Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Types | Protected Member Functions | List of all members
Nektar::RoeSolverSIMD Class Reference

#include <RoeSolverSIMD.h>

Inheritance diagram for Nektar::RoeSolverSIMD:
[legend]

Public Member Functions

 RoeSolverSIMD ()
 programmatic ctor More...
 
- Public Member Functions inherited from Nektar::SolverUtils::RiemannSolver
SOLVER_UTILS_EXPORT void Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)
 Perform the Riemann solve given the forwards and backwards spaces. More...
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetScalar (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetScalar (std::string name, RSScalarFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetVector (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetVector (std::string name, RSVecFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetParam (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetALEFlag (bool &ALE)
 
void SetParam (std::string name, RSParamFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxScal (std::string name, FuncPointerT func, ObjectPointerT obj)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxVec (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetAuxVec (std::string name, RSVecFuncType fp)
 
std::map< std::string, RSScalarFuncType > & GetScalars ()
 
std::map< std::string, RSVecFuncType > & GetVectors ()
 
std::map< std::string, RSParamFuncType > & GetParams ()
 
SOLVER_UTILS_EXPORT void CalcFluxJacobian (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
 Calculate the flux jacobian of Fwd and Bwd. More...
 

Static Public Member Functions

static RiemannSolverSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 

Static Public Attributes

static std::string solverName
 

Protected Types

using ND = NekDouble
 
- Protected Types inherited from Nektar::CompressibleSolver
using ND = NekDouble
 

Protected Member Functions

 RoeSolverSIMD (const LibUtilities::SessionReaderSharedPtr &pSession)
 
void v_Solve (const int nDim, const Array< OneD, const Array< OneD, ND > > &Fwd, const Array< OneD, const Array< OneD, ND > > &Bwd, Array< OneD, Array< OneD, ND > > &flux) final
 
- Protected Member Functions inherited from Nektar::CompressibleSolver
 CompressibleSolver (const LibUtilities::SessionReaderSharedPtr &pSession)
 Session ctor. More...
 
 CompressibleSolver ()
 Programmatic ctor. More...
 
void v_Solve (const int nDim, const Array< OneD, const Array< OneD, ND > > &Fwd, const Array< OneD, const Array< OneD, ND > > &Bwd, Array< OneD, Array< OneD, ND > > &flux) override
 
virtual void v_ArraySolve (const Array< OneD, const Array< OneD, ND > > &Fwd, const Array< OneD, const Array< OneD, ND > > &Bwd, Array< OneD, Array< OneD, ND > > &flux)
 
virtual void v_PointSolve (ND rhoL, ND rhouL, ND rhovL, ND rhowL, ND EL, ND rhoR, ND rhouR, ND rhovR, ND rhowR, ND ER, ND &rhof, ND &rhouf, ND &rhovf, ND &rhowf, ND &Ef)
 
ND GetRoeSoundSpeed (ND rhoL, ND pL, ND eL, ND HL, ND srL, ND rhoR, ND pR, ND eR, ND HR, ND srR, ND HRoe, ND URoe2, ND srLR)
 
- Protected Member Functions inherited from Nektar::SolverUtils::RiemannSolver
SOLVER_UTILS_EXPORT RiemannSolver ()
 
SOLVER_UTILS_EXPORT RiemannSolver (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual SOLVER_UTILS_EXPORT ~RiemannSolver ()
 
virtual void v_Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)=0
 
SOLVER_UTILS_EXPORT void GenerateRotationMatrices (const Array< OneD, const Array< OneD, NekDouble > > &normals)
 Generate rotation matrices for 3D expansions. More...
 
void FromToRotation (Array< OneD, const NekDouble > &from, Array< OneD, const NekDouble > &to, NekDouble *mat)
 A function for creating a rotation matrix that rotates a vector from into another vector to. More...
 
SOLVER_UTILS_EXPORT void rotateToNormal (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
 Rotate a vector field to trace normal. More...
 
SOLVER_UTILS_EXPORT void rotateFromNormal (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
 Rotate a vector field from trace normal. More...
 
