Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | List of all members
Nektar::FieldUtils::ProcessWSS Class Reference

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file. More...

#include <ProcessWSS.h>

Inheritance diagram for Nektar::FieldUtils::ProcessWSS:
[legend]

Public Member Functions

 ProcessWSS (FieldSharedPtr f)
 
 ~ProcessWSS () override
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessBoundaryExtract
 ProcessBoundaryExtract (FieldSharedPtr f)
 
 ~ProcessBoundaryExtract () override
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
- Public Member Functions inherited from Nektar::FieldUtils::Module
FIELD_UTILS_EXPORT Module (FieldSharedPtr p_f)
 
virtual ~Module ()=default
 
void Process (po::variables_map &vm)
 
std::string GetModuleName ()
 
std::string GetModuleDescription ()
 
const ConfigOptionGetConfigOption (const std::string &key) const
 
ModulePriority GetModulePriority ()
 
std::vector< ModuleKeyGetModulePrerequisites ()
 
FIELD_UTILS_EXPORT void RegisterConfig (std::string key, std::string value="")
 Register a configuration option with a module. More...
 
FIELD_UTILS_EXPORT void PrintConfig ()
 Print out all configuration options for a module. More...
 
FIELD_UTILS_EXPORT void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
FIELD_UTILS_EXPORT void AddFile (std::string fileType, std::string fileName)
 
FIELD_UTILS_EXPORT void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 

Static Public Member Functions

static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 
- Static Public Member Functions inherited from Nektar::FieldUtils::ProcessBoundaryExtract
static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 
- Static Public Attributes inherited from Nektar::FieldUtils::ProcessBoundaryExtract
static ModuleKey className
 

Protected Member Functions

void v_Process (po::variables_map &vm) override
 Write mesh to output file. More...
 
std::string v_GetModuleName () override
 
std::string v_GetModuleDescription () override
 
void GetViscosity (const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble > > &BndElmtdPhys, Array< OneD, NekDouble > &mu, NekDouble &lambda)
 
void GetVelocity (const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble > > &BndElmtdPhys, Array< OneD, Array< OneD, NekDouble > > &vel)
 
- Protected Member Functions inherited from Nektar::FieldUtils::ProcessBoundaryExtract
void v_Process (po::variables_map &vm) override
 
std::string v_GetModuleName () override
 
std::string v_GetModuleDescription () override
 
ModulePriority v_GetModulePriority () override
 
- Protected Member Functions inherited from Nektar::FieldUtils::Module
 Module ()
 
virtual void v_Process (po::variables_map &vm)
 
virtual std::string v_GetModuleName ()
 
virtual std::string v_GetModuleDescription ()
 
virtual ModulePriority v_GetModulePriority ()
 
virtual std::vector< ModuleKeyv_GetModulePrerequisites ()
 

Private Attributes

int m_spacedim
 

Additional Inherited Members

- Public Attributes inherited from Nektar::FieldUtils::Module
FieldSharedPtr m_f
 Field object. More...
 
- Protected Attributes inherited from Nektar::FieldUtils::Module
std::map< std::string, ConfigOptionm_config
 List of configuration values. More...
 
std::set< std::string > m_allowedFiles
 List of allowed file formats. More...
 

Detailed Description

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file.

Definition at line 47 of file ProcessWSS.h.

Constructor & Destructor Documentation

◆ ProcessWSS()

Nektar::FieldUtils::ProcessWSS::ProcessWSS ( FieldSharedPtr  f)

Definition at line 52 of file ProcessWSS.cpp.

◆ ~ProcessWSS()

Nektar::FieldUtils::ProcessWSS::~ProcessWSS ( )
override

Definition at line 56 of file ProcessWSS.cpp.

57{
58}

Member Function Documentation

◆ create()

static std::shared_ptr< Module > Nektar::FieldUtils::ProcessWSS::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 51 of file ProcessWSS.h.

52 {
54 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetVelocity()

void Nektar::FieldUtils::ProcessWSS::GetVelocity ( const Array< OneD, MultiRegions::ExpListSharedPtr exp,
const Array< OneD, Array< OneD, NekDouble > > &  BndElmtdPhys,
Array< OneD, Array< OneD, NekDouble > > &  vel 
)
protected

Definition at line 410 of file ProcessWSS.cpp.

