Nektar++
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
Nektar::SolverUtils::RiemannSolver Class Referenceabstract

The RiemannSolver class provides an abstract interface under which solvers for various Riemann problems can be implemented. More...

#include <RiemannSolver.h>

Inheritance diagram for Nektar::SolverUtils::RiemannSolver:
[legend]

Public Member Functions

SOLVER_UTILS_EXPORT void Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)
 Perform the Riemann solve given the forwards and backwards spaces. More...
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetScalar (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetScalar (std::string name, RSScalarFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetVector (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetVector (std::string name, RSVecFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetParam (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetParam (std::string name, RSParamFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxScal (std::string name, FuncPointerT func, ObjectPointerT obj)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxVec (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetAuxVec (std::string name, RSVecFuncType fp)
 
std::map< std::string, RSScalarFuncType > & GetScalars ()
 
std::map< std::string, RSVecFuncType > & GetVectors ()
 
std::map< std::string, RSParamFuncType > & GetParams ()
 
SOLVER_UTILS_EXPORT void CalcFluxJacobian (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
 Calculate the flux jacobian of Fwd and Bwd. More...
 

Public Attributes

int m_spacedim
 

Protected Member Functions

SOLVER_UTILS_EXPORT RiemannSolver ()
 
SOLVER_UTILS_EXPORT RiemannSolver (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual SOLVER_UTILS_EXPORT ~RiemannSolver ()
 
virtual void v_Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)=0
 
SOLVER_UTILS_EXPORT void GenerateRotationMatrices (const Array< OneD, const Array< OneD, NekDouble > > &normals)
 Generate rotation matrices for 3D expansions. More...
 
void FromToRotation (Array< OneD, const NekDouble > &from, Array< OneD, const NekDouble > &to, NekDouble *mat)
 A function for creating a rotation matrix that rotates a vector from into another vector to. More...
 
SOLVER_UTILS_EXPORT void rotateToNormal (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
 Rotate a vector field to trace normal. More...
 
SOLVER_UTILS_EXPORT void rotateFromNormal (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
 Rotate a vector field from trace normal. More...
 
SOLVER_UTILS_EXPORT bool CheckScalars (std::string name)
 Determine whether a scalar has been defined in m_scalars. More...
 
SOLVER_UTILS_EXPORT bool CheckVectors (std::string name)
 Determine whether a vector has been defined in m_vectors. More...
 
SOLVER_UTILS_EXPORT bool CheckParams (std::string name)
 Determine whether a parameter has been defined in m_params. More...
 
SOLVER_UTILS_EXPORT bool CheckAuxScal (std::string name)
 Determine whether a scalar has been defined in m_auxScal. More...
 
SOLVER_UTILS_EXPORT bool CheckAuxVec (std::string name)
 Determine whether a vector has been defined in m_auxVec. More...
 
virtual SOLVER_UTILS_EXPORT void v_CalcFluxJacobian (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, const Array< OneD, const Array< OneD, NekDouble > > &normals, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
 

Protected Attributes

bool m_requiresRotation
 Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields. More...
 
std::map< std::string, RSScalarFuncTypem_scalars
 Map of scalar function types. More...
 
std::map< std::string, RSVecFuncTypem_vectors
 Map of vector function types. More...
 
std::map< std::string, RSParamFuncTypem_params
 Map of parameter function types. More...
 
std::map< std::string, RSScalarFuncTypem_auxScal
 Map of auxiliary scalar function types. More...
 
std::map< std::string, RSVecFuncTypem_auxVec
 Map of auxiliary vector function types. More...
 
Array< OneD, Array< OneD, NekDouble > > m_rotMat
 Rotation matrices for each trace quadrature point. More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_rotStorage
 Rotation storage. More...
 

Detailed Description

The RiemannSolver class provides an abstract interface under which solvers for various Riemann problems can be implemented.

Definition at line 57 of file RiemannSolver.h.

