Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | List of all members
Nektar::FieldUtils::ProcessCFL Class Reference

This processing module calculates the CFL and adds it as an extra-field to the output file. More...

#include <ProcessCFL.h>

Inheritance diagram for Nektar::FieldUtils::ProcessCFL:
[legend]

Public Member Functions

 ProcessCFL (FieldSharedPtr f)
 
 ~ProcessCFL () override
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
- Public Member Functions inherited from Nektar::FieldUtils::Module
FIELD_UTILS_EXPORT Module (FieldSharedPtr p_f)
 
virtual ~Module ()=default
 
void Process (po::variables_map &vm)
 
std::string GetModuleName ()
 
std::string GetModuleDescription ()
 
const ConfigOptionGetConfigOption (const std::string &key) const
 
ModulePriority GetModulePriority ()
 
std::vector< ModuleKeyGetModulePrerequisites ()
 
FIELD_UTILS_EXPORT void RegisterConfig (std::string key, std::string value="")
 Register a configuration option with a module. More...
 
FIELD_UTILS_EXPORT void PrintConfig ()
 Print out all configuration options for a module. More...
 
FIELD_UTILS_EXPORT void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
FIELD_UTILS_EXPORT void AddFile (std::string fileType, std::string fileName)
 
FIELD_UTILS_EXPORT void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 

Static Public Member Functions

static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 

Protected Member Functions

void v_Process (po::variables_map &vm) override
 Write mesh to output file. More...
 
std::string v_GetModuleName () override
 
std::string v_GetModuleDescription () override
 
ModulePriority v_GetModulePriority () override
 
void GetVelocity (Array< OneD, Array< OneD, NekDouble > > &vel, int strip=0)
 
Array< OneD, NekDoubleGetMaxStdVelocity (const Array< OneD, Array< OneD, NekDouble > > &vel, int strip=0)
 
- Protected Member Functions inherited from Nektar::FieldUtils::Module
 Module ()
 
virtual void v_Process (po::variables_map &vm)
 
virtual std::string v_GetModuleName ()
 
virtual std::string v_GetModuleDescription ()
 
virtual ModulePriority v_GetModulePriority ()
 
virtual std::vector< ModuleKeyv_GetModulePrerequisites ()
 

Private Attributes

int m_spacedim
 

Additional Inherited Members

- Public Attributes inherited from Nektar::FieldUtils::Module
FieldSharedPtr m_f
 Field object. More...
 
- Protected Attributes inherited from Nektar::FieldUtils::Module
std::map< std::string, ConfigOptionm_config
 List of configuration values. More...
 
std::set< std::string > m_allowedFiles
 List of allowed file formats. More...
 

Detailed Description

This processing module calculates the CFL and adds it as an extra-field to the output file.

Definition at line 46 of file ProcessCFL.h.

Constructor & Destructor Documentation

◆ ProcessCFL()

Nektar::FieldUtils::ProcessCFL::ProcessCFL ( FieldSharedPtr  f)

Definition at line 54 of file ProcessCFL.cpp.

◆ ~ProcessCFL()

Nektar::FieldUtils::ProcessCFL::~ProcessCFL ( )
override

Definition at line 58 of file ProcessCFL.cpp.

59{
60}

Member Function Documentation

◆ create()

static std::shared_ptr< Module > Nektar::FieldUtils::ProcessCFL::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 50 of file ProcessCFL.h.

51 {
53 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetMaxStdVelocity()

Array< OneD, NekDouble > Nektar::FieldUtils::ProcessCFL::GetMaxStdVelocity ( const Array< OneD, Array< OneD, NekDouble > > &  vel,
int  strip = 0 
)
protected

Definition at line 179 of file ProcessCFL.cpp.

