6.1 Synopsis

The aim of the AcousticSolver is to predict acoustic wave propagation. Through the application of a splitting technique, the flow-induced acoustic field is totally decoupled from the underlying hydrodynamic field.

6.1.1 Linearized Euler Equations

The Linearized Euler Equations (LEE) are obtained by linearizing the Euler Equations about a mean flow state (  --   )
 ρ,c2,u-. Hence, they describe the evolution of perturbations (pa,ρa,ρua ) around this state. In conservative form, the LEE are given as:

∂U--  ∂F-1   ∂F-2   ∂F-3
∂t  + ∂x1  + ∂x2 +  ∂x3 + CU   = W
(6.1)

with

                                 ⌊  a⌋
                                 | pa|
                                 ||-ρ ||
                            U =  ||ρua1|| ,
                                 ⌈ρua2⌉
                                  ρua3
      ⌊--a-2   -- a⌋         ⌊--a-2   -- a⌋         ⌊--a-2   -- a⌋
      |ρu1c  +-u1p |         |ρu2c  +-u2p |         |ρu3c  +-u3p |
      || ρua1-+ u1ρa ||         || ρua2-+-u2ρa ||         || ρua3-+-u3ρa ||
F 1 = || ρua1u1 + pa ||,  F 2 = ||   ρua1u2    ||,  F 3 = ||   ρua1u3    ||,
      ⌈   ρua2u1    ⌉         ⌈ ρua2u2 + pa ⌉         ⌈   ρua2u3    ⌉
          ρua3u1                  ρua3u2                ρua3u3 + pa
      ⌊       ∂u          1        ∂p   1       ∂p   1        ∂p⌋
       (γ - 1) ∂xkk   0    ρ (1 - γ) ∂x1-  ρ (1- γ )∂x2 ρ (1 - γ)∂x3
      ||    0         0-        0             0            0     ||
 C =  ||    0       uk∂u1      ∂u1           ∂u1          ∂u1    || .
      ||    0       u-∂∂xuk2      ∂∂xu12           ∂∂xu22          ∂∂xu32    ||
      ⌈            -k∂∂xuk3      ∂∂xu13           ∂∂xu23          ∂∂xu33    ⌉
           0       uk∂xk      ∂x1           ∂x2          ∂x3
(6.2)

(6.3)

(6.4)

By default, the source term vector W is zero and has to be specified by an appropriate forcing.

6.1.2 Acoustic Perturbation Equations

The acoustic perturbation equations (APE-1/APE-4) proposed by Ewert and Schroeder [13] assure stable aeroacoustic simulations. These equations are similar to the LEE, but account for acoustic perturbations exclusively. The AcousticSolver implements the APE-1/4 type operator:

∂pa-
 ∂t + c2∇⋅(          )
 -- a  --pa
 ρu  + u c2 = ω˙c (6.5a)
∂ua
----
 ∂t + ∇(u-⋅ua) + ∇( pa)
  --
  ρ = ω˙m, (6.5b)

where (u,c2,ρ) represents the base flow and (ua,pa) the acoustic perturbations. Similar to the LEE, the acoustic source terms ω˙c and ω˙m are by default zero and must be specified e.g. by an appropriate forcing. This way, e.g. the APE-1, APE-4 [13] or revised APE equations [15] can be obtained. Expressed as hyperbolic conservation law, the APE-1/4 operator reads:

∂U--  ∂F-1   ∂F-2   ∂F-3
 ∂t + ∂x1  + ∂x2  + ∂x3  = W
(6.6)

with

                              ⌊  a⌋
                              | pa|
                          U = ||u 1||,
                              ⌈ua2⌉
                               ua3
     ⌊--2 a    a--⌋       ⌊--2 a    a--⌋      ⌊ --2 a   a--⌋
     |ρc-u1a + pa u1|       |ρc u2 + p u2|      | ρc u3 + p u3|
F1 = || ujuj + p ∕ρ || ,F2 = ||--   0    --||,F3 = ||      0     || .
     ⌈      0     ⌉       ⌈ujuaj + pa∕ρ ⌉     ⌈ --   0    -⌉
            0                   0               ujuaj + pa∕ρ
(6.7)

(6.8)