Constructor & Destructor Documentation

◆ RiemannSolver() [1/2]

Nektar::SolverUtils::RiemannSolver::RiemannSolver ( )
protected

Definition at line 76 of file RiemannSolver.cpp.

77{
78}
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_rotStorage
Rotation storage.
bool m_requiresRotation
Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields.

◆ RiemannSolver() [2/2]

Nektar::SolverUtils::RiemannSolver::RiemannSolver ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 80 of file RiemannSolver.cpp.

83{
84}

◆ ~RiemannSolver()

virtual SOLVER_UTILS_EXPORT Nektar::SolverUtils::RiemannSolver::~RiemannSolver ( )
inlineprotectedvirtual

Definition at line 160 of file RiemannSolver.h.

160{};

Member Function Documentation

◆ CalcFluxJacobian()

void Nektar::SolverUtils::RiemannSolver::CalcFluxJacobian ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble > > &  Fwd,
const Array< OneD, const Array< OneD, NekDouble > > &  Bwd,
DNekBlkMatSharedPtr FJac,
DNekBlkMatSharedPtr BJac 
)

Calculate the flux jacobian of Fwd and Bwd.

Parameters
FwdForwards trace space.
BwdBackwards trace space.
fluxResultant flux along trace space.

Definition at line 510 of file RiemannSolver.cpp.

514{
515 int nPts = Fwd[0].size();
516
518 {
519 ASSERTL1(CheckVectors("N"), "N not defined.");
520 ASSERTL1(CheckAuxVec("vecLocs"), "vecLocs not defined.");
521 const Array<OneD, const Array<OneD, NekDouble>> normals =
522 m_vectors["N"]();
523 const Array<OneD, const Array<OneD, NekDouble>> vecLocs =
524 m_auxVec["vecLocs"]();
525
526 v_CalcFluxJacobian(nDim, Fwd, Bwd, normals, FJac, BJac);
527 }
528 else
529 {
530 Array<OneD, Array<OneD, NekDouble>> normals(nDim);
531 for (int i = 0; i < nDim; i++)
532 {
533 normals[i] = Array<OneD, NekDouble>(nPts, 0.0);
534 }
535 Vmath::Fill(nPts, 1.0, normals[0], 1);
536
537 v_CalcFluxJacobian(nDim, Fwd, Bwd, normals, FJac, BJac);
538 }
539}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
SOLVER_UTILS_EXPORT bool CheckAuxVec(std::string name)
Determine whether a vector has been defined in m_auxVec.
virtual SOLVER_UTILS_EXPORT void v_CalcFluxJacobian(const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, const Array< OneD, const Array< OneD, NekDouble > > &normals, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
std::map< std::string, RSVecFuncType > m_vectors
Map of vector function types.
SOLVER_UTILS_EXPORT bool CheckVectors(std::string name)
Determine whether a vector has been defined in m_vectors.
std::map< std::string, RSVecFuncType > m_auxVec
Map of auxiliary vector function types.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54

References ASSERTL1, CheckAuxVec(), CheckVectors(), Vmath::Fill(), m_auxVec, m_requiresRotation, m_vectors, and v_CalcFluxJacobian().

◆ CheckAuxScal()

bool Nektar::SolverUtils::RiemannSolver::CheckAuxScal ( std::string  name)
protected

Determine whether a scalar has been defined in m_auxScal.

Parameters
nameScalar name.

Definition at line 350 of file RiemannSolver.cpp.

351{
352 return m_auxScal.find(name) != m_auxScal.end();
353}
std::map< std::string, RSScalarFuncType > m_auxScal
Map of auxiliary scalar function types.

References m_auxScal, and CellMLToNektar.pycml::name.

◆ CheckAuxVec()

bool Nektar::SolverUtils::RiemannSolver::CheckAuxVec ( std::string  name)
protected

Determine whether a vector has been defined in m_auxVec.

Parameters
nameVector name.

Definition at line 360 of file RiemannSolver.cpp.

361{
362 return m_auxVec.find(name) != m_auxVec.end();
363}

References m_auxVec, and CellMLToNektar.pycml::name.

