Nektar++
Loading...
Searching...
No Matches
TriGeom.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: TriGeom.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description:
32//
33//
34////////////////////////////////////////////////////////////////////////////////
35
40
44
46{
47
53
58
59TriGeom::TriGeom(const int id, std::array<SegGeom *, kNedges> edges,
60 const CurveSharedPtr curve)
61 : Geometry2D(edges[0]->GetVertex(0)->GetCoordim(), curve)
62{
63 int j;
64
66 m_globalID = id;
67
68 /// Copy the edge pointers
69 m_edges = edges;
70
71 for (j = 0; j < kNedges; ++j)
72 {
73 m_eorient[j] =
74 SegGeom::GetEdgeOrientation(*edges[j], *edges[(j + 1) % kNedges]);
75 m_verts[j] =
76 edges[j]->GetVertex(m_eorient[j] == StdRegions::eForwards ? 0 : 1);
77 }
78
82
83 m_coordim = edges[0]->GetVertex(0)->GetCoordim();
84 ASSERTL0(m_coordim > 1, "Cannot call function with dim == 1");
85}
86
88{
89 // From Geometry
91
92 // From TriFaceComponent
94
95 // From TriGeom
96 m_verts = in.m_verts;
97 m_edges = in.m_edges;
98 for (int i = 0; i < kNedges; i++)
99 {
100 m_eorient[i] = in.m_eorient[i];
101 }
102}
103
105{
106 int nc = 1, d0 = m_manifold[0], d1 = m_manifold[1];
107 if (0 == m_edgeNormal.size())
108 {
111 x[0] = Array<OneD, NekDouble>(3);
112 x[1] = Array<OneD, NekDouble>(3);
113 m_verts[0]->GetCoords(x[0]);
114 int i0 = 1, i1 = 0, direction = 1;
115 for (size_t i = 0; i < m_verts.size(); ++i)
116 {
117 i0 ^= 1;
118 i1 ^= 1;
119 m_verts[(i + 1) % m_verts.size()]->GetCoords(x[i1]);
120 if (m_edges[i]->GetXmap()->GetBasis(0)->GetNumModes() > 2)
121 {
122 continue;
123 }
125 m_edgeNormal[i][0] = x[i0][d1] - x[i1][d1];
126 m_edgeNormal[i][1] = x[i1][d0] - x[i0][d0];
127 }
128 if (m_coordim == 3)
129 {
130 for (size_t i = 0; i < m_verts.size(); ++i)
131 {
132 if (m_edgeNormal[i].size() == 2)
133 {
134 m_verts[i]->GetCoords(x[0]);
135 m_verts[(i + 2) % m_verts.size()]->GetCoords(x[1]);
136 if (m_edgeNormal[i][0] * (x[1][d0] - x[0][d0]) <
137 m_edgeNormal[i][1] * (x[0][d1] - x[1][d1]))
138 {
139 direction = -1;
140 }
141 break;
142 }
143 }
144 }
145 if (direction == -1)
146 {
147 for (size_t i = 0; i < m_verts.size(); ++i)
148 {
149 if (m_edgeNormal[i].size() == 2)
150 {
151 m_edgeNormal[i][0] = -m_edgeNormal[i][0];
152 m_edgeNormal[i][1] = -m_edgeNormal[i][1];
153 }
154 }
155 }
156 }
157
158 Array<OneD, NekDouble> vertex(3);
159 for (size_t i = 0; i < m_verts.size(); ++i)
160 {
161 int i1 = (i + 1) % m_verts.size();
162 if (m_verts[i]->GetGlobalID() < m_verts[i1]->GetGlobalID())
163 {
164 m_verts[i]->GetCoords(vertex);
165 }
166 else
167 {
168 m_verts[i1]->GetCoords(vertex);
169 }
170 if (m_edgeNormal[i].size() == 0)
171 {
172 nc = 0; // not sure
173 continue;
174 }
175 if (m_edgeNormal[i][0] * (gloCoord[d0] - vertex[d0]) <
