Nektar++
|
The namespace associated with the the Polylib library (Polylib introduction) More...
Functions | |
double | optdiff (double xl, double xr) |
The following function is used to circumvent/reduce "Subtractive
Cancellation" The expression 1/dz is replaced by optinvsub(.,.) Added on 26 April 2017. More... | |
double | laginterp (double z, int j, const double *zj, int np) |
double | laginterpderiv (double z, int k, const double *zj, int np) |
static void | Jacobz (const int n, double *z, const double alpha, const double beta) |
Calculate the n zeros, z, of the Jacobi polynomial, i.e. \( P_n^{\alpha,\beta}(z) = 0 \). More... | |
static void | RecCoeff (const int n, double *a, double *b, const double alpha, const double beta) |
The routine finds the recurrence coefficients a and b of the orthogonal polynomials. More... | |
static void | TriQL (const int n, double *d, double *e, double **z) |
QL algorithm for symmetric tridiagonal matrix. More... | |
void | JKMatrix (int n, double *a, double *b) |
Calcualtes the Jacobi-kronrod matrix by determining the a and coefficients. More... | |
void | chri1 (int n, double *a, double *b, double *a0, double *b0, double z) |
Given a weight function \(w(t)\) through the first n+1 coefficients a and b of its orthogonal polynomials this routine generates the first n recurrence coefficients for the orthogonal polynomials relative to the modified weight function \((t-z)w(t)\). More... | |
void | zwgj (double *z, double *w, const int np, const double alpha, const double beta) |
Gauss-Jacobi zeros and weights. More... | |
void | zwgrjm (double *z, double *w, const int np, const double alpha, const double beta) |
Gauss-Radau-Jacobi zeros and weights with end point at z=-1. More... | |
void | zwgrjp (double *z, double *w, const int np, const double alpha, const double beta) |
Gauss-Radau-Jacobi zeros and weights with end point at z=1. More... | |
void | zwglj (double *z, double *w, const int np, const double alpha, const double beta) |
Gauss-Lobatto-Jacobi zeros and weights with end point at z=-1,1. More... | |
void | zwgk (double *z, double *w, const int npt, const double alpha, const double beta) |
Gauss-Kronrod-Jacobi zeros and weights. More... | |
void | zwrk (double *z, double *w, const int npt, const double alpha, const double beta) |
Gauss-Radau-Kronrod-Jacobi zeros and weights. More... | |
void | zwlk (double *z, double *w, const int npt, const double alpha, const double beta) |
Gauss-Lobatto-Kronrod-Jacobi zeros and weights. More... | |
void | Qg (double *Q, const double *z, const int np) |
Compute the Integration Matrix. More... | |
void | Dgj (double *D, const double *z, const int np, const double alpha, const double beta) |
Compute the Derivative Matrix and its transpose associated with the Gauss-Jacobi zeros. More... | |
void | Dgrjm (double *D, const double *z, const int np, const double alpha, const double beta) |
Compute the Derivative Matrix and its transpose associated with the Gauss-Radau-Jacobi zeros with a zero at z=-1. More... | |
void | Dgrjp (double *D, const double *z, const int np, const double alpha, const double beta) |
Compute the Derivative Matrix associated with the Gauss-Radau-Jacobi zeros with a zero at z=1. More... | |
void | Dglj (double *D, const double *z, const int np, const double alpha, const double beta) |
Compute the Derivative Matrix associated with the Gauss-Lobatto-Jacobi zeros. More... | |
double | hgj (const int i, const double z, const double *zgj, const int np, const double alpha, const double beta) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Jacobi points zgj at the arbitrary location z. More... | |
double | hgrjm (const int i, const double z, const double *zgrj, const int np, const double alpha, const double beta) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Radau-Jacobi points zgrj at the arbitrary location z. This routine assumes zgrj includes the point -1. More... | |
double | hgrjp (const int i, const double z, const double *zgrj, const int np, const double alpha, const double beta) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Radau-Jacobi points zgrj at the arbitrary location z. This routine assumes zgrj includes the point +1. More... | |
double | hglj (const int i, const double z, const double *zglj, const int np, const double alpha, const double beta) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Lobatto-Jacobi points zgrj at the arbitrary location z. More... | |
void | Imgj (double *im, const double *zgj, const double *zm, const int nz, const int mz, const double alpha, const double beta) |
Interpolation Operator from Gauss-Jacobi points to an arbitrary distribution at points zm. More... | |
void | Imgrjm (double *im, const double *zgrj, const double *zm, const int nz, const int mz, const double alpha, const double beta) |