Referenced by CalcFluxJacobian(), and Solve().

◆ CheckParams()

bool Nektar::SolverUtils::RiemannSolver::CheckParams ( std::string  name)
protected

Determine whether a parameter has been defined in m_params.

Parameters
nameParameter name.

Definition at line 340 of file RiemannSolver.cpp.

341{
342 return m_params.find(name) != m_params.end();
343}
std::map< std::string, RSParamFuncType > m_params
Map of parameter function types.

References m_params, and CellMLToNektar.pycml::name.

Referenced by Nektar::UpwindPulseSolver::RiemannSolverUpwind().

◆ CheckScalars()

bool Nektar::SolverUtils::RiemannSolver::CheckScalars ( std::string  name)
protected

Determine whether a scalar has been defined in m_scalars.

Parameters
nameScalar name.

Definition at line 320 of file RiemannSolver.cpp.

321{
322 return m_scalars.find(name) != m_scalars.end();
323}
std::map< std::string, RSScalarFuncType > m_scalars
Map of scalar function types.

References m_scalars, and CellMLToNektar.pycml::name.

Referenced by Nektar::SolverUtils::UpwindSolver::v_Solve(), and Nektar::UpwindPulseSolver::v_Solve().

◆ CheckVectors()

bool Nektar::SolverUtils::RiemannSolver::CheckVectors ( std::string  name)
protected

Determine whether a vector has been defined in m_vectors.

Parameters
nameVector name.

Definition at line 330 of file RiemannSolver.cpp.

331{
332 return m_vectors.find(name) != m_vectors.end();
333}

References m_vectors, and CellMLToNektar.pycml::name.

Referenced by CalcFluxJacobian(), Nektar::AcousticSolver::GetRotBasefield(), Solve(), and Nektar::RoeSolverSIMD::v_Solve().

◆ FromToRotation()

void Nektar::SolverUtils::RiemannSolver::FromToRotation ( Array< OneD, const NekDouble > &  from,
Array< OneD, const NekDouble > &  to,
NekDouble mat 
)
protected

A function for creating a rotation matrix that rotates a vector from into another vector to.

Authors: Tomas Möller, John Hughes "Efficiently Building a Matrix to Rotate One Vector to Another" Journal of Graphics Tools, 4(4):1-4, 1999

Parameters
fromNormalised 3-vector to rotate from.
toNormalised 3-vector to rotate to.
outResulting 3x3 rotation matrix (row-major order).

Definition at line 413 of file RiemannSolver.cpp.