176 m_edgeNormal[i][1] * (vertex[d1] - gloCoord[d1]))
177 {
178 return -1; // outside
179 }
180 }
181 // 3D manifold needs to check the distance
182 if (m_coordim == 3)
183 {
184 nc = 0;
185 }
186 // nc: 1 (side element), 0 (maybe inside), -1 (outside)
187 return nc;
188}
189
191 const Array<OneD, const NekDouble> &Lcoord)
192{
193 ASSERTL1(m_state == ePtsFilled, "Geometry is not in physical space");
194
195 Array<OneD, NekDouble> tmp(m_xmap->GetTotPoints());
196 m_xmap->BwdTrans(m_coeffs[i], tmp);
197
198 return m_xmap->PhysEvaluate(Lcoord, tmp);
199}
200
202 const TriGeom &face2,
203 bool doRot, int dir,
204 NekDouble angle,
205 NekDouble tol)
206{
207 return GetFaceOrientation(face1.m_verts, face2.m_verts, doRot, dir, angle,
208 tol);
209}
210
212 std::array<PointGeom *, 3> face1, std::array<PointGeom *, 3> face2,
213 bool doRot, int dir, NekDouble angle, NekDouble tol)
214{
215 int i, j, vmap[3] = {-1, -1, -1};
216
217 if (doRot)
218 {
219 PointGeom rotPt;
220
221 for (i = 0; i < 3; ++i)
222 {
223 rotPt.Rotate((*face1[i]), dir, angle);
224 for (j = 0; j < 3; ++j)
225 {
226 if (rotPt.dist(*face2[j]) < tol)
227 {
228 vmap[j] = i;
229 break;
230 }
231 }
232 }
233 }
234 else
235 {
236
237 NekDouble x, y, z, x1, y1, z1, cx = 0.0, cy = 0.0, cz = 0.0;
238
239 // For periodic faces, we calculate the vector between the centre
240 // points of the two faces. (For connected faces this will be
241 // zero). We can then use this to determine alignment later in the
242 // algorithm.
243 for (i = 0; i < 3; ++i)
244 {
245 cx += (*face2[i])(0) - (*face1[i])(0);
246 cy += (*face2[i])(1) - (*face1[i])(1);
247 cz += (*face2[i])(2) - (*face1[i])(2);
248 }
249 cx /= 3;
250 cy /= 3;
251 cz /= 3;
252
253 // Now construct a mapping which takes us from the vertices of one
254 // face to the other. That is, vertex j of face2 corresponds to
255 // vertex vmap[j] of face1.
256 for (i = 0; i < 3; ++i)
257 {
258 x = (*face1[i])(0);
259 y = (*face1[i])(1);
260 z = (*face1[i])(2);
261 for (j = 0; j < 3; ++j)
262 {
263 x1 = (*face2[j])(0) - cx;
264 y1 = (*face2[j])(1) - cy;
265 z1 = (*face2[j])(2) - cz;
266 if (sqrt((x1 - x) * (x1 - x) + (y1 - y) * (y1 - y) +
267 (z1 - z) * (z1 - z)) < 1e-8)
268 {
269 vmap[j] = i;
270 break;
271 }
272 }
273 }
274 }
275
276 if (vmap[1] == (vmap[0] + 1) % 3)
277 {
278 switch (vmap[0])
279 {
280 case 0:
282 break;
283 case 1:
285 break;
286 case 2:
288 break;
289 }
290 }
291 else
292 {
293 switch (vmap[0])
294 {
295 case 0:
297 break;
298 case 1:
300 break;
301 case 2:
303 break;
304 }
305 }
306
307 ASSERTL0(false, "Unable to determine triangle orientation");
309}
310
312{
313 if (!m_setupState)
314 {
316 }
317
319 {
320 GeomType Gtype = eRegular;
321
323
324 // check to see if expansions are linear