Interpolation Operator from Gauss-Radau-Jacobi points (including z=-1) to an arbitrary distrubtion at points zm. More... | |
void | Imgrjp (double *im, const double *zgrj, const double *zm, const int nz, const int mz, const double alpha, const double beta) |
Interpolation Operator from Gauss-Radau-Jacobi points (including z=1) to an arbitrary distrubtion at points zm. More... | |
void | Imglj (double *im, const double *zglj, const double *zm, const int nz, const int mz, const double alpha, const double beta) |
Interpolation Operator from Gauss-Lobatto-Jacobi points to an arbitrary distrubtion at points zm. More... | |
void | polycoeffs (double *c, const double *z, const int i, const int np) |
Compute the coefficients of Lagrange interpolation polynomials. More... | |
void | jacobfd (const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta) |
Routine to calculate Jacobi polynomials, \(
P^{\alpha,\beta}_n(z) \), and their first derivative, \(
\frac{d}{dz} P^{\alpha,\beta}_n(z) \). More... | |
void | jacobd (const int np, const double *z, double *polyd, const int n, const double alpha, const double beta) |
Calculate the derivative of Jacobi polynomials. More... | |
double | gammaF (const double x) |
Calculate the Gamma function , \( \Gamma(n)\), for integer values and halves. More... | |
double | gammaFracGammaF (const int x, const double alpha, const int y, const double beta) |
Calculate fraction of two Gamma functions, \(
\Gamma(x+\alpha)/\Gamma(y+\beta) \), for integer values and halves. More... | |
std::complex< Nektar::NekDouble > | ImagBesselComp (int n, std::complex< Nektar::NekDouble > y) |
Calcualte the bessel function of the first kind with complex double input y. Taken from Numerical Recipies in C. More... | |
void | JacZeros (const int n, double *a, double *b, const double alpha, const double beta) |
Zero and Weight determination through the eigenvalues and eigenvectors of a tridiagonal matrix from the three term recurrence relationship. More... | |
The namespace associated with the the Polylib library (Polylib introduction)
void Polylib::chri1 | ( | int | n, |
double * | a, | ||
double * | b, | ||
double * | a0, | ||
double * | b0, | ||
double | z | ||
) |
Given a weight function \(w(t)\) through the first n+1 coefficients a and b of its orthogonal polynomials this routine generates the first n recurrence coefficients for the orthogonal polynomials relative to the modified weight function \((t-z)w(t)\).
The result will be placed in the array a0 and b0.
Definition at line 1956 of file Polylib.cpp.
References Nektar::UnitTests::q(), and Nektar::UnitTests::z().
void Polylib::Dgj | ( | double * | D, |
const double * | z, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the Derivative Matrix and its transpose associated with the Gauss-Jacobi zeros.
Definition at line 653 of file Polylib.cpp.
References Nektar::LibUtilities::beta, jacobd(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculateDerivMatrix().
void Polylib::Dglj | ( | double * | D, |
const double * | z, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the Derivative Matrix associated with the Gauss-Lobatto-Jacobi zeros.
Definition at line 833 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaF(), gammaFracGammaF(), jacobd(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculateDerivMatrix().
void Polylib::Dgrjm | ( | double * | D, |
const double * | z, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the Derivative Matrix and its transpose associated with the Gauss-Radau-Jacobi zeros with a zero at z=-1.
Definition at line 704 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaF(), gammaFracGammaF(), jacobd(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculateDerivMatrix().
void Polylib::Dgrjp | ( | double * | D, |
const double * | z, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the Derivative Matrix associated with the Gauss-Radau-Jacobi zeros with a zero at z=1.
Definition at line 768 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaF(), gammaFracGammaF(), jacobd(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculateDerivMatrix().
double Polylib::gammaF | ( | const double | x | ) |
Calculate the Gamma function , \( \Gamma(n)\), for integer values and halves.
Determine the value of \(\Gamma(n)\) using:
\( \Gamma(n) = (n-1)! \mbox{ or } \Gamma(n+1/2) = (n-1/2)\Gamma(n-1/2)\)
where \( \Gamma(1/2) = \sqrt(\pi)\)
Definition at line 1413 of file Polylib.cpp.
References tinysimd::sqrt().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), Dglj(), Dgrjm(), Dgrjp(), and RecCoeff().
double Polylib::gammaFracGammaF | ( | const int | x, |
const double | alpha, | ||
const int | y, | ||
const double | beta | ||
) |
Calculate fraction of two Gamma functions, \( \Gamma(x+\alpha)/\Gamma(y+\beta) \), for integer values and halves.