414{
415 int npoints = exp[0]->GetNpoints();
416 if (boost::iequals(m_f->m_variables[0], "u"))
417 {
418 // IncNavierStokesSolver
419 for (int i = 0; i < m_spacedim; ++i)
420 {
421 vel[i] = Array<OneD, NekDouble>(npoints);
422 Vmath::Vcopy(npoints, BndElmtPhys[i], 1, vel[i], 1);
423 }
424 }
425 else if (boost::iequals(m_f->m_variables[0], "rho") &&
426 boost::iequals(m_f->m_variables[1], "rhou"))
427 {
428 // CompressibleFlowSolver
429 for (int i = 0; i < m_spacedim; ++i)
430 {
431 vel[i] = Array<OneD, NekDouble>(npoints);
432 Vmath::Vdiv(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[0], 1,
433 vel[i], 1);
434 }
435 }
436 else
437 {
438 // Unknown
439 ASSERTL0(false, "Could not identify velocity for WSS");
440 }
441}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
FieldSharedPtr m_f
Field object.
Definition: Module.h:239
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References ASSERTL0, Nektar::FieldUtils::Module::m_f, m_spacedim, Vmath::Vcopy(), and Vmath::Vdiv().

Referenced by v_Process().

◆ GetViscosity()

void Nektar::FieldUtils::ProcessWSS::GetViscosity ( const Array< OneD, MultiRegions::ExpListSharedPtr exp,
const Array< OneD, Array< OneD, NekDouble > > &  BndElmtdPhys,
Array< OneD, NekDouble > &  mu,
NekDouble lambda 
)
protected

Definition at line 301 of file ProcessWSS.cpp.

305{
307 int npoints = exp[0]->GetNpoints();
308
309 if (boost::iequals(m_f->m_variables[0], "u"))
310 {
311 // IncNavierStokesSolver
312 m_mu = m_f->m_session->GetParameter("Kinvis");
313 Vmath::Fill(npoints, m_mu, mu, 1);
314 lambda = 0;
315 }
316 else if (boost::iequals(m_f->m_variables[0], "rho") &&
317 boost::iequals(m_f->m_variables[1], "rhou"))
318 {
319 // CompressibleFlowSolver
320 std::string m_ViscosityType;
321 m_f->m_session->LoadParameter("mu", m_mu, 1.78e-05);
322 m_f->m_session->LoadParameter("lambda", lambda, -2.0 / 3.0);
323 m_f->m_session->LoadSolverInfo("ViscosityType", m_ViscosityType,
324 "Constant");
325
326 if (m_ViscosityType == "Variable")
327 {
328 // Check equation of state
329 std::string eosType;
330 bool m_idealGas;
331 m_f->m_session->LoadSolverInfo("EquationOfState", eosType,
332 "IdealGas");
333 m_idealGas = boost::iequals(eosType, "IdealGas");
334 ASSERTL0(
335 m_idealGas,
336 "Only IdealGas EOS implemented for Variable ViscosityType");
337
338 // Get relevant parameters
339 NekDouble m_gamma;
340 NekDouble m_pInf;
342 NekDouble m_gasConstant;
343 NekDouble cv_inv;
344 NekDouble m_Tref;
345 NekDouble m_TRatioSutherland;
346 m_f->m_session->LoadParameter("Gamma", m_gamma, 1.4);
347 m_f->m_session->LoadParameter("pInf", m_pInf, 101325);
348 m_f->m_session->LoadParameter("rhoInf", m_rhoInf, 1.225);
349 m_f->m_session->LoadParameter("GasConstant", m_gasConstant,
350 287.058);
351 m_f->m_session->LoadParameter("Tref", m_Tref, 288.15);
352 m_TRatioSutherland = 110.0 / m_Tref;
353
354 // Get temperature from flowfield
355 cv_inv = (m_gamma - 1.0) / m_gasConstant;
356 // e = 1/rho ( E - 1/2 ( rhou^2/rho + ... ) )
357 Array<OneD, NekDouble> tmp(npoints, 0.0);
358 Array<OneD, NekDouble> energy(npoints, 0.0);
359 Array<OneD, NekDouble> temperature(npoints, 0.0);
360
361 Vmath::Vcopy(npoints, BndElmtPhys[m_spacedim + 1], 1, energy, 1);
362 for (int i = 0; i < m_spacedim; i++)
363 {
364 // rhou^2
365 Vmath::Vmul(npoints, BndElmtPhys[i + 1], 1, BndElmtPhys[i + 1],
366 1, tmp, 1);
367 // rhou^2/rho
368 Vmath::Vdiv(npoints, tmp, 1, BndElmtPhys[0], 1, tmp, 1);
369
370 // 0.5 rhou^2/rho
371 Vmath::Smul(npoints, 0.5, tmp, 1, tmp, 1);
372 // E - 0.5 rhou^2/rho - ...
373 Vmath::Vsub(npoints, energy, 1, tmp, 1, energy, 1);
374 }
375
376 // rhou^2/rho
377 Vmath::Vdiv(npoints, energy, 1, BndElmtPhys[0], 1, energy, 1);
378
379 // T = e/Cv
380 Vmath::Smul(npoints, cv_inv, energy, 1, temperature, 1);
381
382 // Variable viscosity through the Sutherland's law
383 //
384 // WARNING, if this routine is modified the same must be done in the
385 // CompressibleFlowSolver function in VariableConverter.cpp
386 // (this class should be restructured).
387
388 const NekDouble C = m_TRatioSutherland;
389 NekDouble mu_star = m_mu;
390 NekDouble T_star = m_pInf / (m_rhoInf * m_gasConstant);
391 NekDouble ratio;
392 for (int i = 0; i < npoints; ++i)
393 {
394 ratio = temperature[i] / T_star;
395 mu[i] = mu_star * ratio * sqrt(ratio) * (1 + C) / (ratio + C);
396 }
397 }
398 else
399 {
400 Vmath::Fill(npoints, m_mu, mu, 1);
401 }
402 }
403 else
404 {
405 // Unknown
406 ASSERTL0(false, "Invalid variables for WSS");
407 }
408}
NekDouble m_mu
NekDouble m_rhoInf
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Vmath::Fill(), Nektar::FieldUtils::Module::m_f, m_mu, m_rhoInf, m_spacedim, Vmath::Smul(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsub().