SOLVER_UTILS_EXPORT bool CheckScalars (std::string name)
 Determine whether a scalar has been defined in m_scalars. More...
 
SOLVER_UTILS_EXPORT bool CheckVectors (std::string name)
 Determine whether a vector has been defined in m_vectors. More...
 
SOLVER_UTILS_EXPORT bool CheckParams (std::string name)
 Determine whether a parameter has been defined in m_params. More...
 
SOLVER_UTILS_EXPORT bool CheckAuxScal (std::string name)
 Determine whether a scalar has been defined in m_auxScal. More...
 
SOLVER_UTILS_EXPORT bool CheckAuxVec (std::string name)
 Determine whether a vector has been defined in m_auxVec. More...
 
virtual SOLVER_UTILS_EXPORT void v_CalcFluxJacobian (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, const Array< OneD, const Array< OneD, NekDouble > > &normals, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::RiemannSolver
int m_spacedim
 
- Protected Attributes inherited from Nektar::CompressibleSolver
bool m_pointSolve
 
EquationOfStateSharedPtr m_eos
 
bool m_idealGas
 
- Protected Attributes inherited from Nektar::SolverUtils::RiemannSolver
bool m_requiresRotation
 Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields. More...
 
std::map< std::string, RSScalarFuncTypem_scalars
 Map of scalar function types. More...
 
std::map< std::string, RSVecFuncTypem_vectors
 Map of vector function types. More...
 
std::map< std::string, RSParamFuncTypem_params
 Map of parameter function types. More...
 
std::map< std::string, RSScalarFuncTypem_auxScal
 Map of auxiliary scalar function types. More...
 
std::map< std::string, RSVecFuncTypem_auxVec
 Map of auxiliary vector function types. More...
 
Array< OneD, Array< OneD, NekDouble > > m_rotMat
 Rotation matrices for each trace quadrature point. More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_rotStorage
 Rotation storage. More...
 
bool m_ALESolver = false
 Flag if using the ALE formulation. More...
 

Detailed Description

Definition at line 43 of file RoeSolverSIMD.h.

Member Typedef Documentation

◆ ND

Definition at line 60 of file RoeSolverSIMD.h.

Constructor & Destructor Documentation

◆ RoeSolverSIMD() [1/2]

Nektar::RoeSolverSIMD::RoeSolverSIMD ( )

programmatic ctor

Definition at line 54 of file RoeSolverSIMD.cpp.

55{
56 m_requiresRotation = false;
57}
CompressibleSolver()
Programmatic ctor.
bool m_requiresRotation
Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields.

References Nektar::SolverUtils::RiemannSolver::m_requiresRotation.

Referenced by create().

◆ RoeSolverSIMD() [2/2]

Nektar::RoeSolverSIMD::RoeSolverSIMD ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 46 of file RoeSolverSIMD.cpp.

48 : CompressibleSolver(pSession)
49{
50 m_requiresRotation = false;
51}

References Nektar::SolverUtils::RiemannSolver::m_requiresRotation.

Member Function Documentation

◆ create()

static RiemannSolverSharedPtr Nektar::RoeSolverSIMD::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Definition at line 46 of file RoeSolverSIMD.h.

48 {
49 return RiemannSolverSharedPtr(new RoeSolverSIMD(pSession));
50 }
RoeSolverSIMD()
programmatic ctor
std::shared_ptr< RiemannSolver > RiemannSolverSharedPtr
A shared pointer to an EquationSystem object.

References RoeSolverSIMD().

◆ v_Solve()

void Nektar::RoeSolverSIMD::v_Solve ( const int  nDim,
const Array< OneD, const Array< OneD, ND > > &  Fwd,
const Array< OneD, const Array< OneD, ND > > &  Bwd,
Array< OneD, Array< OneD, ND > > &  flux 
)
finalprotectedvirtual

Reimplemented from Nektar::CompressibleSolver.

Definition at line 62 of file RoeSolverSIMD.cpp.

