Nektar++
TriExp.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: TriExp.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19// The above copyright notice and this permission notice shall be included
20// in all copies or substantial portions of the Software.
21//
22// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28// DEALINGS IN THE SOFTWARE.
29//
30// Description: Expasion for triangular elements.
31//
32///////////////////////////////////////////////////////////////////////////////
33
37#include <LocalRegions/SegExp.h>
38#include <LocalRegions/TriExp.h>
40
41using namespace std;
42
44{
46 const LibUtilities::BasisKey &Bb,
48 : StdExpansion(LibUtilities::StdTriData::getNumberOfCoefficients(
49 Ba.GetNumModes(), (Bb.GetNumModes())),
50 2, Ba, Bb),
51 StdExpansion2D(LibUtilities::StdTriData::getNumberOfCoefficients(
52 Ba.GetNumModes(), (Bb.GetNumModes())),
53 Ba, Bb),
54 StdTriExp(Ba, Bb), Expansion(geom), Expansion2D(geom),
55 m_matrixManager(
56 std::bind(&Expansion2D::CreateMatrix, this, std::placeholders::_1),
57 std::string("TriExpMatrix")),
58 m_staticCondMatrixManager(std::bind(&Expansion::CreateStaticCondMatrix,
59 this, std::placeholders::_1),
60 std::string("TriExpStaticCondMatrix"))
61{
62}
63
65 : StdExpansion(T), StdExpansion2D(T), StdTriExp(T), Expansion(T),
66 Expansion2D(T), m_matrixManager(T.m_matrixManager),
67 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
68{
69}
70
72{
73 int nquad0 = m_base[0]->GetNumPoints();
74 int nquad1 = m_base[1]->GetNumPoints();
76 NekDouble ival;
77 Array<OneD, NekDouble> tmp(nquad0 * nquad1);
78
79 // multiply inarray with Jacobian
80 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
81 {
82 Vmath::Vmul(nquad0 * nquad1, jac, 1, inarray, 1, tmp, 1);
83 }
84 else
85 {
86 Vmath::Smul(nquad0 * nquad1, jac[0], inarray, 1, tmp, 1);
87 }
88
89 // call StdQuadExp version;
90 ival = StdTriExp::v_Integral(tmp);
91 return ival;
92}
93
98{
99 int nquad0 = m_base[0]->GetNumPoints();
100 int nquad1 = m_base[1]->GetNumPoints();
101 int nqtot = nquad0 * nquad1;
103 m_metricinfo->GetDerivFactors(GetPointsKeys());
104
105 Array<OneD, NekDouble> diff0(2 * nqtot);
106 Array<OneD, NekDouble> diff1(diff0 + nqtot);
107
108 StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
109
110 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
111 {
112 if (out_d0.size())
113 {
114 Vmath::Vmul(nqtot, df[0], 1, diff0, 1, out_d0, 1);
115 Vmath::Vvtvp(nqtot, df[1], 1, diff1, 1, out_d0, 1, out_d0, 1);
116 }
117
118 if (out_d1.size())
119 {
120 Vmath::Vmul(nqtot, df[2], 1, diff0, 1, out_d1, 1);
121 Vmath::Vvtvp(nqtot, df[3], 1, diff1, 1, out_d1, 1, out_d1, 1);
122 }
123
124 if (out_d2.size())
125 {
126 Vmath::Vmul(nqtot, df[4], 1, diff0, 1, out_d2, 1);
127 Vmath::Vvtvp(nqtot, df[5], 1, diff1, 1, out_d2, 1, out_d2, 1);
128 }
129 }
130 else // regular geometry
131 {
132 if (out_d0.size())
133 {
134 Vmath::Smul(nqtot, df[0][0], diff0, 1, out_d0, 1);
135 Blas::Daxpy(nqtot, df[1][0], diff1, 1, out_d0, 1);
136 }
137
138 if (out_d1.size())
139 {
140 Vmath::Smul(nqtot, df[2][0], diff0, 1, out_d1, 1);
141 Blas::Daxpy(nqtot, df[3][0], diff1, 1, out_d1, 1);
142 }
143
144 if (out_d2.size())
145 {
146 Vmath::Smul(nqtot, df[4][0], diff0, 1, out_d2, 1);
147 Blas::Daxpy(nqtot, df[5][0], diff1, 1, out_d2, 1);
148 }
149 }
150}
151
152void TriExp::v_PhysDeriv(const int dir,
153 const Array<OneD, const NekDouble> &inarray,
154 Array<OneD, NekDouble> &outarray)
155{
156 switch (dir)
157 {
158 case 0:
159 {
160 PhysDeriv(inarray, outarray, NullNekDouble1DArray,
162 }
163 break;
164 case 1:
165 {
166 PhysDeriv(inarray, NullNekDouble1DArray, outarray,
168 }
169 break;
170 case 2:
171 {
173 outarray);
174 }
175 break;
176 default:
177 {
178 ASSERTL1(false, "input dir is out of range");
179 }
180 break;
181 }
182}
183
185 const Array<OneD, const NekDouble> &inarray,
187{
188 if (!out.size())
189 {
190 return;
191 }
192
193 int nquad0 = m_base[0]->GetNumPoints();
194 int nquad1 = m_base[1]->GetNumPoints();
195 int nqtot = nquad0 * nquad1;
196
198 m_metricinfo->GetDerivFactors(GetPointsKeys());
199
200 Array<OneD, NekDouble> diff0(2 * nqtot);
201 Array<OneD, NekDouble> diff1(diff0 + nqtot);
202
203 // diff0 = du/d_xi, diff1 = du/d_eta
204 StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
205
206 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
207 {
209
210 // D^v_xi = v_x*d_xi/dx + v_y*d_xi/dy + v_z*d_xi/dz
211 // D^v_eta = v_x*d_eta/dx + v_y*d_eta/dy + v_z*d_eta/dz
212 for (int i = 0; i < 2; ++i)
213 {
214 tangmat[i] = Array<OneD, NekDouble>(nqtot, 0.0);
215 for (int k = 0; k < (m_geom->GetCoordim()); ++k)
216 {
217 Vmath::Vvtvp(nqtot, &df[2 * k + i][0], 1, &direction[k * nqtot],
218 1, &tangmat[i][0], 1, &tangmat[i][0], 1);
219 }
220 }
221
222 /// D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta
223 Vmath::Vmul(nqtot, &tangmat[0][0], 1, &diff0[0], 1, &out[0], 1);
224 Vmath::Vvtvp(nqtot, &tangmat[1][0], 1, &diff1[0], 1, &out[0], 1,
225 &out[0], 1);
226 }
227 else
228 {
230
231 for (int i = 0; i < 2; ++i)
232 {
233 tangmat[i] = Array<OneD, NekDouble>(nqtot, 0.0);
234 for (int k = 0; k < (m_geom->GetCoordim()); ++k)
235 {
236 Vmath::Svtvp(nqtot, df[2 * k + i][0], &direction[k * nqtot], 1,
237 &tangmat[i][0], 1, &tangmat[i][0], 1);
238 }
239 }
240
241 /// D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta
242 Vmath::Vmul(nqtot, &tangmat[0][0], 1, &diff0[0], 1, &out[0], 1);
243
244 Vmath::Vvtvp(nqtot, &tangmat[1][0], 1, &diff1[0], 1, &out[0], 1,
245 &out[0], 1);
246 }
247}
248
250 Array<OneD, NekDouble> &outarray)
251{
252 IProductWRTBase(inarray, outarray);
253
254 // get Mass matrix inverse
256 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
257
258 // copy inarray in case inarray == outarray