Referenced by v_Process().

◆ v_GetModuleDescription()

std::string Nektar::FieldUtils::ProcessWSS::v_GetModuleDescription ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::ProcessBoundaryExtract.

Definition at line 69 of file ProcessWSS.h.

70 {
71 return "Calculating wall shear stress";
72 }

◆ v_GetModuleName()

std::string Nektar::FieldUtils::ProcessWSS::v_GetModuleName ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::ProcessBoundaryExtract.

Definition at line 64 of file ProcessWSS.h.

65 {
66 return "ProcessWSS";
67 }

◆ v_Process()

void Nektar::FieldUtils::ProcessWSS::v_Process ( po::variables_map &  vm)
overrideprotectedvirtual

Write mesh to output file.

Reimplemented from Nektar::FieldUtils::ProcessBoundaryExtract.

Definition at line 60 of file ProcessWSS.cpp.

61{
63
64 int i, j;
65 int nfields = m_f->m_variables.size();
66 int expdim = m_f->m_graph->GetSpaceDimension();
67 m_spacedim = expdim + m_f->m_numHomogeneousDir;
68
69 if (m_f->m_exp[0]->GetNumElmts() == 0)
70 {
71 return;
72 }
73
74 if (m_spacedim == 1)
75 {
76 ASSERTL0(false, "Error: wss for a 1D problem cannot "
77 "be computed");
78 }
79
80 // Declare arrays
81 int nshear = m_spacedim + 1;
82 int nstress = m_spacedim * m_spacedim;
83 int ngrad = m_spacedim * m_spacedim;
84
85 Array<OneD, Array<OneD, NekDouble>> velocity(nfields);
86 Array<OneD, Array<OneD, NekDouble>> grad(ngrad);
87 Array<OneD, Array<OneD, NekDouble>> stress(nstress), fstress(nstress);
88 Array<OneD, Array<OneD, NekDouble>> fshear(nshear);
89
90 Array<OneD, MultiRegions::ExpListSharedPtr> BndExp(nshear);
91 Array<OneD, MultiRegions::ExpListSharedPtr> BndElmtExp(nfields);
92 Array<OneD, Array<OneD, NekDouble>> BndElmtPhys(nfields);
93 Array<OneD, Array<OneD, NekDouble>> BndElmtCoeffs(nfields);
94
95 // will resuse nfields expansions to write shear components.
96 if (nshear > nfields)
97 {
98 m_f->m_exp.resize(nshear);
99 for (i = nfields; i < nshear; ++i)
100 {
101 m_f->m_exp[nfields + i] =
102 m_f->AppendExpList(m_f->m_numHomogeneousDir);
103 }
104 }
105
106 // Create map of boundary ids for partitioned domains
107 SpatialDomains::BoundaryConditions bcs(m_f->m_session,
108 m_f->m_exp[0]->GetGraph());
110 bcs.GetBoundaryRegions();
111 map<int, int> BndRegionMap;
112 int cnt = 0;
113 for (auto &breg_it : bregions)
114 {
115 BndRegionMap[breg_it.first] = cnt++;
116 }
117
118 // Loop over boundaries to Write
119 for (int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
120 {
121 if (BndRegionMap.count(m_f->m_bndRegionsToWrite[b]) == 1)
122 {
123 int bnd = BndRegionMap[m_f->m_bndRegionsToWrite[b]];
124 // Get expansion list for boundary and for elements containing this
125 // bnd
126 for (i = 0; i < nshear; i++)
127 {
128 BndExp[i] = m_f->m_exp[i]->UpdateBndCondExpansion(bnd);
129 }
130
131 Array<OneD, int> ElmtID, edgeID;
132 Array<OneD, NekDouble> tmp1, tmp2;
133
134 for (i = 0; i < nfields; i++)
135 {