181{
182 int nfields = m_f->m_variables.size();
183 int n_points_0 = m_f->m_exp[0]->GetExp(0)->GetTotPoints();
184 int n_element = m_f->m_exp[0]->GetExpSize();
185 int nvel = vel.size();
186 int cnt;
187
188 NekDouble pntVelocity;
189
190 // Getting the standard velocity vector
191 Array<OneD, Array<OneD, NekDouble>> stdVelocity(nvel);
192 Array<OneD, NekDouble> tmp;
193 Array<OneD, NekDouble> maxV(n_element, 0.0);
195
196 for (int i = 0; i < nvel; ++i)
197 {
198 stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
199 }
200
201 cnt = 0.0;
202 for (int el = 0; el < n_element; ++el)
203 {
204 int n_points = m_f->m_exp[0]->GetExp(el)->GetTotPoints();
205 ptsKeys = m_f->m_exp[0]->GetExp(el)->GetPointsKeys();
206
207 // reset local space
208 if (n_points != n_points_0)
209 {
210 for (int j = 0; j < nvel; ++j)
211 {
212 stdVelocity[j] = Array<OneD, NekDouble>(n_points, 0.0);
213 }
214 n_points_0 = n_points;
215 }
216 else
217 {
218 for (int j = 0; j < nvel; ++j)
219 {
220 Vmath::Zero(n_points, stdVelocity[j], 1);
221 }
222 }
223
224 Array<TwoD, const NekDouble> gmat = m_f->m_exp[strip * nfields + 0]
225 ->GetExp(el)
226 ->GetGeom()
227 ->GetMetricInfo()
228 ->GetDerivFactors(ptsKeys);
229
230 if (m_f->m_exp[strip * nfields + 0]
231 ->GetExp(el)
232 ->GetGeom()
233 ->GetMetricInfo()
234 ->GetGtype() == SpatialDomains::eDeformed)
235 {
236 for (int j = 0; j < nvel; ++j)
237 {
238 for (int k = 0; k < nvel; ++k)
239 {
240 Vmath::Vvtvp(n_points, gmat[k * nvel + j], 1,
241 tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
242 stdVelocity[j], 1);
243 }
244 }
245 }
246 else
247 {
248 for (int j = 0; j < nvel; ++j)
249 {
250 for (int k = 0; k < nvel; ++k)
251 {
252 Vmath::Svtvp(n_points, gmat[k * nvel + j][0],
253 tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
254 stdVelocity[j], 1);
255 }
256 }
257 }
258 cnt += n_points;
259
260 // Calculate total velocity in stdVelocity[0]
261 Vmath::Vmul(n_points, stdVelocity[0], 1, stdVelocity[0], 1,
262 stdVelocity[0], 1);
263 for (int k = 1; k < nvel; ++k)
264 {
265 Vmath::Vvtvp(n_points, stdVelocity[k], 1, stdVelocity[k], 1,
266 stdVelocity[0], 1, stdVelocity[0], 1);
267 }
268 pntVelocity = Vmath::Vmax(n_points, stdVelocity[0], 1);
269 maxV[el] = sqrt(pntVelocity);
270 }
271
272 return maxV;
273}
FieldSharedPtr m_f
Field object.
Definition: Module.h:239
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
@ eDeformed
Geometry is curved or has non-constant factors.
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.hpp:644
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::SpatialDomains::eDeformed, Nektar::FieldUtils::Module::m_f, tinysimd::sqrt(), Vmath::Svtvp(), Vmath::Vmax(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_Process().

◆ GetVelocity()

void Nektar::FieldUtils::ProcessCFL::GetVelocity ( Array< OneD, Array< OneD, NekDouble > > &  vel,
int  strip = 0 
)
protected

Definition at line 144 of file ProcessCFL.cpp.

146{
147 int expdim = m_f->m_graph->GetMeshDimension();
148 int nfields = m_f->m_variables.size();
149 int npoints = m_f->m_exp[0]->GetNpoints();
150 if (boost::iequals(m_f->m_variables[0], "u"))
151 {
152 // IncNavierStokesSolver
153 // Using expdim instead of spacedim
154 // This is because for 3DH1D, only a 2D plane will be considered
155 for (int i = 0; i < expdim; ++i)
156 {
157 vel[i] = Array<OneD, NekDouble>(npoints);
158 Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
159 vel[i], 1);
160 }
161 }
162 else if (boost::iequals(m_f->m_variables[0], "rho") &&
163 boost::iequals(m_f->m_variables[1], "rhou"))
164 {
165 // CompressibleFlowSolver
166 ASSERTL0(false, "CFL calculation is not supported for the compressible "
167 "flow simulations at the moment");
168 }
169 else
170 {
171 // Unknown
172 ASSERTL0(false, "Could not identify velocity for ProcessCFL");
173 }
174}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References ASSERTL0, Nektar::FieldUtils::Module::m_f, and Vmath::Vcopy().

Referenced by v_Process().

◆ v_GetModuleDescription()

std::string Nektar::FieldUtils::ProcessCFL::v_GetModuleDescription ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 68 of file ProcessCFL.h.

69 {
70 return "Calculating CFL number over the domain for the Incompressible "
71 "flow simulation";
72 }

◆ v_GetModuleName()

std::string Nektar::FieldUtils::ProcessCFL::v_GetModuleName ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 63 of file ProcessCFL.h.