259 NekVector<NekDouble> in(m_ncoeffs, outarray, eCopy);
261
262 out = (*matsys) * in;
263}
264
266 const Array<OneD, const NekDouble> &inarray,
267 Array<OneD, NekDouble> &outarray)
268{
269 int i, j;
270 int npoints[2] = {m_base[0]->GetNumPoints(), m_base[1]->GetNumPoints()};
271 int nmodes[2] = {m_base[0]->GetNumModes(), m_base[1]->GetNumModes()};
272
273 fill(outarray.get(), outarray.get() + m_ncoeffs, 0.0);
274
275 if (nmodes[0] == 1 && nmodes[1] == 1)
276 {
277 outarray[0] = inarray[0];
278 return;
279 }
280
281 Array<OneD, NekDouble> physEdge[3];
282 Array<OneD, NekDouble> coeffEdge[3];
283 for (i = 0; i < 3; i++)
284 {
285 // define physEdge and add 1 so can interpolate grl10 points if
286 // necessary
287 physEdge[i] = Array<OneD, NekDouble>(max(npoints[i != 0], npoints[0]));
288 coeffEdge[i] = Array<OneD, NekDouble>(nmodes[i != 0]);
289 }
290
291 for (i = 0; i < npoints[0]; i++)
292 {
293 physEdge[0][i] = inarray[i];
294 }
295
296 // extract data in cartesian directions
297 for (i = 0; i < npoints[1]; i++)
298 {
299 physEdge[1][i] = inarray[npoints[0] - 1 + i * npoints[0]];
300 physEdge[2][i] = inarray[i * npoints[0]];
301 }
302
303 SegExpSharedPtr segexp[3];
305 m_base[0]->GetBasisKey(), GetGeom2D()->GetEdge(0));
306
308 {
309 for (i = 1; i < 3; i++)
310 {
312 m_base[i != 0]->GetBasisKey(), GetGeom2D()->GetEdge(i));
313 }
314 }
315 else // interploate using edge 0 GLL distribution
316 {
317 for (i = 1; i < 3; i++)
318 {
320 m_base[0]->GetBasisKey(), GetGeom2D()->GetEdge(i));
321
322 LibUtilities::Interp1D(m_base[1]->GetPointsKey(), physEdge[i],
323 m_base[0]->GetPointsKey(), physEdge[i]);
324 }
325 npoints[1] = npoints[0];
326 }
327
329 Array<OneD, int> signArray;
331 // define an orientation to get EdgeToElmtMapping from Cartesian data
332 StdRegions::Orientation orient[3] = {
334
335 for (i = 0; i < 3; i++)
336 {
337 segexp[i]->FwdTransBndConstrained(physEdge[i], coeffEdge[i]);
338
339 // this orient goes with the one above and so could
340 // probably set both to eForwards
341 GetTraceToElementMap(i, mapArray, signArray, orient[i]);
342 for (j = 0; j < nmodes[i != 0]; j++)
343 {
344 sign = (NekDouble)signArray[j];
345 outarray[mapArray[j]] = sign * coeffEdge[i][j];
346 }
347 }
348
349 int nBoundaryDofs = NumBndryCoeffs();
350 int nInteriorDofs = m_ncoeffs - nBoundaryDofs;
351
352 if (nInteriorDofs > 0)
353 {
356
358 *this);
359 MassMatrixOp(outarray, tmp0, stdmasskey);
360 IProductWRTBase(inarray, tmp1);
361
362 Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
363
364 // get Mass matrix inverse (only of interior DOF)
365 // use block (1,1) of the static condensed system
366 // note: this block alreay contains the inverse matrix
367 MatrixKey masskey(StdRegions::eMass, DetShapeType(), *this);
368 DNekScalMatSharedPtr matsys =
369 (m_staticCondMatrixManager[masskey])->GetBlock(1, 1);
370
371 Array<OneD, NekDouble> rhs(nInteriorDofs);
372 Array<OneD, NekDouble> result(nInteriorDofs);
373
374 GetInteriorMap(mapArray);
375
376 for (i = 0; i < nInteriorDofs; i++)
377 {
378 rhs[i] = tmp1[mapArray[i]];
379 }
380
381 Blas::Dgemv('N', nInteriorDofs, nInteriorDofs, matsys->Scale(),
382 &((matsys->GetOwnedMatrix())->GetPtr())[0], nInteriorDofs,
383 rhs.get(), 1, 0.0, result.get(), 1);
384
385 for (i = 0; i < nInteriorDofs; i++)
386 {
387 outarray[mapArray[i]] = result[i];
388 }
389 }
390}
391
393 Array<OneD, NekDouble> &outarray)
394{
395 IProductWRTBase_SumFac(inarray, outarray);
396}
397
399 const Array<OneD, const NekDouble> &inarray,
400 Array<OneD, NekDouble> &outarray)
401{
402 IProductWRTDerivBase_SumFac(dir, inarray, outarray);
403}
404
406 const Array<OneD, const NekDouble> &inarray,
407 Array<OneD, NekDouble> &outarray, bool multiplybyweights)
408{
409 int nquad0 = m_base[0]->GetNumPoints();
410 int nquad1 = m_base[1]->GetNumPoints();
411 int order0 = m_base[0]->GetNumModes();
412
413 if (multiplybyweights)
414 {
415 Array<OneD, NekDouble> tmp(nquad0 * nquad1 + nquad1 * order0);
416 Array<OneD, NekDouble> wsp(tmp + nquad0 * nquad1);
417
418 MultiplyByQuadratureMetric(inarray, tmp);
420 m_base[1]->GetBdata(), tmp, outarray, wsp);
421 }
422 else
423 {
424 Array<OneD, NekDouble> wsp(+nquad1 * order0);
425
427 m_base[1]->GetBdata(), inarray, outarray,
428 wsp);
429 }
430}
431
433 const int dir, const Array<OneD, const NekDouble> &inarray,
434 Array<OneD, NekDouble> &outarray)
435{
436 int nquad0 = m_base[0]->GetNumPoints();
437 int nquad1 = m_base[1]->GetNumPoints();
438 int nqtot = nquad0 * nquad1;
439 int nmodes0 = m_base[0]->GetNumModes();
440 int wspsize = max(max(nqtot, m_ncoeffs), nquad1 * nmodes0);
441
442 Array<OneD, NekDouble> tmp0(4 * wspsize);
443 Array<OneD, NekDouble> tmp1(tmp0 + wspsize);
444 Array<OneD, NekDouble> tmp2(tmp0 + 2 * wspsize);
445 Array<OneD, NekDouble> tmp3(tmp0 + 3 * wspsize);
446
448 tmp2D[0] = tmp1;
449 tmp2D[1] = tmp2;
450
451 TriExp::v_AlignVectorToCollapsedDir(dir, inarray, tmp2D);
452
453 MultiplyByQuadratureMetric(tmp1, tmp1);
454 MultiplyByQuadratureMetric(tmp2, tmp2);
455
456 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
457 tmp1, tmp3, tmp0);
458 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
459 tmp2, outarray, tmp0);
460 Vmath::Vadd(m_ncoeffs, tmp3, 1, outarray, 1, outarray, 1);
461}
462
464 const int dir, const Array<OneD, const NekDouble> &inarray,
466{
467 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
468 ASSERTL1((dir == 2) ? (m_geom->GetCoordim() == 3) : true,
469 "Invalid direction.");
470
471 int nquad0 = m_base[0]->GetNumPoints();
472 int nquad1 = m_base[1]->GetNumPoints();
473 int nqtot = nquad0 * nquad1;
474 int nmodes0 = m_base[0]->GetNumModes();
475 int wspsize = max(max(nqtot, m_ncoeffs), nquad1 * nmodes0);
476
478 m_metricinfo->GetDerivFactors(GetPointsKeys());