136 m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
137 BndElmtPhys[i] = BndElmtExp[i]->UpdatePhys();
138 }
139
140 // Get number of points in expansions
141 int nqb = BndExp[0]->GetTotPoints();
142 int nqe = BndElmtExp[0]->GetTotPoints();
143
144 // Initialise local arrays for the velocity gradients, and
145 // stress components size of total number of quadrature
146 // points for elements in this bnd
147 for (i = 0; i < ngrad; ++i)
148 {
149 grad[i] = Array<OneD, NekDouble>(nqe);
150 }
151
152 for (i = 0; i < nstress; ++i)
153 {
154 stress[i] = Array<OneD, NekDouble>(nqe);
155 }
156
157 Array<OneD, NekDouble> div(nqe, 0.0);
158
159 // initialise arrays in the boundary
160 for (i = 0; i < nstress; ++i)
161 {
162 fstress[i] = Array<OneD, NekDouble>(nqb);
163 }
164
165 for (i = 0; i < nshear; ++i)
166 {
167 fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
168 }
169
170 // Extract Velocities
171 GetVelocity(BndElmtExp, BndElmtPhys, velocity);
172
173 // Extract viscosity coefficients
174 NekDouble lambda;
175 Array<OneD, NekDouble> mu(nqe, 0.0);
176 GetViscosity(BndElmtExp, BndElmtPhys, mu, lambda);
177
178 // Compute gradients
179 for (i = 0; i < m_spacedim; ++i)
180 {
181 if (m_spacedim == 2)
182 {
183 BndElmtExp[i]->PhysDeriv(velocity[i],
184 grad[i * m_spacedim + 0],
185 grad[i * m_spacedim + 1]);
186 }
187 else
188 {
189 BndElmtExp[i]->PhysDeriv(
190 velocity[i], grad[i * m_spacedim + 0],
191 grad[i * m_spacedim + 1], grad[i * m_spacedim + 2]);
192 }
193 // Add contribution to div(u)
194 Vmath::Vadd(nqe, grad[i * m_spacedim + i], 1, div, 1, div, 1);
195 }
196
197 // Velocity divergence scaled by lambda * mu
198 Vmath::Smul(nqe, lambda, div, 1, div, 1);
199 Vmath::Vmul(nqe, mu, 1, div, 1, div, 1);
200
201 // Compute stress component terms
202 // tau_ij = mu*(u_i,j + u_j,i) + mu*lambda*delta_ij*div(u)
203 for (i = 0; i < m_spacedim; ++i)
204 {
205 for (j = i; j < m_spacedim; ++j)
206 {
207 Vmath::Vadd(nqe, grad[i * m_spacedim + j], 1,
208 grad[j * m_spacedim + i], 1,
209 stress[i * m_spacedim + j], 1);
210
211 Vmath::Vmul(nqe, mu, 1, stress[i * m_spacedim + j], 1,
212 stress[i * m_spacedim + j], 1);
213
214 if (i == j)
215 {
216 // Add divergence term to diagonal
217 Vmath::Vadd(nqe, stress[i * m_spacedim + j], 1, div, 1,
218 stress[i * m_spacedim + j], 1);
219 }
220 else
221 {
222 // Copy to make symmetric
223 Vmath::Vcopy(nqe, stress[i * m_spacedim + j], 1,
224 stress[j * m_spacedim + i], 1);
225 }
226 }
227 }
228
229 // Get boundary stress values.
230 for (j = 0; j < nstress; ++j)
231 {
232 m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j], fstress[j]);
233 }
234
235 // Get normals
236 Array<OneD, Array<OneD, NekDouble>> normals;
237 m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
238 // Reverse normals, to get correct orientation for the body
239 for (i = 0; i < m_spacedim; ++i)
240 {
241 Vmath::Neg(nqb, normals[i], 1);
242 }
243