325 m_straightEdge = 1;
326 if (m_xmap->GetBasisNumModes(0) != 2 ||
327 m_xmap->GetBasisNumModes(1) != 2)
328 {
329 Gtype = eDeformed;
330 m_straightEdge = 0;
331 }
332
334 m_manifold[0] = 0;
335 m_manifold[1] = 1;
336 if (m_coordim == 3)
337 {
338 PointGeom e01, e21, norm;
339 e01.Sub(*m_verts[0], *m_verts[1]);
340 e21.Sub(*m_verts[2], *m_verts[1]);
341 norm.Mult(e01, e21);
342 int tmpi = 0;
343 double tmp = std::fabs(norm[0]);
344 if (tmp < fabs(norm[1]))
345 {
346 tmp = fabs(norm[1]);
347 tmpi = 1;
348 }
349 if (tmp < fabs(norm[2]))
350 {
351 tmpi = 2;
352 }
353 m_manifold[0] = (tmpi + 1) % 3;
354 m_manifold[1] = (tmpi + 2) % 3;
355 m_manifold[2] = (tmpi + 3) % 3;
356 }
357 if (Gtype == eRegular)
358 {
360 for (int i = 0; i < m_verts.size(); ++i)
361 {
362 verts[i] = Array<OneD, NekDouble>(3);
363 m_verts[i]->GetCoords(verts[i]);
364 }
365 // a00 + a01 xi1 + a02 xi2
366 // a10 + a11 xi1 + a12 xi2
368 for (int i = 0; i < 2; ++i)
369 {
370 unsigned int d = m_manifold[i];
372 NekDouble A = verts[0][d];
373 NekDouble B = verts[1][d];
374 NekDouble C = verts[2][d];
375 m_isoParameter[i][0] = 0.5 * (B + C); // 1
376 m_isoParameter[i][1] = 0.5 * (-A + B); // xi1
377 m_isoParameter[i][2] = 0.5 * (-A + C); // xi2
378 }
380 }
381
383 Gtype, m_coordim, m_xmap, m_coeffs);
384
386 }
387}
388
389/**
390 * Note verts and edges are listed according to anticlockwise
391 * convention but points in _coeffs have to be in array format from
392 * left to right.
393 */
395{
396 // check to see if geometry structure is already filled
397 if (m_state == ePtsFilled)
398 {
399 return;
400 }
401
402 int i, j, k;
403 int nEdgeCoeffs = m_xmap->GetTraceNcoeffs(0);
404
405 if (m_curve)
406 {
408 2, m_curve->m_ptype)]
409 ->GetPointsDim();
410
411 // Deal with 2D points type separately
412 // (e.g. electrostatic or Fekete points) to 1D tensor
413 // product.
414 if (pdim == 2)
415 {
416 int N = m_curve->m_points.size();
417 int nEdgePts =
418 (-1 + (int)sqrt(static_cast<NekDouble>(8 * N + 1))) / 2;
419
420 ASSERTL0(nEdgePts * (nEdgePts + 1) / 2 == N,
421 "NUMPOINTS should be a triangle number for"
422 " triangle curved face " +
423 std::to_string(m_globalID));
424
425 // Sanity check 1: are curved vertices consistent with
426 // triangle vertices?
427 for (i = 0; i < 3; ++i)
428 {
429 NekDouble dist = m_verts[i]->dist(*(m_curve->m_points[i]));
431 {
432 std::stringstream ss;
433 ss << "Curved vertex " << i << " of triangle " << m_globalID
434 << " is separated from expansion vertex by"
435 << " more than " << NekConstants::kVertexTheSameDouble
436 << " (dist = " << dist << ")";
437 NEKERROR(ErrorUtil::ewarning, ss.str().c_str());
438 }
439 }
440
441 // Sanity check 2: are curved edges from the face curvature
442 // consistent with curved edges?