479
480 Array<OneD, NekDouble> tmp0(wspsize);
481 Array<OneD, NekDouble> tmp3(wspsize);
482 Array<OneD, NekDouble> gfac0(wspsize);
483 Array<OneD, NekDouble> gfac1(wspsize);
484
485 Array<OneD, NekDouble> tmp1 = outarray[0];
486 Array<OneD, NekDouble> tmp2 = outarray[1];
487
488 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
489 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
490
491 // set up geometric factor: 2/(1-z1)
492 for (int i = 0; i < nquad1; ++i)
493 {
494 gfac0[i] = 2.0 / (1 - z1[i]);
495 }
496 for (int i = 0; i < nquad0; ++i)
497 {
498 gfac1[i] = 0.5 * (1 + z0[i]);
499 }
500
501 for (int i = 0; i < nquad1; ++i)
502 {
503 Vmath::Smul(nquad0, gfac0[i], &inarray[0] + i * nquad0, 1,
504 &tmp0[0] + i * nquad0, 1);
505 }
506
507 for (int i = 0; i < nquad1; ++i)
508 {
509 Vmath::Vmul(nquad0, &gfac1[0], 1, &tmp0[0] + i * nquad0, 1,
510 &tmp1[0] + i * nquad0, 1);
511 }
512
513 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
514 {
515 Vmath::Vmul(nqtot, &df[2 * dir][0], 1, &tmp0[0], 1, &tmp0[0], 1);
516 Vmath::Vmul(nqtot, &df[2 * dir + 1][0], 1, &tmp1[0], 1, &tmp1[0], 1);
517 Vmath::Vmul(nqtot, &df[2 * dir + 1][0], 1, &inarray[0], 1, &tmp2[0], 1);
518 }
519 else
520 {
521 Vmath::Smul(nqtot, df[2 * dir][0], tmp0, 1, tmp0, 1);
522 Vmath::Smul(nqtot, df[2 * dir + 1][0], tmp1, 1, tmp1, 1);
523 Vmath::Smul(nqtot, df[2 * dir + 1][0], inarray, 1, tmp2, 1);
524 }
525 Vmath::Vadd(nqtot, tmp0, 1, tmp1, 1, tmp1, 1);
526}
527
529 const Array<OneD, const NekDouble> &direction,
530 const Array<OneD, const NekDouble> &inarray,
531 Array<OneD, NekDouble> &outarray)
532{
533 IProductWRTDirectionalDerivBase_SumFac(direction, inarray, outarray);
534}
535
536/**
537 * @brief Directinoal Derivative in the modal space in the dir
538 * direction of varcoeffs.
539 */
541 const Array<OneD, const NekDouble> &direction,
542 const Array<OneD, const NekDouble> &inarray,
543 Array<OneD, NekDouble> &outarray)
544{
545 int i;
546 int shapedim = 2;
547 int nquad0 = m_base[0]->GetNumPoints();
548 int nquad1 = m_base[1]->GetNumPoints();
549 int nqtot = nquad0 * nquad1;
550 int nmodes0 = m_base[0]->GetNumModes();
551 int wspsize = max(max(nqtot, m_ncoeffs), nquad1 * nmodes0);
552
554 m_metricinfo->GetDerivFactors(GetPointsKeys());
555
556 Array<OneD, NekDouble> tmp0(6 * wspsize);
557 Array<OneD, NekDouble> tmp1(tmp0 + wspsize);
558 Array<OneD, NekDouble> tmp2(tmp0 + 2 * wspsize);
559 Array<OneD, NekDouble> tmp3(tmp0 + 3 * wspsize);
560 Array<OneD, NekDouble> gfac0(tmp0 + 4 * wspsize);
561 Array<OneD, NekDouble> gfac1(tmp0 + 5 * wspsize);
562
563 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
564 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
565
566 // set up geometric factor: 2/(1-z1)
567 for (i = 0; i < nquad1; ++i)
568 {
569 gfac0[i] = 2.0 / (1 - z1[i]);
570 }
571 for (i = 0; i < nquad0; ++i)
572 {
573 gfac1[i] = 0.5 * (1 + z0[i]);
574 }
575 for (i = 0; i < nquad1; ++i)
576 {
577 Vmath::Smul(nquad0, gfac0[i], &inarray[0] + i * nquad0, 1,
578 &tmp0[0] + i * nquad0, 1);
579 }
580 for (i = 0; i < nquad1; ++i)
581 {
582 Vmath::Vmul(nquad0, &gfac1[0], 1, &tmp0[0] + i * nquad0, 1,
583 &tmp1[0] + i * nquad0, 1);
584 }
585
586 // Compute gmat \cdot e^j
587 Array<OneD, Array<OneD, NekDouble>> dfdir(shapedim);
588 Expansion::ComputeGmatcdotMF(df, direction, dfdir);
589
590 Vmath::Vmul(nqtot, &dfdir[0][0], 1, &tmp0[0], 1, &tmp0[0], 1);
591 Vmath::Vmul(nqtot, &dfdir[1][0], 1, &tmp1[0], 1, &tmp1[0], 1);
592 Vmath::Vmul(nqtot, &dfdir[1][0], 1, &inarray[0], 1, &tmp2[0], 1);
593
594 Vmath::Vadd(nqtot, &tmp0[0], 1, &tmp1[0], 1, &tmp1[0], 1);
595
596 MultiplyByQuadratureMetric(tmp1, tmp1);
597 MultiplyByQuadratureMetric(tmp2, tmp2);
598
599 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
600 tmp1, tmp3, tmp0);
601 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
602 tmp2, outarray, tmp0);
603 Vmath::Vadd(m_ncoeffs, tmp3, 1, outarray, 1, outarray, 1);
604}
605
609 Array<OneD, NekDouble> &outarray)
610{
611 int nq = m_base[0]->GetNumPoints() * m_base[1]->GetNumPoints();
613
615 GetLeftAdjacentElementExp()->GetTraceNormal(
617
618 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
619 {
620 Vmath::Vvtvvtp(nq, &normals[0][0], 1, &Fx[0], 1, &normals[1][0], 1,
621 &Fy[0], 1, &Fn[0], 1);
622 Vmath::Vvtvp(nq, &normals[2][0], 1, &Fz[0], 1, &Fn[0], 1, &Fn[0], 1);
623 }
624 else
625 {
626 Vmath::Svtsvtp(nq, normals[0][0], &Fx[0], 1, normals[1][0], &Fy[0], 1,
627 &Fn[0], 1);
628 Vmath::Svtvp(nq, normals[2][0], &Fz[0], 1, &Fn[0], 1, &Fn[0], 1);
629 }
630
631 IProductWRTBase(Fn, outarray);
632}
633
635 const Array<OneD, const Array<OneD, NekDouble>> &Fvec,
636 Array<OneD, NekDouble> &outarray)
637{
638 NormVectorIProductWRTBase(Fvec[0], Fvec[1], Fvec[2], outarray);
639}
640
642{
643
645 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey());
646}
647
649{
651 m_base[0]->GetPointsKey());
653 m_base[1]->GetPointsKey());
654
656 bkey1);
657}
658
661{
662 int i;
663
664 ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[1] <= 1.0 && Lcoords[1] >= -1.0 &&
665 Lcoords[1] <= 1.0,
666 "Local coordinates are not in region [-1,1]");
667
668 m_geom->FillGeom();
669
670 for (i = 0; i < m_geom->GetCoordim(); ++i)
671 {
672 coords[i] = m_geom->GetCoord(i, Lcoords);
673 }
674}
675
677 Array<OneD, NekDouble> &coords_1,
678 Array<OneD, NekDouble> &coords_2)
679{
680 Expansion::v_GetCoords(coords_0, coords_1, coords_2);
681}
682
683/**
684 * Given the local cartesian coordinate \a Lcoord evaluate the
685 * value of physvals at this point by calling through to the
686 * StdExpansion method
687 */
689 const Array<OneD, const NekDouble> &Lcoord,
690 const Array<OneD, const NekDouble> &physvals)
691{
692 // Evaluate point in local (eta) coordinates.