244 // calculate wss, and update coeffs in the boundary expansion
245 // S = tau_ij * n_j
246 for (i = 0; i < m_spacedim; ++i)
247 {
248 for (j = 0; j < m_spacedim; ++j)
249 {
250 Vmath::Vvtvp(nqb, normals[j], 1,
251 fstress[i * m_spacedim + j], 1, fshear[i], 1,
252 fshear[i], 1);
253 }
254 }
255
256 // T = S - (S.n)n
257 for (i = 0; i < m_spacedim; ++i)
258 {
259 Vmath::Vvtvp(nqb, normals[i], 1, fshear[i], 1,
260 fshear[nshear - 1], 1, fshear[nshear - 1], 1);
261 }
262 Vmath::Smul(nqb, -1.0, fshear[nshear - 1], 1, fshear[nshear - 1],
263 1);
264
265 for (i = 0; i < m_spacedim; i++)
266 {
267 Vmath::Vvtvp(nqb, normals[i], 1, fshear[nshear - 1], 1,
268 fshear[i], 1, fshear[i], 1);
269 BndExp[i]->FwdTransLocalElmt(fshear[i],
270 BndExp[i]->UpdateCoeffs());
271 }
272
273 // Tw
274 Vmath::Zero(nqb, fshear[nshear - 1], 1);
275 for (i = 0; i < m_spacedim; ++i)
276 {
277 Vmath::Vvtvp(nqb, fshear[i], 1, fshear[i], 1,
278 fshear[nshear - 1], 1, fshear[nshear - 1], 1);
279 }
280 Vmath::Vsqrt(nqb, fshear[nshear - 1], 1, fshear[nshear - 1], 1);
281 BndExp[nshear - 1]->FwdTransLocalElmt(
282 fshear[nshear - 1], BndExp[nshear - 1]->UpdateCoeffs());
283 }
284 }
285
286 if (m_spacedim == 2)
287 {
288 m_f->m_variables[0] = "Shear_x";
289 m_f->m_variables[1] = "Shear_y";
290 m_f->m_variables[2] = "Shear_mag";
291 }
292 else
293 {
294 m_f->m_variables[0] = "Shear_x";
295 m_f->m_variables[1] = "Shear_y";
296 m_f->m_variables[2] = "Shear_z";
297 m_f->m_variables[3] = "Shear_mag";
298 }
299}
void v_Process(po::variables_map &vm) override
void GetViscosity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble > > &BndElmtdPhys, Array< OneD, NekDouble > &mu, NekDouble &lambda)
Definition: ProcessWSS.cpp:301
void GetVelocity(const Array< OneD, MultiRegions::ExpListSharedPtr > exp, const Array< OneD, Array< OneD, NekDouble > > &BndElmtdPhys, Array< OneD, Array< OneD, NekDouble > > &vel)
Definition: ProcessWSS.cpp:410
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:210
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273

References ASSERTL0, Nektar::SpatialDomains::BoundaryConditions::GetBoundaryRegions(), GetVelocity(), GetViscosity(), Nektar::FieldUtils::Module::m_f, m_spacedim, Vmath::Neg(), Vmath::Smul(), Nektar::FieldUtils::ProcessBoundaryExtract::v_Process(), Vmath::Vadd(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

Member Data Documentation

◆ className

ModuleKey Nektar::FieldUtils::ProcessWSS::className
static
Initial value:
"Computes wall shear stress field.")
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessWSS.h:51
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:180
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:47

Definition at line 55 of file ProcessWSS.h.

◆ m_spacedim

int Nektar::FieldUtils::ProcessWSS::m_spacedim
private

Definition at line 83 of file ProcessWSS.h.

Referenced by GetVelocity(), GetViscosity(), and v_Process().