67{
68 static auto gamma = m_params["gamma"]();
69 static size_t nVars = fwd.size();
70 static size_t spaceDim = nVars - 2;
71
72 // 3D case only so far
73 ASSERTL0(spaceDim == 3, "SIMD Roe implemented only for 3D case...");
74
75 using namespace tinysimd;
76 using vec_t = simd<NekDouble>;
77 // using vec_t = typename tinysimd::abi::scalar<NekDouble>::type;
78
79 // get limit of vectorizable chunk
80 size_t sizeScalar = fwd[0].size();
81 size_t sizeVec = (sizeScalar / vec_t::width) * vec_t::width;
82
83 // get normal, vellocs
84 ASSERTL1(CheckVectors("N"), "N not defined.");
85 const Array<OneD, const Array<OneD, NekDouble>> normals = m_vectors["N"]();
86
87 // Generate matrices if they don't already exist.
88 if (m_rotMat.size() == 0)
89 {
91 }
92
93 // SIMD loop
94 size_t i = 0;
95 for (; i < sizeVec; i += vec_t::width)
96 {
97 // load scalars
98 vec_t rhoL, rhoR, ER, EL;
99 rhoL.load(&(fwd[0][i]), is_not_aligned);
100 rhoR.load(&(bwd[0][i]), is_not_aligned);
101 ER.load(&(bwd[spaceDim + 1][i]), is_not_aligned);
102 EL.load(&(fwd[spaceDim + 1][i]), is_not_aligned);
103
104 // load vectors left
105 vec_t tmpIn[3], tmpOut[3];
106 tmpIn[0].load(&(fwd[1][i]), is_not_aligned);
107 tmpIn[1].load(&(fwd[2][i]), is_not_aligned);
108 tmpIn[2].load(&(fwd[3][i]), is_not_aligned);
109
110 // load rotation matrix
111 vec_t rotMat[9];
112 for (size_t j = 0; j < 9; ++j)
113 {
114 rotMat[j].load(&(m_rotMat[j][i]), is_not_aligned);
115 }
116
117 // rotateTo kernel Fwd
118 rotateToNormalKernel(tmpIn, rotMat, tmpOut);
119
120 vec_t rhouL = tmpOut[0];
121 vec_t rhovL = tmpOut[1];
122 vec_t rhowL = tmpOut[2];
123
124 // load vectors right
125 tmpIn[0].load(&(bwd[1][i]), is_not_aligned);
126 tmpIn[1].load(&(bwd[2][i]), is_not_aligned);
127 tmpIn[2].load(&(bwd[3][i]), is_not_aligned);
128
129 // rotateTo kernel Bwd
130 rotateToNormalKernel(tmpIn, rotMat, tmpOut);
131
132 vec_t rhouR = tmpOut[0];
133 vec_t rhovR = tmpOut[1];
134 vec_t rhowR = tmpOut[2];
135
136 // Roe kernel
137 vec_t rhof{}, Ef{};
138 RoeKernel(rhoL, rhouL, rhovL, rhowL, EL, rhoR, rhouR, rhovR, rhowR, ER,
139 rhof, tmpIn[0], tmpIn[1], tmpIn[2], Ef, gamma);
140
141 // rotateFrom kernel
142 rotateFromNormalKernel(tmpIn, rotMat, tmpOut);
143
144 // store scalar
145 rhof.store(&(flux[0][i]), is_not_aligned);
146 Ef.store(&(flux[nVars - 1][i]), is_not_aligned);
147
148 // store vector 3D only
149 tmpOut[0].store(&(flux[1][i]), is_not_aligned);
150 tmpOut[1].store(&(flux[2][i]), is_not_aligned);
151 tmpOut[2].store(&(flux[3][i]), is_not_aligned);
152 }
153
154 // spillover loop
155 for (; i < sizeScalar; ++i)
156 {
157 // load scalars
158 NekDouble rhoL = fwd[0][i];
159 NekDouble rhoR = bwd[0][i];
160 NekDouble EL = fwd[spaceDim + 1][i];
161 NekDouble ER = bwd[spaceDim + 1][i];
162
163 // 3D case only
164 // load vectors left
165 NekDouble tmpIn[3], tmpOut[3];
166 tmpIn[0] = fwd[1][i];
167 tmpIn[1] = fwd[2][i];
168 tmpIn[2] = fwd[3][i];
169
170 // load rotation matrix