693 return StdExpansion2D::v_PhysEvaluate(Lcoord, physvals);
694}
695
697 const Array<OneD, const NekDouble> &physvals)
698{
700
701 ASSERTL0(m_geom, "m_geom not defined");
702 m_geom->GetLocCoords(coord, Lcoord);
703
704 return StdExpansion2D::v_PhysEvaluate(Lcoord, physvals);
705}
706
708 const Array<OneD, const NekDouble> &inarray,
709 std::array<NekDouble, 3> &firstOrderDerivs)
710{
711 Array<OneD, NekDouble> Lcoord(2);
712 ASSERTL0(m_geom, "m_geom not defined");
713 m_geom->GetLocCoords(coord, Lcoord);
714 return StdTriExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
715}
716
718 const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp,
719 const Array<OneD, const NekDouble> &inarray,
721{
722 int nquad0 = m_base[0]->GetNumPoints();
723 int nquad1 = m_base[1]->GetNumPoints();
724 int nt = 0;
725 // Extract in Cartesian direction because we have to deal with
726 // e.g. Gauss-Radau points.
727 switch (edge)
728 {
729 case 0:
730 Vmath::Vcopy(nquad0, &(inarray[0]), 1, &(outarray[0]), 1);
731 nt = nquad0;
732 break;
733 case 1:
734 Vmath::Vcopy(nquad1, &(inarray[0]) + (nquad0 - 1), nquad0,
735 &(outarray[0]), 1);
736 nt = nquad1;
737 break;
738 case 2:
739 Vmath::Vcopy(nquad1, &(inarray[0]), nquad0, &(outarray[0]), 1);
740 nt = nquad1;
741 break;
742 default:
743 ASSERTL0(false, "edge value (< 3) is out of range");
744 break;
745 }
746
747 ASSERTL1(EdgeExp->GetBasis(0)->GetPointsType() ==
749 "Edge expansion should be GLL");
750
751 // Interpolate if required
752 if (m_base[edge ? 1 : 0]->GetPointsKey() !=
753 EdgeExp->GetBasis(0)->GetPointsKey())
754 {
755 Array<OneD, NekDouble> outtmp(max(nquad0, nquad1));
756
757 Vmath::Vcopy(nt, outarray, 1, outtmp, 1);
758
759 LibUtilities::Interp1D(m_base[edge ? 1 : 0]->GetPointsKey(), outtmp,
760 EdgeExp->GetBasis(0)->GetPointsKey(), outarray);
761 }
762
763 if (orient == StdRegions::eNoOrientation)
764 {
765 orient = GetTraceOrient(edge);
766 }
767
768 // Reverse data if necessary
769 if (orient == StdRegions::eBackwards)
770 {
771 Vmath::Reverse(EdgeExp->GetNumPoints(0), &outarray[0], 1, &outarray[0],
772 1);
773 }
774}
775
777 [[maybe_unused]] const int edge,
778 [[maybe_unused]] Array<OneD, NekDouble> &outarray)
779{
780 ASSERTL0(false, "Routine not implemented for triangular elements");
781}
782
783void TriExp::v_GetTracePhysMap(const int edge, Array<OneD, int> &outarray)
784{
785 int nquad0 = m_base[0]->GetNumPoints();
786 int nquad1 = m_base[1]->GetNumPoints();
787
788 // Get points in Cartesian orientation
789 switch (edge)
790 {
791 case 0:
792 outarray = Array<OneD, int>(nquad0);
793 for (int i = 0; i < nquad0; ++i)
794 {
795 outarray[i] = i;
796 }
797 break;
798 case 1:
799 outarray = Array<OneD, int>(nquad1);
800 for (int i = 0; i < nquad1; ++i)
801 {
802 outarray[i] = (nquad0 - 1) + i * nquad0;
803 }
804 break;
805 case 2:
806 outarray = Array<OneD, int>(nquad1);
807 for (int i = 0; i < nquad1; ++i)
808 {
809 outarray[i] = i * nquad0;
810 }
811 break;
812 default:
813 ASSERTL0(false, "edge value (< 3) is out of range");
814 break;
815 }
816}
817
819{
820 int i;
821 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
822 GetGeom()->GetMetricInfo();
823
825 for (i = 0; i < ptsKeys.size(); ++i)
826 {
827 // Need at least 2 points for computing normals
828 if (ptsKeys[i].GetNumPoints() == 1)
829 {
830 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
831 ptsKeys[i] = pKey;
832 }
833 }
834
835 const SpatialDomains::GeomType type = geomFactors->GetGtype();
837 geomFactors->GetDerivFactors(ptsKeys);
838 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
839
840 // The points of normals should follow trace basis, not local basis.
842
843 int nqe = tobasis.GetNumPoints();
844 int dim = GetCoordim();
845
848 for (i = 0; i < dim; ++i)
849 {
850 normal[i] = Array<OneD, NekDouble>(nqe);
851 }
852
853 size_t nqb = nqe;
854 size_t nbnd = edge;
857
858 // Regular geometry case
859 if ((type == SpatialDomains::eRegular) ||
861 {
862 NekDouble fac;
863 // Set up normals
864 switch (edge)
865 {
866 case 0:
867 for (i = 0; i < GetCoordim(); ++i)
868 {
869 Vmath::Fill(nqe, -df[2 * i + 1][0], normal[i], 1);
870 }
871 break;
872 case 1:
873 for (i = 0; i < GetCoordim(); ++i)
874 {
875 Vmath::Fill(nqe, df[2 * i + 1][0] + df[2 * i][0], normal[i],
876 1);
877 }
878 break;
879 case 2:
880 for (i = 0; i < GetCoordim(); ++i)
881 {
882 Vmath::Fill(nqe, -df[2 * i][0], normal[i], 1);
883 }
884 break;
885 default:
886 ASSERTL0(false, "Edge is out of range (edge < 3)");
887 }
888
889 // normalise
890 fac = 0.0;
891 for (i = 0; i < GetCoordim(); ++i)
892 {
893 fac += normal[i][0] * normal[i][0];
894 }
895 fac = 1.0 / sqrt(fac);
896
897 Vmath::Fill(nqb, fac, length, 1);
898
899 for (i = 0; i < GetCoordim(); ++i)
900 {
901 Vmath::Smul(nqe, fac, normal[i], 1, normal[i], 1);
902 }
903 }
904 else // Set up deformed normals
905 {
906 int j;
907
908 int nquad0 = ptsKeys[0].GetNumPoints();
909 int nquad1 = ptsKeys[1].GetNumPoints();
910
912
913 Array<OneD, NekDouble> normals(GetCoordim() * max(nquad0, nquad1), 0.0);
914 Array<OneD, NekDouble> edgejac(GetCoordim() * max(nquad0, nquad1), 0.0);
915
916 // Extract Jacobian along edges and recover local
917 // derivates (dx/dr) for polynomial interpolation by
918 // multiplying m_gmat by jacobian
919 switch (edge)
920 {
921 case 0:
922 for (j = 0; j < nquad0; ++j)
923 {
924 edgejac[j] = jac[j];
925 for (i = 0; i < GetCoordim(); ++i)
926 {
927 normals[i * nquad0 + j] =
928 -df[2 * i + 1][j] * edgejac[j];
929 }
930 }
931 from_key = ptsKeys[0];
932 break;
933 case 1:
934 for (j = 0; j < nquad1; ++j)
935 {
936 edgejac[j] = jac[nquad0 * j + nquad0 - 1];
937 for (i = 0; i < GetCoordim(); ++i)
938 {
939 normals[i * nquad1 + j] =
940 (df[2 * i][nquad0 * j + nquad0 - 1] +
941 df[2 * i + 1][nquad0 * j + nquad0 - 1]) *
942 edgejac[j];
943 }
944 }
945 from_key = ptsKeys[1];
946 break;
947 case 2:
948 for (j = 0; j < nquad1; ++j)
949 {
950 edgejac[j] = jac[nquad0 * j];
951 for (i = 0; i < GetCoordim(); ++i)
952 {
953 normals[i * nquad1 + j] =
954 -df[2 * i][nquad0 * j] * edgejac[j];
955 }
956 }
957 from_key = ptsKeys[1];
958 break;
959 default:
960 ASSERTL0(false, "edge is out of range (edge < 3)");
961 }
962
963 int nq = from_key.GetNumPoints();
964 Array<OneD, NekDouble> work(nqe, 0.0);
965
966 // interpolate Jacobian and invert
967 LibUtilities::Interp1D(from_key, jac, tobasis.GetPointsKey(), work);
968 Vmath::Sdiv(nqe, 1.0, &work[0], 1, &work[0], 1);
969
970 // interpolate
971 for (i = 0; i < GetCoordim(); ++i)
972 {
973 LibUtilities::Interp1D(from_key, &normals[i * nq],
974 tobasis.GetPointsKey(), &normal[i][0]);
975 Vmath::Vmul(nqe, work, 1, normal[i], 1, normal[i], 1);
976 }
977
978 // normalise normal vectors
979 Vmath::Zero(nqe, work, 1);
980 for (i = 0; i < GetCoordim(); ++i)
981 {
982 Vmath::Vvtvp(nqe, normal[i], 1, normal[i], 1, work, 1, work, 1);
983 }
984
985 Vmath::Vsqrt(nqe, work, 1, work, 1);
986 Vmath::Sdiv(nqe, 1.0, work, 1, work, 1);
987
988 Vmath::Vcopy(nqb, work, 1, length, 1);
989
990 for (i = 0; i < GetCoordim(); ++i)
991 {
992 Vmath::Vmul(nqe, normal[i], 1, work, 1, normal[i], 1);
993 }
994 }
995
996 if (GetGeom()->GetEorient(edge) == StdRegions::eBackwards)
997 {
998 for (i = 0; i < GetCoordim(); ++i)
999 {
1000 if (geomFactors->GetGtype() == SpatialDomains::eDeformed)
1001 {
1002 Vmath::Reverse(nqe, normal[i], 1, normal[i], 1);
1003 }
1004 }
1005 }
1006}
1007
1009 const NekDouble *data, const std::vector<unsigned int> &nummodes,
1010 const int mode_offset, NekDouble *coeffs,
1011 [[maybe_unused]] std::vector<LibUtilities::BasisType> &fromType)
1012{
1013 int data_order0 = nummodes[mode_offset];
1014 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
1015 int data_order1 = nummodes[mode_offset + 1];
1016 int order1 = m_base[1]->GetNumModes();
1017 int fillorder1 = min(order1, data_order1);
1018
1019 switch (m_base[0]->GetBasisType())
1020 {
1023 {
1024 int i;
1025 int cnt = 0;
1026 int cnt1 = 0;
1027
1030 "Extraction routine not set up for this basis");
1031
1032 Vmath::Zero(m_ncoeffs, coeffs, 1);
1033 for (i = 0; i < fillorder0; ++i)
1034 {
1035 Vmath::Vcopy(fillorder1 - i, &data[cnt], 1, &coeffs[cnt1], 1);
1036 cnt += data_order1 - i;
1037 cnt1 += order1 - i;
1038 }
1039 }
1040 break;
1041 default:
1042 ASSERTL0(false, "basis is either not set up or not hierarchicial");
1043 }
1044}
1045
1047{
1048 return GetGeom2D()->GetEorient(edge);
1049}
1050
1052{
1053 DNekMatSharedPtr returnval;
1054 switch (mkey.GetMatrixType())
1055 {
1063 returnval = Expansion2D::v_GenMatrix(mkey);
1064 break;
1065 default:
1066 returnval = StdTriExp::v_GenMatrix(mkey);
1067 break;
1068 }
1069
1070 return returnval;
1071}
1072
1074{
1075 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1076 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1079
1080 return tmp->GetStdMatrix(mkey);
1081}
1082
1084{
1085 return m_matrixManager[mkey];
1086}
1087
1089{
1090 m_matrixManager.DeleteObject(mkey);
1091}
1092
1094{
1095 return m_staticCondMatrixManager[mkey];
1096}
1097
1099{
1100 m_staticCondMatrixManager.DeleteObject(mkey);
1101}
1102
1104 Array<OneD, NekDouble> &outarray,
1105 const StdRegions::StdMatrixKey &mkey)
1106{
1107 StdExpansion::MassMatrixOp_MatFree(inarray, outarray, mkey);
1108}
1109
1111 Array<OneD, NekDouble> &outarray,
1112 const StdRegions::StdMatrixKey &mkey)
1113{
1114 TriExp::LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
1115}
1116
1117void TriExp::v_LaplacianMatrixOp(const int k1, const int k2,
1118 const Array<OneD, const NekDouble> &inarray,
1119 Array<OneD, NekDouble> &outarray,
1120 const StdRegions::StdMatrixKey &mkey)
1121{
1122 StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
1123}
1124
1126 const Array<OneD, const NekDouble> &inarray,
1127 Array<OneD, NekDouble> &outarray,
1128 const StdRegions::StdMatrixKey &mkey)
1129{
1130 StdExpansion::WeakDerivMatrixOp_MatFree(i, inarray, outarray, mkey);
1131}
1132
1134 const Array<OneD, const NekDouble> &inarray,
1135 Array<OneD, NekDouble> &outarray, const StdRegions::StdMatrixKey &mkey)
1136{
