivs[0] =
117 StdExpansion::BaryEvaluate<1, false>(coord[1], &deriv0[0]);
118
119 return StdExpansion::BaryEvaluate<1, true>(coord[1], &phys0[0],
120 firstOrderDerivs[1]);
121 }
122
124 const Array<OneD, const NekDouble> &base0,
125 const Array<OneD, const NekDouble> &base1,
126 const Array<OneD, const NekDouble> &inarray,
128 bool doCheckCollDir0 = true, bool doCheckCollDir1 = true);
129
131 const Array<OneD, const NekDouble> &base0,
132 const Array<OneD, const NekDouble> &base1,
133 const Array<OneD, const NekDouble> &inarray,
135 bool doCheckCollDir0 = true, bool doCheckCollDir1 = true);
136
137protected:
138 /** \brief This function evaluates the expansion at a single
139 * (arbitrary) point of the domain
140 *
141 * This function is a wrapper around the virtual function
142 * \a v_PhysEvaluate()
143 *
144 * Based on the value of the expansion at the quadrature points,
145 * this function calculates the value of the expansion at an
146 * arbitrary single points (with coordinates \f$ \mathbf{x_c}\f$
147 * given by the pointer \a coords). This operation, equivalent to
148 * \f[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \f]
149 * is evaluated using Lagrangian interpolants through the quadrature
150 * points:
151 * \f[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\f]
152 *
153 * This function requires that the physical value array
154 * \f$\mathbf{u}\f$ (implemented as the attribute #m_phys)
155 * is set.
156 *
157 * \param coords the coordinates of the single point
158 * \return returns the value of the expansion at the single point
159 */
162 const Array<OneD, const NekDouble> &physvals) override;
163
166 const Array<OneD, const NekDouble> &physvals) override;
167
170 const Array<OneD, const NekDouble> &inarray,
171 std::array<NekDouble, 3> &firstOrderDerivs) override;
172
174 const Array<OneD, const NekDouble> &base0,
175 const Array<OneD, const NekDouble> &base1,
176 const Array<OneD, const NekDouble> &inarray,
178 bool doCheckCollDir0, bool doCheckCollDir1) = 0;
179
181 const Array<OneD, const NekDouble> &base0,
182 const Array<OneD, const NekDouble> &base1,
183 const Array<OneD, const NekDouble> &inarray,
185 bool doCheckCollDir0, bool doCheckCollDir1) = 0;
186
188 const Array<OneD, const NekDouble> &inarray,
189 Array<OneD, NekDouble> &outarray,
190 const StdRegions::StdMatrixKey &mkey) override;
192 const Array<OneD, const NekDouble> &inarray,
193 Array<OneD, NekDouble> &outarray,
194 const StdRegions::StdMatrixKey &mkey) override;
195
197 const unsigned int traceid,
198 Array<OneD, unsigned int> &maparray) override;
199
201 const unsigned int eid, Array<OneD, unsigned int> &maparray,
202 Array<OneD, int> &signarray, Orientation edgeOrient, int P,
203 int Q) override;
204
206 const int eid, Array<OneD, unsigned int> &maparray,
207 Array<OneD, int> &signarray, Orientation edgeOrient = eForwards,
208 int P = -1, int Q = -1) override;
209
210 STD_REGIONS_EXPORT void v_GenStdMatBwdDeriv(const int dir,
211 DNekMatSharedPtr &mat) override;
212
213private:
214 int v_GetShapeDimension() const final
215 {
216 return 2;
217 }
218};
219
220typedef std::shared_ptr<StdExpansion2D> StdExpansion2DSharedPtr;
221
222} // namespace Nektar::StdRegions
223
224#endif // STDEXP2D_H
#define STD_REGIONS_EXPORT
Describes the specification for a Basis.
Definition: Basis.h:45
void v_GenStdMatBwdDeriv(const int dir, DNekMatSharedPtr &mat) override
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points.
~StdExpansion2D() override=default
void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
void v_GetTraceToElementMap(const int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient=eForwards, int P=-1, int Q=-1) override
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
NekDouble BaryTensorDeriv(const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
NekDouble Integral(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
void v_GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray) override
void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
StdExpansion2D(const StdExpansion2D &T)=default
NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
void v_GetElmtTraceToTraceMap(const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q) override
Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with...
The base class for all shapes.
Definition: StdExpansion.h:65
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ P
Monomial polynomials .
Definition: BasisType.h:62
std::shared_ptr< StdExpansion2D > StdExpansion2DSharedPtr
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble