Nektar++
CompressibleSolver.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: CompressibleSolver.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Compressible Riemann solver.
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include "CompressibleSolver.h"
36#include <boost/algorithm/string/predicate.hpp>
37
38namespace Nektar
39{
42 : RiemannSolver(pSession), m_pointSolve(true)
43{
44 m_requiresRotation = true;
45
46 // Create equation of state object
47 std::string eosType;
48 pSession->LoadSolverInfo("EquationOfState", eosType, "IdealGas");
49 m_eos = GetEquationOfStateFactory().CreateInstance(eosType, pSession);
50 // Check if using ideal gas
51 m_idealGas = boost::iequals(eosType, "IdealGas");
52}
53
55 : RiemannSolver(), m_pointSolve(true), m_idealGas(true)
56{
57 m_requiresRotation = true;
58}
59
60/**
61 *
62 */
64 const int nDim, const Array<OneD, const Array<OneD, NekDouble>> &Fwd,
65 const Array<OneD, const Array<OneD, NekDouble>> &Bwd,
67{
68 if (m_pointSolve)
69 {
70 size_t expDim = nDim;
71 NekDouble rhouf{}, rhovf{};
72
73 if (expDim == 1)
74 {
75 for (size_t i = 0; i < Fwd[0].size(); ++i)
76 {
77 v_PointSolve(Fwd[0][i], Fwd[1][i], 0.0, 0.0, Fwd[2][i],
78 Bwd[0][i], Bwd[1][i], 0.0, 0.0, Bwd[2][i],
79 flux[0][i], flux[1][i], rhouf, rhovf, flux[2][i]);
80 }
81 }
82 else if (expDim == 2)
83 {
84 for (size_t i = 0; i < Fwd[0].size(); ++i)
85 {
86 v_PointSolve(Fwd[0][i], Fwd[1][i], Fwd[2][i], 0.0, Fwd[3][i],
87 Bwd[0][i], Bwd[1][i], Bwd[2][i], 0.0, Bwd[3][i],
88 flux[0][i], flux[1][i], flux[2][i], rhovf,
89 flux[3][i]);
90 }
91 }
92 else if (expDim == 3)
93 {
94 for (size_t i = 0; i < Fwd[0].size(); ++i)
95 {
96 v_PointSolve(Fwd[0][i], Fwd[1][i], Fwd[2][i], Fwd[3][i],
97 Fwd[4][i], Bwd[0][i], Bwd[1][i], Bwd[2][i],
98 Bwd[3][i], Bwd[4][i], flux[0][i], flux[1][i],
99 flux[2][i], flux[3][i], flux[4][i]);
100 }
101 }
102 }
103 else
104 {
105 v_ArraySolve(Fwd, Bwd, flux);
106 }
107}
108
109/**
110 *
111 */
113 NekDouble rhoL, NekDouble pL, NekDouble eL, [[maybe_unused]] NekDouble HL,
114 [[maybe_unused]] NekDouble srL, NekDouble rhoR, NekDouble pR, NekDouble eR,
115 [[maybe_unused]] NekDouble HR, [[maybe_unused]] NekDouble srR,
116 NekDouble HRoe, NekDouble URoe2, [[maybe_unused]] NekDouble srLR)
117{
118 static NekDouble gamma = m_params["gamma"]();
119 NekDouble cRoe;
120 if (m_idealGas)
121 {
122 cRoe = sqrt((gamma - 1.0) * (HRoe - 0.5 * URoe2));
123 }
124 else
125 {
126 // Calculate static enthalpy of left and right states
127 NekDouble hL = eL + pL / rhoL;
128 NekDouble hR = eR + pR / rhoR;
129
130 // Get partial derivatives of P(rho,e)
131 NekDouble dpdeL = m_eos->GetDPDe_rho(rhoL, eL);
132 NekDouble dpdeR = m_eos->GetDPDe_rho(rhoR, eR);
133 NekDouble dpdrhoL = m_eos->GetDPDrho_e(rhoL, eL);
134 NekDouble dpdrhoR = m_eos->GetDPDrho_e(rhoR, eR);
135
136 // Evaluate chi and kappa parameters
137 NekDouble chiL = dpdrhoL - eL / rhoL * dpdeL;
138 NekDouble kappaL = dpdeL / rhoL;
139 NekDouble chiR = dpdrhoR - eR / rhoR * dpdeR;
140 NekDouble kappaR = dpdeR / rhoR;
141
142 //
143 // Calculate interface speed of sound using procedure from
144 // Vinokur, M.; Montagné, J.-L. "Generalized Flux-Vector
145 // Splitting and Roe Average for an Equilibrium Real Gas",
146 // JCP (1990).
147 //
148
149 // Calculate averages
150 NekDouble avgChi = 0.5 * (chiL + chiR);
151 NekDouble avgKappa = 0.5 * (kappaL + kappaR);
152 NekDouble avgKappaH = 0.5 * (kappaL * hL + kappaR * hR);
153
154 // Calculate jumps
155 NekDouble deltaP = pR - pL;
156 NekDouble deltaRho = rhoR - rhoL;
157 NekDouble deltaRhoe = rhoR * eR - rhoL * eL;
158
159 // Evaluate dP: equation (64) from Vinokur-Montagné
160 NekDouble dP = deltaP - avgChi * deltaRho - avgKappa * deltaRhoe;
161 // s (eq 66)
162 NekDouble s = avgChi + avgKappaH;
163 // D (eq 65)
164 NekDouble D = (s * deltaRho) * (s * deltaRho) + deltaP * deltaP;
165 // chiRoe and kappaRoe (eq 66)
166 NekDouble chiRoe, kappaRoe;
167 NekDouble fac = D - deltaP * deltaRho;
169 {
170 chiRoe = (D * avgChi + s * s * deltaRho * dP) / fac;
171 kappaRoe = D * avgKappa / fac;
172 }
173 else
174 {
175 chiRoe = avgChi;
176 kappaRoe = avgKappa;
177 }
178 // Speed of sound (eq 53)
179 cRoe = sqrt(chiRoe + kappaRoe * (HRoe - 0.5 * URoe2));
180 }
181 return cRoe;
182}
183
184} // namespace Nektar
virtual void v_PointSolve(ND rhoL, ND rhouL, ND rhovL, ND rhowL, ND EL, ND rhoR, ND rhouR, ND rhovR, ND rhowR, ND ER, ND &rhof, ND &rhouf, ND &rhovf, ND &rhowf, ND &Ef)
ND GetRoeSoundSpeed(ND rhoL, ND pL, ND eL, ND HL, ND srL, ND rhoR, ND pR, ND eR, ND HR, ND srR, ND HRoe, ND URoe2, ND srLR)
CompressibleSolver()
Programmatic ctor.
EquationOfStateSharedPtr m_eos
virtual void v_ArraySolve(const Array< OneD, const Array< OneD, ND > > &Fwd, const Array< OneD, const Array< OneD, ND > > &Bwd, Array< OneD, Array< OneD, ND > > &flux)
void v_Solve(const int nDim, const Array< OneD, const Array< OneD, ND > > &Fwd, const Array< OneD, const Array< OneD, ND > > &Bwd, Array< OneD, Array< OneD, ND > > &flux) override
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:143
The RiemannSolver class provides an abstract interface under which solvers for various Riemann proble...
Definition: RiemannSolver.h:58
bool m_requiresRotation
Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields.
std::map< std::string, RSParamFuncType > m_params
Map of parameter function types.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
EquationOfStateFactory & GetEquationOfStateFactory()
Declaration of the equation of state factory singleton.
double NekDouble
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294