1137 StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray, outarray, mkey);
1138}
1139
1141 const Array<OneD, const NekDouble> &inarray,
1142 Array<OneD, NekDouble> &outarray, const StdRegions::StdMatrixKey &mkey)
1143{
1144 StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray, outarray, mkey);
1145}
1146
1148 Array<OneD, NekDouble> &outarray,
1149 const StdRegions::StdMatrixKey &mkey)
1150{
1151 TriExp::HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
1152}
1153
1155 const Array<OneD, const NekDouble> &inarray,
1157{
1158 if (m_metrics.count(eMetricLaplacian00) == 0)
1159 {
1161 }
1162
1163 int nquad0 = m_base[0]->GetNumPoints();
1164 int nquad1 = m_base[1]->GetNumPoints();
1165 int nqtot = nquad0 * nquad1;
1166 int nmodes0 = m_base[0]->GetNumModes();
1167 int nmodes1 = m_base[1]->GetNumModes();
1168 int wspsize =
1169 max(max(max(nqtot, m_ncoeffs), nquad1 * nmodes0), nquad0 * nmodes1);
1170
1171 ASSERTL1(wsp.size() >= 3 * wspsize, "Workspace is of insufficient size.");
1172
1173 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1174 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1175 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1176 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1177 const Array<OneD, const NekDouble> &metric00 =
1179 const Array<OneD, const NekDouble> &metric01 =
1181 const Array<OneD, const NekDouble> &metric11 =
1183
1184 // Allocate temporary storage
1185 Array<OneD, NekDouble> wsp0(wsp);
1186 Array<OneD, NekDouble> wsp1(wsp + wspsize);
1187 Array<OneD, NekDouble> wsp2(wsp + 2 * wspsize);
1188
1189 StdExpansion2D::PhysTensorDeriv(inarray, wsp1, wsp2);
1190
1191 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1192 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1193 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1194 // especially for this purpose
1195 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp1[0], 1, &metric01[0], 1,
1196 &wsp2[0], 1, &wsp0[0], 1);
1197 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp1[0], 1, &metric11[0], 1,
1198 &wsp2[0], 1, &wsp2[0], 1);
1199
1200 // outarray = m = (D_xi1 * B)^T * k
1201 // wsp1 = n = (D_xi2 * B)^T * l
1202 IProductWRTBase_SumFacKernel(dbase0, base1, wsp0, outarray, wsp1);
1203 IProductWRTBase_SumFacKernel(base0, dbase1, wsp2, wsp1, wsp0);
1204
1205 // outarray = outarray + wsp1
1206 // = L * u_hat
1207 Vmath::Vadd(m_ncoeffs, wsp1.get(), 1, outarray.get(), 1, outarray.get(), 1);
1208}
1209
1211{
1212 if (m_metrics.count(eMetricQuadrature) == 0)
1213 {
1215 }
1216
1217 unsigned int i, j;
1218 const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1219 const unsigned int nqtot = GetTotPoints();
1220 const unsigned int dim = 2;
1221 const MetricType m[3][3] = {
1225
1226 Array<OneD, NekDouble> dEta_dXi[2] = {Array<OneD, NekDouble>(nqtot, 1.0),
1227 Array<OneD, NekDouble>(nqtot, 1.0)};
1228
1229 for (i = 0; i < dim; ++i)
1230 {
1231 for (j = i; j < dim; ++j)
1232 {
1233 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1234 }
1235 }
1236
1237 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1238 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1239 const unsigned int nquad0 = m_base[0]->GetNumPoints();
1240 const unsigned int nquad1 = m_base[1]->GetNumPoints();
1242 m_metricinfo->GetDerivFactors(GetPointsKeys());
1243
1244 for (i = 0; i < nquad1; i++)
1245 {
1246 Blas::Dscal(nquad0, 2.0 / (1 - z1[i]), &dEta_dXi[0][0] + i * nquad0, 1);
1247 Blas::Dscal(nquad0, 2.0 / (1 - z1[i]), &dEta_dXi[1][0] + i * nquad0, 1);
1248 }
1249 for (i = 0; i < nquad0; i++)
1250 {
1251 Blas::Dscal(nquad1, 0.5 * (1 + z0[i]), &dEta_dXi[1][0] + i, nquad0);
1252 }
1253
1254 Array<OneD, NekDouble> tmp(nqtot);
1255 if ((type == SpatialDomains::eRegular ||
1257 {
1258 Vmath::Smul(nqtot, df[0][0], &dEta_dXi[0][0], 1, &tmp[0], 1);
1259 Vmath::Svtvp(nqtot, df[1][0], &dEta_dXi[1][0], 1, &tmp[0], 1, &tmp[0],
1260 1);
1261
1262 Vmath::Vmul(nqtot, &tmp[0], 1, &tmp[0], 1,
1264 Vmath::Smul(nqtot, df[1][0], &tmp[0], 1,
1266
1267 Vmath::Smul(nqtot, df[2][0], &dEta_dXi[0][0], 1, &tmp[0], 1);
1268 Vmath::Svtvp(nqtot, df[3][0], &dEta_dXi[1][0], 1, &tmp[0], 1, &tmp[0],
1269 1);
1270
1271 Vmath::Vvtvp(nqtot, &tmp[0], 1, &tmp[0], 1,
1274 Vmath::Svtvp(nqtot, df[3][0], &tmp[0], 1,
1277
1278 if (GetCoordim() == 3)
1279 {
1280 Vmath::Smul(nqtot, df[4][0], &dEta_dXi[0][0], 1, &tmp[0], 1);
1281 Vmath::Svtvp(nqtot, df[5][0], &dEta_dXi[1][0], 1, &tmp[0], 1,
1282 &tmp[0], 1);
1283
1284 Vmath::Vvtvp(nqtot, &tmp[0], 1, &tmp[0], 1,
1287 Vmath::Svtvp(nqtot, df[5][0], &tmp[0], 1,
1290 }
1291
1292 NekDouble g2 = df[1][0] * df[1][0] + df[3][0] * df[3][0];
1293 if (GetCoordim() == 3)
1294 {
1295 g2 += df[5][0] * df[5][0];
1296 }
1297 Vmath::Fill(nqtot, g2, &m_metrics[eMetricLaplacian11][0], 1);
1298 }
1299 else
1300 {
1301
1302 Vmath::Vmul(nqtot, &df[0][0], 1, &dEta_dXi[0][0], 1, &tmp[0], 1);
1303 Vmath::Vvtvp(nqtot, &df[1][0], 1, &dEta_dXi[1][0], 1, &tmp[0], 1,
1304 &tmp[0], 1);
1305
1306 Vmath::Vmul(nqtot, &tmp[0], 1, &tmp[0], 1,
1308 Vmath::Vmul(nqtot, &df[1][0], 1, &tmp[0], 1,
1310 Vmath::Vmul(nqtot, &df[1][0], 1, &df[1][0], 1,
1312
1313 Vmath::Vmul(nqtot, &df[2][0], 1, &dEta_dXi[0][0], 1, &tmp[0], 1);
1314 Vmath::Vvtvp(nqtot, &df[3][0], 1, &dEta_dXi[1][0], 1, &tmp[0], 1,
1315 &tmp[0], 1);
1316
1317 Vmath::Vvtvp(nqtot, &tmp[0], 1, &tmp[0], 1,
1320 Vmath::Vvtvp(nqtot, &df[3][0], 1, &tmp[0], 1,
1323 Vmath::Vvtvp(nqtot, &df[3][0], 1, &df[3][0], 1,
1326
1327 if (GetCoordim() == 3)
1328 {
1329 Vmath::Vmul(nqtot, &df[4][0], 1, &dEta_dXi[0][0], 1, &tmp[0], 1);
1330 Vmath::Vvtvp(nqtot, &df[5][0], 1, &dEta_dXi[1][0], 1, &tmp[0], 1,
1331 &tmp[0], 1);
1332
1333 Vmath::Vvtvp(nqtot, &tmp[0], 1, &tmp[0], 1,
1336 Vmath::Vvtvp(nqtot, &df[5][0], 1, &tmp[0], 1,
1339 Vmath::Vvtvp(nqtot, &df[5][0], 1, &df[5][0], 1,
1342 }
1343 }
1344
1345 for (unsigned int i = 0; i < dim; ++i)
1346 {
1347 for (unsigned int j = i; j < dim; ++j)
1348 {
1350 }
1351 }
1352}
1353
1354/**
1355 * Function is used to compute exactly the advective numerical flux on
1356 * theinterface of two elements with different expansions, hence an
1357 * appropriate number of Gauss points has to be used. The number of
1358 * Gauss points has to be equal to the number used by the highest
1359 * polynomial degree of the two adjacent elements. Furthermore, this
1360 * function is used to compute the sensor value in each element.
1361 *
1362 * @param numMin Is the reduced polynomial order
1363 * @param inarray Input array of coefficients
1364 * @param dumpVar Output array of reduced coefficients.
1365 */
1367 const Array<OneD, const NekDouble> &inarray,
1368 Array<OneD, NekDouble> &outarray)
1369{
1370 int n_coeffs = inarray.size();
1371 int nquad0 = m_base[0]->GetNumPoints();
1372 int nquad1 = m_base[1]->GetNumPoints();
1373 int nqtot = nquad0 * nquad1;
1374 int nmodes0 = m_base[0]->GetNumModes();
1375 int nmodes1 = m_base[1]->GetNumModes();
1376 int numMin2 = nmodes0, i;
1377
1378 Array<OneD, NekDouble> coeff(n_coeffs, 0.0);
1379 Array<OneD, NekDouble> phys_tmp(nqtot, 0.0);
1380 Array<OneD, NekDouble> tmp, tmp2;
1381
1382 const LibUtilities::PointsKey Pkey0 = m_base[0]->GetPointsKey();
1383 const LibUtilities::PointsKey Pkey1 = m_base[1]->GetPointsKey();
1384
1385 LibUtilities::BasisKey b0(m_base[0]->GetBasisType(), nmodes0, Pkey0);
1386 LibUtilities::BasisKey b1(m_base[1]->GetBasisType(), nmodes1, Pkey1);
1387 LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A, nmodes0, Pkey0);
1388 LibUtilities::BasisKey bortho1(LibUtilities::eOrtho_B, nmodes1, Pkey1);
1389
1390 // Check if it is also possible to use the same InterCoeff routine
1391 // which is also used for Quadrilateral and Hexagonal shaped
1392 // elements
1393
1394 // For now, set up the used basis on the standard element to
1395 // calculate the phys values, set up the orthogonal basis to do a
1396 // forward transform, to obtain the coefficients in orthogonal
1397 // coefficient space
1398 StdRegions::StdTriExpSharedPtr m_OrthoTriExp;
1400
1403 bortho0, bortho1);
1404
1405 m_TriExp->BwdTrans(inarray, phys_tmp);
1406 m_OrthoTriExp->FwdTrans(phys_tmp, coeff);
1407
1408 for (i = 0; i < n_coeffs; i++)
1409 {
1410 if (i == numMin)
1411 {
1412 coeff[i] = 0.0;
1413 numMin += numMin2 - 1;
1414 numMin2 -= 1.0;
1415 }
1416 }
1417
1418 m_OrthoTriExp->BwdTrans(coeff, phys_tmp);
1419 m_TriExp->FwdTrans(phys_tmp, outarray);
1420}
1421
1423 const StdRegions::StdMatrixKey &mkey)
1424{
1425 int nq = GetTotPoints();
1426
1427 // Calculate sqrt of the Jacobian
1429 Array<OneD, NekDouble> sqrt_jac(nq);
1430 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1431 {
1432 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1433 }
1434 else
1435 {
1436 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1437 }
1438
1439 // Multiply array by sqrt(Jac)
1440 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1441
1442 // Apply std region filter
1443 StdTriExp::v_SVVLaplacianFilter(array, mkey);
1444
1445 // Divide by sqrt(Jac)
1446 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1447}
1448
1449/** @brief: This method gets all of the factors which are
1450 required as part of the Gradient Jump Penalty
1451 stabilisation and involves the product of the normal and
1452 geometric factors along the element trace.
1453*/
1455 Array<OneD, Array<OneD, NekDouble>> &d0factors,
1456 Array<OneD, Array<OneD, NekDouble>> &d1factors,
1457 [[maybe_unused]] Array<OneD, Array<OneD, NekDouble>> &d2factors)
1458{
1459 int nquad0 = GetNumPoints(0);
1460 int nquad1 = GetNumPoints(1);
1461
1463 m_metricinfo->GetDerivFactors(GetPointsKeys());
1464
1465 if (d0factors.size() != 3)
1466 {
1467 d0factors = Array<OneD, Array<OneD, NekDouble>>(3);
1468 d1factors = Array<OneD, Array<OneD, NekDouble>>(3);
1469 }
1470
1471 if (d0factors[0].size() != nquad0)
1472 {
1473 d0factors[0] = Array<OneD, NekDouble>(nquad0);
1474 d1factors[0] = Array<OneD, NekDouble>(nquad0);
1475 }
1476
1477 if (d0factors[1].size() != nquad1)
1478 {
1479 d0factors[1] = Array<OneD, NekDouble>(nquad1);
1480 d0factors[2] = Array<OneD, NekDouble>(nquad1);
1481 d1factors[1] = Array<OneD, NekDouble>(nquad1);
1482 d1factors[2] = Array<OneD, NekDouble>(nquad1);
1483 }
1484
1485 // Outwards normals
1487 GetTraceNormal(0);
1489 GetTraceNormal(1);
1491 GetTraceNormal(2);
1492
1493 int ncoords = normal_0.size();
1494
1495 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1496 {
1497
1498 // d xi_2/dx n_x
1499 for (int i = 0; i < nquad0; ++i)
1500 {
1501 d1factors[0][i] = df[1][i] * normal_0[0][i];
1502 }
1503
1504 // d xi_1/dx n_x
1505 for (int i = 0; i < nquad1; ++i)
1506 {
1507 d0factors[1][i] = df[0][(i + 1) * nquad0 - 1] * normal_1[0][i];
1508 d0factors[2][i] = df[0][i * nquad0] * normal_2[0][i];
1509 }
1510
1511 for (int n = 1; n < ncoords; ++n)
1512 {
1513 // d xi_2/dy n_y
1514 // needs checking for 3D coords
1515 for (int i = 0; i < nquad0; ++i)
1516 {
1517 d1factors[0][i] += df[2 * n + 1][i] * normal_0[n][i];
1518 }
1519
1520 // d xi_1/dy n_y
1521 // needs checking for 3D coords
1522 for (int i = 0; i < nquad1; ++i)
1523 {
1524 d0factors[1][i] +=
1525 df[2 * n][(i + 1) * nquad0 - 1] * normal_1[n][i];
1526 d0factors[2][i] += df[2 * n][i * nquad0] * normal_2[n][i];
1527 }
1528 }
1529
1530 // d0 factors
1531 // d xi_1/dx n_x
1532 for (int i = 0; i < nquad0; ++i)
1533 {
1534 d0factors[0][i] = df[0][i] * normal_0[0][i];
1535 }
1536
1537 // d xi_2/dx n_x
1538 for (int i = 0; i < nquad1; ++i)
1539 {
1540 d1factors[1][i] = df[1][(i + 1) * nquad0 - 1] * normal_1[0][i];
1541 d1factors[2][i] = df[1][i * nquad0] * normal_2[0][i];
1542 }
1543
1544 for (int n = 1; n < ncoords; ++n)
1545 {
1546 // d xi_1/dy n_y
1547 // needs checking for 3D coords
1548 for (int i = 0; i < nquad0; ++i)
1549 {
1550 d0factors[0][i] += df[2 * n][i] * normal_0[n][i];
1551 }
1552
1553 // d xi_2/dy n_y
1554 // needs checking for 3D coords
1555 for (int i = 0; i < nquad1; ++i)
1556 {
1557 d1factors[1][i] +=
1558 df[2 * n + 1][(i + 1) * nquad0 - 1] * normal_1[n][i];
1559 d1factors[2][i] += df[2 * n + 1][i * nquad0] * normal_2[n][i];
1560 }
1561 }
1562 }
1563 else
1564 {
1565 // d xi_2/dx n_x
1566 for (int i = 0; i < nquad0; ++i)
1567 {
1568 d1factors[0][i] = df[1][0] * normal_0[0][i];
1569 }
1570
1571 // d xi_1/dx n_x
1572 for (int i = 0; i < nquad1; ++i)
1573 {
1574 d0factors[1][i] = df[0][0] * normal_1[0][i];
1575 d0factors[2][i] = df[0][0] * normal_2[0][i];
1576 }
1577
1578 for (int n = 1; n < ncoords; ++n)
1579 {
1580 // d xi_2/dy n_y
1581 // needs checking for 3D coords
1582 for (int i = 0; i < nquad0; ++i)
1583 {
1584 d1factors[0][i] += df[2 * n + 1][0] * normal_0[n][i];
1585 }
1586
1587 // d xi_1/dy n_y
1588 // needs checking for 3D coords
1589 for (int i = 0; i < nquad1; ++i)
1590 {
1591 d0factors[1][i] += df[2 * n][0] * normal_1[n][i];
1592 d0factors[2][i] += df[2 * n][0] * normal_2[n][i];
1593 }
1594 }
1595
1596 // d1factors
1597 // d xi_1/dx n_x
1598 for (int i = 0; i < nquad0; ++i)
1599 {
1600 d0factors[0][i] = df[0][0] * normal_0[0][i];
1601 }
1602
1603 // d xi_2/dx n_x
1604 for (int i = 0; i < nquad1; ++i)
1605 {
1606 d1factors[1][i] = df[1][0] * normal_1[0][i];
1607 d1factors[2][i] = df[1][0] * normal_2[0][i];
1608 }
1609
1610 for (int n = 1; n < ncoords; ++n)
1611 {
1612 // d xi_1/dy n_y
1613 // needs checking for 3D coords
1614 for (int i = 0; i < nquad0; ++i)
1615 {
1616 d0factors[0][i] += df[2 * n][0] * normal_0[n][i];
1617 }
1618
1619 // d xi_2/dy n_y
1620 // needs checking for 3D coords
1621 for (int i = 0; i < nquad1; ++i)
1622 {
1623 d1factors[1][i] += df[2 * n + 1][0] * normal_1[n][i];
1624 d1factors[2][i] += df[2 * n + 1][0] * normal_2[n][i];
1625 }
1626 }
1627 }
1628}
1629} // namespace Nektar::LocalRegions
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:47
Describes the specification for a Basis.
Definition: Basis.h:45