171 NekDouble rotMat[9];
172 for (size_t j = 0; j < 9; ++j)
173 {
174 rotMat[j] = m_rotMat[j][i];
175 }
176
177 // rotateTo kernel Fwd
178 rotateToNormalKernel(tmpIn, rotMat, tmpOut);
179
180 NekDouble rhouL = tmpOut[0];
181 NekDouble rhovL = tmpOut[1];
182 NekDouble rhowL = tmpOut[2];
183
184 // load vectors right
185 tmpIn[0] = bwd[1][i];
186 tmpIn[1] = bwd[2][i];
187 tmpIn[2] = bwd[3][i];
188
189 // rotateTo kernel Bwd
190 rotateToNormalKernel(tmpIn, rotMat, tmpOut);
191
192 NekDouble rhouR = tmpOut[0];
193 NekDouble rhovR = tmpOut[1];
194 NekDouble rhowR = tmpOut[2];
195
196 // Roe kernel
197 NekDouble rhof{}, Ef{};
198 RoeKernel(rhoL, rhouL, rhovL, rhowL, EL, rhoR, rhouR, rhovR, rhowR, ER,
199 rhof, tmpIn[0], tmpIn[1], tmpIn[2], Ef, gamma);
200
201 // rotateFrom kernel
202 rotateFromNormalKernel(tmpIn, rotMat, tmpOut);
203
204 // store scalar
205 flux[0][i] = rhof;
206 flux[nVars - 1][i] = Ef;
207
208 // store vector 3D only
209 flux[1][i] = tmpOut[0];
210 flux[2][i] = tmpOut[1];
211 flux[3][i] = tmpOut[2];
212 }
213}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
Array< OneD, Array< OneD, NekDouble > > m_rotMat
Rotation matrices for each trace quadrature point.
std::map< std::string, RSVecFuncType > m_vectors
Map of vector function types.
SOLVER_UTILS_EXPORT bool CheckVectors(std::string name)
Determine whether a vector has been defined in m_vectors.
SOLVER_UTILS_EXPORT void GenerateRotationMatrices(const Array< OneD, const Array< OneD, NekDouble > > &normals)
Generate rotation matrices for 3D expansions.
std::map< std::string, RSParamFuncType > m_params
Map of parameter function types.
void rotateFromNormalKernel(T *in, T *rotMat, T *out)
void rotateToNormalKernel(T *in, T *rotMat, T *out)
void RoeKernel(T &rhoL, T &rhouL, T &rhovL, T &rhowL, T &EL, T &rhoR, T &rhouR, T &rhovR, T &rhowR, T &ER, T &rhof, T &rhouf, T &rhovf, T &rhowf, T &Ef, NekDouble gamma)
Definition: RoeSolver.h:73
tinysimd::simd< NekDouble > vec_t
double NekDouble
static constexpr struct tinysimd::is_not_aligned_t is_not_aligned
typename abi< ScalarType, width >::type simd
Definition: tinysimd.hpp:80

References ASSERTL0, ASSERTL1, Nektar::SolverUtils::RiemannSolver::CheckVectors(), Nektar::SolverUtils::RiemannSolver::GenerateRotationMatrices(), tinysimd::is_not_aligned, Nektar::SolverUtils::RiemannSolver::m_params, Nektar::SolverUtils::RiemannSolver::m_rotMat, Nektar::SolverUtils::RiemannSolver::m_vectors, Nektar::RoeKernel(), Nektar::SolverUtils::rotateFromNormalKernel(), and Nektar::SolverUtils::rotateToNormalKernel().

Member Data Documentation

◆ solverName

std::string Nektar::RoeSolverSIMD::solverName
static
Initial value:
=
"RoeOpt", RoeSolverSIMD::create, "Roe Riemann solver opt")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static RiemannSolverSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
Definition: RoeSolverSIMD.h:46
RiemannSolverFactory & GetRiemannSolverFactory()

Definition at line 52 of file RoeSolverSIMD.h.