443 for (i = 0; i < kNedges; ++i)
444 {
445 CurveSharedPtr edgeCurve = m_edges[i]->GetCurve();
446
447 ASSERTL0(edgeCurve->m_points.size() == nEdgePts,
448 "Number of edge points does not correspond "
449 "to number of face points in triangle " +
450 std::to_string(m_globalID));
451
452 const int offset = 3 + i * (nEdgePts - 2);
453 NekDouble maxDist = 0.0;
454
455 // Account for different ordering of nodal coordinates
456 // vs. Cartesian ordering of element.
458
459 if (i == 2)
460 {
461 orient = orient == StdRegions::eForwards
464 }
465
466 if (orient == StdRegions::eForwards)
467 {
468 for (j = 0; j < nEdgePts - 2; ++j)
469 {
470 NekDouble dist = m_curve->m_points[offset + j]->dist(
471 *(edgeCurve->m_points[j + 1]));
472 maxDist = dist > maxDist ? dist : maxDist;
473 }
474 }
475 else
476 {
477 for (j = 0; j < nEdgePts - 2; ++j)
478 {
479 NekDouble dist = m_curve->m_points[offset + j]->dist(
480 *(edgeCurve->m_points[nEdgePts - 2 - j]));
481 maxDist = dist > maxDist ? dist : maxDist;
482 }
483 }
484
486 {
487 std::stringstream ss;
488 ss << "Curved edge " << i << " of triangle " << m_globalID
489 << " has a point separated from edge interior"
490 << " points by more than "
492 << " (maxdist = " << maxDist << ")";
493 NEKERROR(ErrorUtil::ewarning, ss.str().c_str());
494 }
495 }
496
500 nEdgePts, LibUtilities::eGaussRadauMAlpha1Beta0);
502 P0);
504 P1);
506 std::max(nEdgePts * nEdgePts, m_xmap->GetTotPoints()));
507 Array<OneD, NekDouble> tmp(nEdgePts * nEdgePts);
508
509 for (i = 0; i < m_coordim; ++i)
510 {
511 // Create a StdNodalTriExp.
514 AllocateSharedPtr(T0, T1, m_curve->m_ptype);
515
516 for (j = 0; j < N; ++j)
517 {
518 phys[j] = (m_curve->m_points[j]->GetPtr())[i];
519 }
520
521 t->BwdTrans(phys, tmp);
522
523 // Interpolate points to standard region.
525 P0, P1, tmp, m_xmap->GetBasis(0)->GetPointsKey(),
526 m_xmap->GetBasis(1)->GetPointsKey(), phys);
527
528 // Forwards transform to get coefficient space.
529 m_xmap->FwdTrans(phys, m_coeffs[i]);
530 }
531 }
532 else if (pdim == 1)
533 {
534 int npts = m_curve->m_points.size();
535 int nEdgePts = (int)sqrt(static_cast<NekDouble>(npts));
536 Array<OneD, NekDouble> tmp(npts);
537 Array<OneD, NekDouble> phys(m_xmap->GetTotPoints());
538 LibUtilities::PointsKey curveKey(nEdgePts, m_curve->m_ptype);
539
540 // Sanity checks:
541 // - Curved faces should have square number of points;
542 // - Each edge should have sqrt(npts) points.
543 ASSERTL0(nEdgePts * nEdgePts == npts,
544 "NUMPOINTS should be a square number for"
545 " triangle " +
546 std::to_string(m_globalID));
547
548 for (i = 0; i < kNedges; ++i)
549 {
550 ASSERTL0(m_edges[i]->GetXmap()->GetNcoeffs() == nEdgePts,
551 "Number of edge points does not correspond to "
552 "number of face points in triangle " +
553 std::to_string(m_globalID));
554 }
555
556 for (i = 0; i < m_coordim; ++i)
557 {
558 for (j = 0; j < npts; ++j)
559 {
560 tmp[j] = (m_curve->m_points[j]->GetPtr())[i];
561 }
562
563 // Interpolate curve points to standard triangle
564 // points.
565 LibUtilities::Interp2D(curveKey, curveKey, tmp,
566 m_xmap->GetBasis(0)->GetPointsKey(),
567 m_xmap->GetBasis(1)->GetPointsKey(),
568 phys);
569
570 // Forwards transform to get coefficient space.
571 m_xmap->FwdTrans(phys, m_coeffs[i]);
572 }
573 }
574 else
575 {
576 ASSERTL0(false, "Only 1D/2D points distributions "
577 "supported.");
578 }
579 }
580
581 Array<OneD, unsigned int> mapArray(nEdgeCoeffs);
582 Array<OneD, int> signArray(nEdgeCoeffs);
583
584 for (i = 0; i < kNedges; i++)
585 {
586 m_edges[i]->FillGeom();
587 m_xmap->GetTraceToElementMap(i, mapArray, signArray, m_eorient[i]);
588
589 nEdgeCoeffs = m_edges[i]->GetXmap()->GetNcoeffs();
590
591 for (j = 0; j < m_coordim; j++)
592 {
593 for (k = 0; k < nEdgeCoeffs; k++)
594 {
595 m_coeffs[j][mapArray[k]] =
596 signArray[k] * m_edges[i]->GetCoeffs(j)[k];
597 }
598 }
599 }
600
602}
603
604int TriGeom::v_GetDir(const int i, [[maybe_unused]] const int j) const
605{
606 return i == 0 ? 0 : 1;
607}
608
609void TriGeom::v_Reset(CurveMap &curvedEdges, CurveMap &curvedFaces)
610{
611 Geometry::v_Reset(curvedEdges, curvedFaces);
612 CurveMap::iterator it = curvedFaces.find(m_globalID);
613
614 if (it != curvedFaces.end())
615 {
616 m_curve = it->second;
617 }
618
619 for (int i = 0; i < 3; ++i)
620 {
621 m_edges[i]->Reset(curvedEdges, curvedFaces);
622 }
623
624 SetUpXmap();
625 SetUpCoeffs(m_xmap->GetNcoeffs());
626}
627
629{
630 if (!m_setupState)
631 {
632 for (int i = 0; i < 3; ++i)
633 {
634 m_edges[i]->Setup();
635 }
636 SetUpXmap();
637 SetUpCoeffs(m_xmap->GetNcoeffs());
638 m_setupState = true;
639 }
640}
641
643{
644 int order0 = m_edges[0]->GetXmap()->GetBasis(0)->GetNumModes();
645 int order1 = std::max(
646 order0, std::max(m_edges[1]->GetXmap()->GetBasis(0)->GetNumModes(),
647 m_edges[2]->GetXmap()->GetBasis(0)->GetNumModes()));
648
649 std::array<LibUtilities::BasisKey, 2> basis = {
652 LibUtilities::PointsKey(order0 + 1,
657 LibUtilities::eGaussRadauMAlpha1Beta0))};
658
659 m_xmap = GetStdTriFactory().CreateInstance(basis);
660}
661
662} // namespace Nektar::SpatialDomains
#define ASSERTL0(condition, msg)
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Describes the specification for a Basis.
Definition Basis.h:45
Defines a specification for a set of points.
Definition Points.h:50
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
2D geometry information
Definition Geometry2D.h:50
Array< OneD, Array< OneD, NekDouble > > m_edgeNormal
Definition Geometry2D.h:66
bool m_setupState
Wether or not the setup routines have been run.
Definition Geometry.h:193
GeomState m_state
Enumeration to dictate whether coefficients are filled.
Definition Geometry.h:191
void SetUpCoeffs(const int nCoeffs)
Initialise the Geometry::m_coeffs array.
Definition Geometry.h:704
Array< OneD, Array< OneD, NekDouble > > m_isoParameter
Definition Geometry.h:204
virtual void v_Reset(CurveMap &curvedEdges, CurveMap &curvedFaces)
Reset this geometry object: unset the current state, zero Geometry::m_coeffs and remove allocated Geo...