416{
417 NekDouble v[3];
418 NekDouble e, h, f;
419
420 CROSS(v, from, to);
421 e = DOT(from, to);
422 f = (e < 0) ? -e : e;
423 if (f > 1.0 - EPSILON)
424 {
425 NekDouble u[3], v[3];
426 NekDouble x[3];
427 NekDouble c1, c2, c3;
428 int i, j;
429
430 x[0] = (from[0] > 0.0) ? from[0] : -from[0];
431 x[1] = (from[1] > 0.0) ? from[1] : -from[1];
432 x[2] = (from[2] > 0.0) ? from[2] : -from[2];
433
434 if (x[0] < x[1])
435 {
436 if (x[0] < x[2])
437 {
438 x[0] = 1.0;
439 x[1] = x[2] = 0.0;
440 }
441 else
442 {
443 x[2] = 1.0;
444 x[0] = x[1] = 0.0;
445 }
446 }
447 else
448 {
449 if (x[1] < x[2])
450 {
451 x[1] = 1.0;
452 x[0] = x[2] = 0.0;
453 }
454 else
455 {
456 x[2] = 1.0;
457 x[0] = x[1] = 0.0;
458 }
459 }
460
461 u[0] = x[0] - from[0];
462 u[1] = x[1] - from[1];
463 u[2] = x[2] - from[2];
464 v[0] = x[0] - to[0];
465 v[1] = x[1] - to[1];
466 v[2] = x[2] - to[2];
467
468 c1 = 2.0 / DOT(u, u);
469 c2 = 2.0 / DOT(v, v);
470 c3 = c1 * c2 * DOT(u, v);
471
472 for (i = 0; i < 3; i++)
473 {
474 for (j = 0; j < 3; j++)
475 {
476 mat[3 * i + j] =
477 -c1 * u[i] * u[j] - c2 * v[i] * v[j] + c3 * v[i] * u[j];
478 }
479 mat[i + 3 * i] += 1.0;
480 }
481 }
482 else
483 {
484 NekDouble hvx, hvz, hvxy, hvxz, hvyz;
485 h = 1.0 / (1.0 + e);
486 hvx = h * v[0];
487 hvz = h * v[2];
488 hvxy = hvx * v[1];
489 hvxz = hvx * v[2];
490 hvyz = hvz * v[1];
491 mat[0] = e + hvx * v[0];
492 mat[1] = hvxy - v[2];
493 mat[2] = hvxz + v[1];
494 mat[3] = hvxy + v[2];
495 mat[4] = e + h * v[1] * v[1];
496 mat[5] = hvyz - v[0];
497 mat[6] = hvxz - v[1];
498 mat[7] = hvyz + v[0];
499 mat[8] = e + hvz * v[2];
500 }
501}
#define EPSILON
#define CROSS(dest, v1, v2)
#define DOT(v1, v2)
double NekDouble

References CROSS, DOT, and EPSILON.

Referenced by GenerateRotationMatrices().

◆ GenerateRotationMatrices()

void Nektar::SolverUtils::RiemannSolver::GenerateRotationMatrices ( const Array< OneD, const Array< OneD, NekDouble > > &  normals)
protected

Generate rotation matrices for 3D expansions.

Definition at line 368 of file RiemannSolver.cpp.

370{
371 Array<OneD, NekDouble> xdir(3, 0.0);
372 Array<OneD, NekDouble> tn(3);
373 NekDouble tmp[9];
374 const int nq = normals[0].size();
375 int i, j;
376 xdir[0] = 1.0;
377
378 // Allocate storage for rotation matrices.
379 m_rotMat = Array<OneD, Array<OneD, NekDouble>>(9);
380
381 for (i = 0; i < 9; ++i)
382 {
383 m_rotMat[i] = Array<OneD, NekDouble>(nq);
384 }
385 for (i = 0; i < normals[0].size(); ++i)
386 {
387 // Generate matrix which takes us from (1,0,0) vector to trace
388 // normal.
389 tn[0] = normals[0][i];
390 tn[1] = normals[1][i];
391 tn[2] = normals[2][i];
392 FromToRotation(tn, xdir, tmp);
393
394 for (j = 0; j < 9; ++j)
395 {
396 m_rotMat[j][i] = tmp[j];
397 }
398 }
399}
Array< OneD, Array< OneD, NekDouble > > m_rotMat
Rotation matrices for each trace quadrature point.
void FromToRotation(Array< OneD, const NekDouble > &from, Array< OneD, const NekDouble > &to, NekDouble *mat)
A function for creating a rotation matrix that rotates a vector from into another vector to.

References FromToRotation(), and m_rotMat.

Referenced by rotateToNormal(), and Nektar::RoeSolverSIMD::v_Solve().

◆ GetParams()

std::map< std::string, RSParamFuncType > & Nektar::SolverUtils::RiemannSolver::GetParams ( )
inline

Definition at line 125 of file RiemannSolver.h.

126 {
127 return m_params;
128 }

References m_params.

◆ GetScalars()

std::map< std::string, RSScalarFuncType > & Nektar::SolverUtils::RiemannSolver::GetScalars ( )
inline

Definition at line 115 of file RiemannSolver.h.

116 {
117 return m_scalars;
118 }

References m_scalars.

◆ GetVectors()

std::map< std::string, RSVecFuncType > & Nektar::SolverUtils::RiemannSolver::GetVectors ( )
inline

Definition at line 120 of file RiemannSolver.h.