64 {
65 return "ProcessCFL";
66 }

◆ v_GetModulePriority()

ModulePriority Nektar::FieldUtils::ProcessCFL::v_GetModulePriority ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 74 of file ProcessCFL.h.

75 {
76 return eModifyExp;
77 }

References Nektar::FieldUtils::eModifyExp.

◆ v_Process()

void Nektar::FieldUtils::ProcessCFL::v_Process ( po::variables_map &  vm)
overrideprotectedvirtual

Write mesh to output file.

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 62 of file ProcessCFL.cpp.

63{
64 m_f->SetUpExp(vm);
65
66 int expdim = m_f->m_graph->GetMeshDimension();
67 int nelmt = m_f->m_exp[0]->GetExpSize();
68 int nfields = m_f->m_variables.size();
69 m_spacedim = expdim;
70
71 NekDouble timeStep = m_f->m_session->GetParameter("TimeStep");
72 NekDouble cLambda = 0.2; // Spencer's book
73
74 if (m_f->m_numHomogeneousDir == 1)
75 {
76 m_spacedim = 3;
77 }
78 ASSERTL0(m_f->m_numHomogeneousDir != 2,
79 "CFL for 3DH2D simulations is not supported");
80 ASSERTL0(m_spacedim != 1, "Error: CFL for a 1D problem is not supported");
81
82 // Append field names
83 m_f->m_variables.push_back("CFL");
84
85 // Skip in case of empty partition
86 if (m_f->m_exp[0]->GetNumElmts() == 0)
87 {
88 return;
89 }
90 int npoints = m_f->m_exp[0]->GetNpoints();
91 Array<OneD, NekDouble> outfield(npoints);
92
93 int nstrips;
94 m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
95
97 // add in new fields
98 for (int s = 0; s < nstrips; ++s)
99 {
100 Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
101 m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + 1) + nfields,
102 Exp);
103 }
104
105 for (int s = 0; s < nstrips; ++s) // homogeneous strip varient
106 {
107 Array<OneD, Array<OneD, NekDouble>> velocityField(expdim);
108
109 // Get the velocity field
110 GetVelocity(velocityField, s);
111
112 // compute the max velocity in the std regions
113 Array<OneD, NekDouble> stdVel = GetMaxStdVelocity(velocityField);
114
115 // get the maximum expansion order in each element
116 Array<OneD, int> expOrder =
117 m_f->m_exp[s * nfields + 0]->EvalBasisNumModesMaxPerExp();
118
119 // compute the CFL number
120 Array<OneD, NekDouble> cfl(nelmt);
121 for (int el = 0; el < nelmt; ++el)
122 {
123 int order = std::max(expOrder[el] - 1, 1);
124 cfl[el] = timeStep * stdVel[el] * cLambda * order * order;
125 }
126
127 int cnt = 0;
128 for (int el = 0; el < nelmt; ++el)
129 {
130 // using the field[0]==m_exp[s*nfields + 0]
131 int nquad = m_f->m_exp[s * nfields + 0]->GetExp(el)->GetTotPoints();
132 Vmath::Fill(nquad, cfl[el], &outfield[cnt], 1);
133 cnt += nquad;
134 }
135
136 // temporary store the CFL number field for each strip
137 Vmath::Vcopy(npoints, outfield, 1,
138 m_f->m_exp[s * (nfields + 1) + nfields]->UpdatePhys(), 1);
139 m_f->m_exp[0]->FwdTransLocalElmt(
140 outfield, m_f->m_exp[s * (nfields + 1) + nfields]->UpdateCoeffs());
141 }
142}
void GetVelocity(Array< OneD, Array< OneD, NekDouble > > &vel, int strip=0)
Definition: ProcessCFL.cpp:144
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble > > &vel, int strip=0)
Definition: ProcessCFL.cpp:179
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54

References ASSERTL0, Vmath::Fill(), GetMaxStdVelocity(), GetVelocity(), Nektar::FieldUtils::Module::m_f, m_spacedim, and Vmath::Vcopy().

Member Data Documentation

◆ className

ModuleKey Nektar::FieldUtils::ProcessCFL::className
static
Initial value:
"Computes CFL number for the entire domain for Incompressible flow.")
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessCFL.h:50
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:180
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:47

Definition at line 54 of file ProcessCFL.h.

◆ m_spacedim

int Nektar::FieldUtils::ProcessCFL::m_spacedim
private

Definition at line 85 of file ProcessCFL.h.

Referenced by v_Process().