Definition Geometry.cpp:372
int GetGlobalID(void) const
Get the ID of this object.
Definition Geometry.h:322
LibUtilities::ShapeType m_shapeType
Type of shape.
Definition Geometry.h:197
Array< OneD, Array< OneD, NekDouble > > m_coeffs
Array containing expansion coefficients of m_xmap.
Definition Geometry.h:201
GeomState m_geomFactorsState
State of the geometric factors.
Definition Geometry.h:187
StdRegions::StdExpansionSharedPtr m_xmap
mapping containing isoparametric transformation.
Definition Geometry.h:189
StdRegions::StdExpansionSharedPtr GetXmap() const
Return the mapping object Geometry::m_xmap that represents the coordinate transformation from standar...
Definition Geometry.h:439
GeomFactorsSharedPtr m_geomFactors
Geometric factors.
Definition Geometry.h:185
int m_coordim
Coordinate dimension of this geometry object.
Definition Geometry.h:183
void Sub(PointGeom &a, PointGeom &b)
void Mult(PointGeom &a, PointGeom &b)
_this = a x b
static StdRegions::Orientation GetEdgeOrientation(const SegGeom &edge1, const SegGeom &edge2)
Get the orientation of edge1.
Definition SegGeom.cpp:209
static const int kNedges
Definition TriGeom.h:57
void v_GenGeomFactors() override
Definition TriGeom.cpp:311
std::array< PointGeom *, kNverts > m_verts
Definition TriGeom.h:116
int v_GetDir(const int faceidx, const int facedir) const override
Returns the element coordinate direction corresponding to a given face coordinate direction.
Definition TriGeom.cpp:604
static StdRegions::Orientation GetFaceOrientation(const TriGeom &face1, const TriGeom &face2, bool doRot, int dir, NekDouble angle, NekDouble tol)
Get the orientation of face1.
Definition TriGeom.cpp:201
int v_AllLeftCheck(const Array< OneD, const NekDouble > &gloCoord) override
Definition TriGeom.cpp:104
std::array< SegGeom *, kNedges > m_edges
Definition TriGeom.h:117
NekDouble v_GetCoord(const int i, const Array< OneD, const NekDouble > &Lcoord) override
Given local collapsed coordinate Lcoord, return the value of physical coordinate in direction i.
Definition TriGeom.cpp:190
void v_Reset(CurveMap &curvedEdges, CurveMap &curvedFaces) override
Reset this geometry object: unset the current state, zero Geometry::m_coeffs and remove allocated Geo...
Definition TriGeom.cpp:609
std::array< StdRegions::Orientation, kNedges > m_eorient
Definition TriGeom.h:118
A simple factory for Xmap objects that is based on the element type, the basis and quadrature selecti...
PointsManagerT & PointsManager(void)
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition Interp.cpp:101
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition PointsType.h:51
@ eModified_B
Principle Modified Functions .
Definition BasisType.h:49
@ eOrtho_A
Principle Orthogonal Functions .
Definition BasisType.h:42
@ eOrtho_B
Principle Orthogonal Functions .
Definition BasisType.h:44
@ eModified_A
Principle Modified Functions .
Definition BasisType.h:48
static const NekDouble kVertexTheSameDouble
std::shared_ptr< Curve > CurveSharedPtr
Definition Curve.hpp:60
std::unordered_map< int, CurveSharedPtr > CurveMap
Definition Curve.hpp:61
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eDeformed
Geometry is curved or has non-constant factors.
XmapFactory< StdRegions::StdTriExp, 2 > & GetStdTriFactory()
Definition TriGeom.cpp:48
@ ePtsFilled
Geometric information has been generated.
std::shared_ptr< StdNodalTriExp > StdNodalTriExpSharedPtr
std::vector< double > z(NPUPPER)
scalarT< T > sqrt(scalarT< T > in)
Definition scalar.hpp:290