121 {
122 return m_vectors;
123 }

References m_vectors.

◆ rotateFromNormal()

void Nektar::SolverUtils::RiemannSolver::rotateFromNormal ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
const Array< OneD, const Array< OneD, NekDouble > > &  vecLocs,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
protected

Rotate a vector field from trace normal.

This function performs a rotation of the triad of vector components provided in inarray so that the first component aligns with the Cartesian components; it performs the inverse operation of RiemannSolver::rotateToNormal.

Definition at line 246 of file RiemannSolver.cpp.

251{
252 for (int i = 0; i < inarray.size(); ++i)
253 {
254 Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
255 }
256
257 for (int i = 0; i < vecLocs.size(); i++)
258 {
259 ASSERTL1(vecLocs[i].size() == normals.size(),
260 "vecLocs[i] element count mismatch");
261
262 switch (normals.size())
263 {
264 case 1:
265 { // do nothing
266 const int nq = normals[0].size();
267 const int vx = (int)vecLocs[i][0];
268 Vmath::Vmul(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1);
269 break;
270 }
271 case 2:
272 {
273 const int nq = normals[0].size();
274 const int vx = (int)vecLocs[i][0];
275 const int vy = (int)vecLocs[i][1];
276
277 Vmath::Vmul(nq, inarray[vy], 1, normals[1], 1, outarray[vx], 1);
278 Vmath::Vvtvm(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1,
279 outarray[vx], 1);
280 Vmath::Vmul(nq, inarray[vx], 1, normals[1], 1, outarray[vy], 1);
281 Vmath::Vvtvp(nq, inarray[vy], 1, normals[0], 1, outarray[vy], 1,
282 outarray[vy], 1);
283 break;
284 }
285
286 case 3:
287 {
288 const int nq = normals[0].size();
289 const int vx = (int)vecLocs[i][0];
290 const int vy = (int)vecLocs[i][1];
291 const int vz = (int)vecLocs[i][2];
292
293 Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[0], 1, inarray[vy],
294 1, m_rotMat[3], 1, outarray[vx], 1);
295 Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[6], 1, outarray[vx],
296 1, outarray[vx], 1);
297 Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[1], 1, inarray[vy],
298 1, m_rotMat[4], 1, outarray[vy], 1);
299 Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[7], 1, outarray[vy],
300 1, outarray[vy], 1);
301 Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[2], 1, inarray[vy],
302 1, m_rotMat[5], 1, outarray[vz], 1);
303 Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[8], 1, outarray[vz],
304 1, outarray[vz], 1);
305 break;
306 }
307
308 default:
309 ASSERTL1(false, "Invalid space dimension.");
310 break;
311 }
312 }
313}
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
Definition: Vmath.hpp:381
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.hpp:439
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References ASSERTL1, m_rotMat, Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvm(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

Referenced by Solve().

◆ rotateToNormal()

void Nektar::SolverUtils::RiemannSolver::rotateToNormal ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
const Array< OneD, const Array< OneD, NekDouble > > &  vecLocs,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
protected

Rotate a vector field to trace normal.

This function performs a rotation of a vector so that the first component aligns with the trace normal direction.

The vectors components are stored in inarray. Their locations must be specified in the "vecLocs" array. vecLocs[0] contains the locations of the first vectors components, vecLocs[1] those of the second and so on.

In 2D, this is accomplished through the transform:

\[ (u_x, u_y) = (n_x u_x + n_y u_y, -n_x v_x + n_y v_y) \]

In 3D, we generate a (non-unique) transformation using RiemannSolver::fromToRotation.

Definition at line 162 of file RiemannSolver.cpp.