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:120
PointsKey GetPointsKey() const
Return distribution of points.
Definition: Basis.h:137
Defines a specification for a set of points.
Definition: Points.h:50
size_t GetNumPoints() const
Definition: Points.h:85
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:164
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:276
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:286
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:167
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:273
ExpansionSharedPtr GetLeftAdjacentElementExp() const
Definition: Expansion.h:441
void ComputeGmatcdotMF(const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
Definition: Expansion.cpp:603
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:530
int GetLeftAdjacentElementTrace() const
Definition: Expansion.h:454
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:274
StdRegions::Orientation GetTraceOrient(int trace)
Definition: Expansion.h:168
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:251
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:432
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:245
StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const override
Definition: TriExp.cpp:641
void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1147
void v_WeakDerivMatrixOp(const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1125
NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: TriExp.cpp:696
void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:398
void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: TriExp.cpp:463
void v_DropLocMatrix(const MatrixKey &mkey) override
Definition: TriExp.cpp:1088
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: TriExp.cpp:405
void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
Definition: TriExp.cpp:1154
void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: TriExp.cpp:676
DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: TriExp.cpp:1093
void v_GetTracePhysMap(const int edge, Array< OneD, int > &outarray) override
Definition: TriExp.cpp:783
DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1073
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:247
void v_IProductWRTDirectionalDerivBase(const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:528
void v_PhysDirectionalDeriv(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out) override
Physical derivative along a direction vector.
Definition: TriExp.cpp:184
StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const override
Definition: TriExp.cpp:648
void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1110
void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
Definition: TriExp.cpp:659
DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey) override
Definition: TriExp.cpp:1083
StdRegions::Orientation v_GetTraceOrient(int edge) override
Definition: TriExp.cpp:1046
NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
Definition: TriExp.cpp:688
void v_ComputeTraceNormal(const int edge) override
Definition: TriExp.cpp:818
void v_GetTracePhysVals(const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
Definition: TriExp.cpp:717
DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1051
void v_DropLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: TriExp.cpp:1098
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into ou...
Definition: TriExp.cpp:392
void v_GetTraceQFactors(const int edge, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:776
void v_WeakDirectionalDerivMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1133
void v_FwdTransBndConstrained(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:265
void v_ReduceOrderCoeffs(int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:1366
void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
Definition: TriExp.cpp:1008
void v_MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1103
void v_NormalTraceDerivFactors(Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors) override
: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabili...
Definition: TriExp.cpp:1454
void v_IProductWRTDirectionalDerivBase_SumFac(const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Directinoal Derivative in the modal space in the dir direction of varcoeffs.
Definition: TriExp.cpp:540
void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1422
void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) override
Calculate the derivative of the physical points.
Definition: TriExp.cpp:94
void v_NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray) override
Definition: TriExp.cpp:606
void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Transform a given function from physical quadrature space to coefficient space.
Definition: TriExp.cpp:249
void v_MassLevelCurvatureMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TriExp.cpp:1140
TriExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const SpatialDomains::Geometry2DSharedPtr &geom)
Constructor using BasisKey class for quadrature points and order definition.
Definition: TriExp.cpp:45
NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrates the specified function over the domain.
Definition: TriExp.cpp:71
void v_ComputeLaplacianMetric() override
Definition: TriExp.cpp:1210
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156
void HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:752
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:299
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:613
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:528
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void GetTraceToElementMap(const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
Definition: StdExpansion.h:684
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:367
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:674
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
void IProductWRTDirectionalDerivBase_SumFac(const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:723
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Definition: StdExpansion.h:849
Array< OneD, LibUtilities::BasisSharedPtr > m_base
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:83
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:211
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:47
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:49
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:42
@ eOrtho_B
Principle Orthogonal Functions .
Definition: BasisType.h:44
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48
std::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:248
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:60
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< Geometry2D > Geometry2DSharedPtr
Definition: Geometry.h:62
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:219
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:79
static Array< OneD, NekDouble > NullNekDouble1DArray
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
Svtsvtp (scalar times vector plus scalar times vector):
Definition: Vmath.hpp:473
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.hpp:154
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:844
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220
STL namespace.
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294