Determine the value of \(\Gamma(n)\) using:
\( \Gamma(n) = (n-1)! \mbox{ or } \Gamma(n+1/2) = (n-1/2)\Gamma(n-1/2)\)
where \( \Gamma(1/2) = \sqrt(\pi)\)
Attempts simplification in cases like \( \Gamma(x+1)/\Gamma(x-1) = x*(x-1) \)
Definition at line 1468 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and tinysimd::sqrt().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), Dglj(), Dgrjm(), Dgrjp(), zwgj(), zwglj(), zwgrjm(), and zwgrjp().
double Polylib::hgj | ( | const int | i, |
const double | z, | ||
const double * | zgj, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Jacobi points zgj at the arbitrary location z.
Definition at line 914 of file Polylib.cpp.
References EPS, laginterp(), and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::Basis::GenBasis(), Imgj(), and Nektar::LibUtilities::TimeIntegrationSchemeSDC::v_InitializeScheme().
double Polylib::hglj | ( | const int | i, |
const double | z, | ||
const double * | zglj, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Lobatto-Jacobi points zgrj at the arbitrary location z.
Definition at line 1025 of file Polylib.cpp.
References EPS, laginterp(), and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::Basis::GenBasis(), and Imglj().
double Polylib::hgrjm | ( | const int | i, |
const double | z, | ||
const double * | zgrj, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Radau-Jacobi points zgrj at the arbitrary location z. This routine assumes zgrj includes the point -1.
Definition at line 951 of file Polylib.cpp.
References EPS, laginterp(), and Nektar::UnitTests::z().
Referenced by Imgrjm().
double Polylib::hgrjp | ( | const int | i, |
const double | z, | ||
const double * | zgrj, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Compute the value of the i th Lagrangian interpolant through the np Gauss-Radau-Jacobi points zgrj at the arbitrary location z. This routine assumes zgrj includes the point +1.
Definition at line 988 of file Polylib.cpp.
References EPS, laginterp(), and Nektar::UnitTests::z().
Referenced by Imgrjp().
std::complex< Nektar::NekDouble > Polylib::ImagBesselComp | ( | int | n, |
std::complex< Nektar::NekDouble > | y | ||
) |
Calcualte the bessel function of the first kind with complex double input y. Taken from Numerical Recipies in C.
Returns a complex double
Definition at line 1559 of file Polylib.cpp.
References tinysimd::abs(), and Nektar::UnitTests::z().
Referenced by Nektar::IncNavierStokes::SetUpWomersley().
void Polylib::Imgj | ( | double * | im, |
const double * | zgj, | ||
const double * | zm, | ||
const int | nz, | ||
const int | mz, | ||
const double | alpha, | ||
const double | beta | ||
) |
Interpolation Operator from Gauss-Jacobi points to an arbitrary distribution at points zm.
Definition at line 1054 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and hgj().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::CalculateInterpMatrix().
void Polylib::Imglj | ( | double * | im, |
const double * | zglj, | ||
const double * | zm, | ||
const int | nz, | ||
const int | mz, | ||
const double | alpha, | ||
const double | beta | ||
) |
Interpolation Operator from Gauss-Lobatto-Jacobi points to an arbitrary distrubtion at points zm.
Definition at line 1147 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and hglj().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::CalculateInterpMatrix().
void Polylib::Imgrjm | ( | double * | im, |
const double * | zgrj, | ||
const double * | zm, | ||
const int | nz, | ||
const int | mz, | ||
const double | alpha, | ||
const double | beta | ||
) |
Interpolation Operator from Gauss-Radau-Jacobi points (including z=-1) to an arbitrary distrubtion at points zm.
Definition at line 1085 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and hgrjm().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::CalculateInterpMatrix().
void Polylib::Imgrjp | ( | double * | im, |
const double * | zgrj, | ||
const double * | zm, | ||
const int | nz, | ||
const int | mz, | ||
const double | alpha, | ||
const double | beta | ||
) |
Interpolation Operator from Gauss-Radau-Jacobi points (including z=1) to an arbitrary distrubtion at points zm.
Definition at line 1116 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and hgrjp().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::CalculateInterpMatrix().
void Polylib::jacobd | ( | const int | np, |
const double * | z, | ||
double * | polyd, | ||
const int | n, | ||
const double | alpha, | ||
const double | beta | ||
) |
Calculate the derivative of Jacobi polynomials.
Definition at line 1378 of file Polylib.cpp.
References Nektar::LibUtilities::beta, jacobfd(), and Nektar::UnitTests::z().
Referenced by Dgj(), Dglj(), Dgrjm(), Dgrjp(), Nektar::SolverUtils::AdvectionFR::SetupCFunctions(), Nektar::SolverUtils::DiffusionLFR::SetupCFunctions(), Nektar::SolverUtils::DiffusionLFRNS::SetupCFunctions(), Nektar::LibUtilities::NodalUtilTriangle::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilTetrahedron::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilQuad::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilHex::v_OrthoBasisDeriv(), and zwgj().
void Polylib::jacobfd | ( | const int | np, |
const double * | z, | ||
double * | poly_in, | ||
double * | polyd, | ||
const int | n, | ||
const double | alpha, | ||
const double | beta | ||
) |
Routine to calculate Jacobi polynomials, \( P^{\alpha,\beta}_n(z) \), and their first derivative, \( \frac{d}{dz} P^{\alpha,\beta}_n(z) \).
Definition at line 1248 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::Basis::GenBasis(), jacobd(), Jacobz(), Nektar::UnitTests::TestIntegral(), Nektar::LibUtilities::NodalUtilTriangle::v_OrthoBasis(), Nektar::LibUtilities::NodalUtilTetrahedron::v_OrthoBasis(), Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasis(), Nektar::LibUtilities::NodalUtilQuad::v_OrthoBasis(), Nektar::LibUtilities::NodalUtilHex::v_OrthoBasis(), Nektar::LibUtilities::NodalUtilTriangle::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilTetrahedron::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilQuad::v_OrthoBasisDeriv(), Nektar::LibUtilities::NodalUtilHex::v_OrthoBasisDeriv(), zwglj(), zwgrjm(), and zwgrjp().
|
static |
Calculate the n zeros, z, of the Jacobi polynomial, i.e. \( P_n^{\alpha,\beta}(z) = 0 \).
This routine is only value for \(( \alpha > -1, \beta > -1)\) and uses polynomial deflation in a Newton iteration
Definition at line 1597 of file Polylib.cpp.
References Nektar::LibUtilities::beta, EPS, jacobfd(), STOP, and Nektar::UnitTests::z().
void Polylib::JacZeros | ( | const int | n, |
double * | a, | ||
double * | b, | ||
const double | alpha, | ||
const double | beta | ||
) |
Zero and Weight determination through the eigenvalues and eigenvectors of a tridiagonal matrix from the three term recurrence relationship.
Set up a symmetric tridiagonal matrix
\( \left [ \begin{array}{ccccc} a[0] & b[0] & & & \\ b[0] & a[1] & b[1] & & \\ 0 & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & b[n-2] \\ & & & b[n-2] & a[n-1] \end{array} \right ] \)
Where the coefficients a[n], b[n] come from the recurrence relation
\( b_j p_j(z) = (z - a_j ) p_{j-1}(z) - b_{j-1} p_{j-2}(z) \)
where \( j=n+1\) and \(p_j(z)\) are the Jacobi (normalized) orthogonal polynomials \( \alpha,\beta > -1\)( integer values and halves). Since the polynomials are orthonormalized, the tridiagonal matrix is guaranteed to be symmetric. The eigenvalues of this matrix are the zeros of the Jacobi polynomial.
Definition at line 1665 of file Polylib.cpp.
References Nektar::LibUtilities::beta, RecCoeff(), TriQL(), and Nektar::UnitTests::z().
void Polylib::JKMatrix | ( | int | n, |
double * | a, | ||
double * | b | ||
) |
Calcualtes the Jacobi-kronrod matrix by determining the a and coefficients.
The first 3n+1 coefficients are already known
For more information refer to: "Dirk P. Laurie, Calcualtion of Gauss-Kronrod quadrature rules"
Definition at line 1875 of file Polylib.cpp.
double Polylib::laginterp | ( | double | z, |
int | j, | ||
const double * | zj, | ||
int | np | ||
) |
Definition at line 85 of file Polylib.cpp.
References optdiff(), and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::GaussPoints::CalculateInterpMatrix(), Nektar::LibUtilities::PolyEPoints::CalculateInterpMatrix(), hgj(), hglj(), hgrjm(), hgrjp(), and Nektar::LibUtilities::PolyEPoints::v_CalculateWeights().
double Polylib::laginterpderiv | ( | double | z, |
int | k, | ||
const double * | zj, | ||
int | np | ||
) |
Definition at line 98 of file Polylib.cpp.
References Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::GaussPoints::v_CalculateDerivMatrix(), and Nektar::LibUtilities::PolyEPoints::v_CalculateDerivMatrix().
double Polylib::optdiff | ( | double | xl, |
double | xr | ||
) |
The following function is used to circumvent/reduce "Subtractive Cancellation" The expression 1/dz is replaced by optinvsub(.,.) Added on 26 April 2017.
Definition at line 55 of file Polylib.cpp.
Referenced by laginterp().
void Polylib::polycoeffs | ( | double * | c, |
const double * | z, | ||
const int | i, | ||
const int | np | ||
) |
Compute the coefficients of Lagrange interpolation polynomials.
Definition at line 1170 of file Polylib.cpp.
References Nektar::UnitTests::d(), and Nektar::UnitTests::z().
Referenced by Qg().
void Polylib::Qg | ( | double * | Q, |
const double * | z, | ||
const int | np | ||
) |
Compute the Integration Matrix.
Definition at line 611 of file Polylib.cpp.
References polycoeffs(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::TimeIntegrationSchemeSDC::v_InitializeScheme().
|
static |
The routine finds the recurrence coefficients a and b of the orthogonal polynomials.
Definition at line 1697 of file Polylib.cpp.
References Nektar::LibUtilities::beta, and gammaF().
Referenced by JacZeros(), zwgk(), zwlk(), and zwrk().
|
static |
QL algorithm for symmetric tridiagonal matrix.
This subroutine is a translation of an algol procedure, num. math. 12, 377-383(1968) by martin and wilkinson, as modified in num. math. 15, 450(1970) by dubrulle. Handbook for auto. comp., vol.ii-linear algebra, 241-248(1971). This is a modified version from numerical recipes.
This subroutine finds the eigenvalues and first components of the eigenvectors of a symmetric tridiagonal matrix by the implicit QL method.
on input:
on output:
Definition at line 1758 of file Polylib.cpp.
References Nektar::UnitTests::d(), CellMLToNektar.cellml_metadata::p, sign, tinysimd::sqrt(), STOP, and Nektar::UnitTests::z().
Referenced by JacZeros(), zwgk(), zwlk(), and zwrk().
void Polylib::zwgj | ( | double * | z, |
double * | w, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Jacobi zeros and weights.
Definition at line 152 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaFracGammaF(), jacobd(), jacobz, Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculatePoints().
void Polylib::zwgk | ( | double * | z, |
double * | w, | ||
const int | npt, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Kronrod-Jacobi zeros and weights.
Definition at line 317 of file Polylib.cpp.
References Nektar::LibUtilities::beta, JKMatrix(), RecCoeff(), TriQL(), Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::GaussPoints::v_CalculatePoints().
void Polylib::zwglj | ( | double * | z, |
double * | w, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Lobatto-Jacobi zeros and weights with end point at z=-1,1.
Definition at line 266 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaFracGammaF(), jacobfd(), jacobz, Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculatePoints().
void Polylib::zwgrjm | ( | double * | z, |
double * | w, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Radau-Jacobi zeros and weights with end point at z=-1.
Definition at line 182 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaFracGammaF(), jacobfd(), jacobz, Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculatePoints().
void Polylib::zwgrjp | ( | double * | z, |
double * | w, | ||
const int | np, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Radau-Jacobi zeros and weights with end point at z=1.
Definition at line 225 of file Polylib.cpp.
References Nektar::LibUtilities::beta, gammaFracGammaF(), jacobfd(), jacobz, Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::UnitTests::BOOST_AUTO_TEST_CASE(), and Nektar::LibUtilities::GaussPoints::v_CalculatePoints().
void Polylib::zwlk | ( | double * | z, |
double * | w, | ||
const int | npt, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Lobatto-Kronrod-Jacobi zeros and weights.
Definition at line 495 of file Polylib.cpp.
References Nektar::LibUtilities::beta, chri1(), JKMatrix(), RecCoeff(), TriQL(), Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::GaussPoints::v_CalculatePoints().
void Polylib::zwrk | ( | double * | z, |
double * | w, | ||
const int | npt, | ||
const double | alpha, | ||
const double | beta | ||
) |
Gauss-Radau-Kronrod-Jacobi zeros and weights.
Definition at line 389 of file Polylib.cpp.
References Nektar::LibUtilities::beta, chri1(), JKMatrix(), RecCoeff(), TriQL(), Nektar::UnitTests::w(), and Nektar::UnitTests::z().
Referenced by Nektar::LibUtilities::GaussPoints::v_CalculatePoints().