167{
168 for (int i = 0; i < inarray.size(); ++i)
169 {
170 Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
171 }
172
173 for (int i = 0; i < vecLocs.size(); i++)
174 {
175 ASSERTL1(vecLocs[i].size() == normals.size(),
176 "vecLocs[i] element count mismatch");
177
178 switch (normals.size())
179 {
180 case 1:
181 { // do nothing
182 const int nq = inarray[0].size();
183 const int vx = (int)vecLocs[i][0];
184 Vmath::Vmul(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1);
185 break;
186 }
187 case 2:
188 {
189 const int nq = inarray[0].size();
190 const int vx = (int)vecLocs[i][0];
191 const int vy = (int)vecLocs[i][1];
192
193 Vmath::Vmul(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1);
194 Vmath::Vvtvp(nq, inarray[vy], 1, normals[1], 1, outarray[vx], 1,
195 outarray[vx], 1);
196 Vmath::Vmul(nq, inarray[vx], 1, normals[1], 1, outarray[vy], 1);
197 Vmath::Vvtvm(nq, inarray[vy], 1, normals[0], 1, outarray[vy], 1,
198 outarray[vy], 1);
199 break;
200 }
201
202 case 3:
203 {
204 const int nq = inarray[0].size();
205 const int vx = (int)vecLocs[i][0];
206 const int vy = (int)vecLocs[i][1];
207 const int vz = (int)vecLocs[i][2];
208
209 // Generate matrices if they don't already exist.
210 if (m_rotMat.size() == 0)
211 {
213 }
214
215 // Apply rotation matrices.
216 Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[0], 1, inarray[vy],
217 1, m_rotMat[1], 1, outarray[vx], 1);
218 Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[2], 1, outarray[vx],
219 1, outarray[vx], 1);
220 Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[3], 1, inarray[vy],
221 1, m_rotMat[4], 1, outarray[vy], 1);
222 Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[5], 1, outarray[vy],
223 1, outarray[vy], 1);
224 Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[6], 1, inarray[vy],
225 1, m_rotMat[7], 1, outarray[vz], 1);
226 Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[8], 1, outarray[vz],
227 1, outarray[vz], 1);
228 break;
229 }
230
231 default:
232 ASSERTL1(false, "Invalid space dimension.");
233 break;
234 }
235 }
236}
SOLVER_UTILS_EXPORT void GenerateRotationMatrices(const Array< OneD, const Array< OneD, NekDouble > > &normals)
Generate rotation matrices for 3D expansions.

References ASSERTL1, GenerateRotationMatrices(), m_rotMat, Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvm(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

Referenced by Nektar::AcousticSolver::GetRotBasefield(), and Solve().

◆ SetAuxScal()

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetAuxScal ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 99 of file RiemannSolver.h.

100 {
101 m_auxScal[name] = std::bind(func, obj);
102 }

References m_auxScal, and CellMLToNektar.pycml::name.

◆ SetAuxVec() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetAuxVec ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 105 of file RiemannSolver.h.

106 {
107 m_auxVec[name] = std::bind(func, obj);
108 }

References m_auxVec, and CellMLToNektar.pycml::name.

◆ SetAuxVec() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetAuxVec ( std::string  name,
RSVecFuncType  fp 
)
inline

Definition at line 110 of file RiemannSolver.h.

111 {
112 m_auxVec[name] = fp;
113 }

References m_auxVec, and CellMLToNektar.pycml::name.

◆ SetParam() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetParam ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 88 of file RiemannSolver.h.

89 {
90 m_params[name] = std::bind(func, obj);
91 }

References m_params, and CellMLToNektar.pycml::name.

◆ SetParam() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetParam ( std::string  name,
RSParamFuncType  fp 
)
inline

Definition at line 93 of file RiemannSolver.h.

94 {
95 m_params[name] = fp;
96 }

References m_params, and CellMLToNektar.pycml::name.

◆ SetScalar() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetScalar ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 66 of file RiemannSolver.h.

67 {
68 m_scalars[name] = std::bind(func, obj);
69 }

References m_scalars, and CellMLToNektar.pycml::name.

◆ SetScalar() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetScalar ( std::string  name,
RSScalarFuncType  fp 
)
inline

Definition at line 71 of file RiemannSolver.h.

72 {
73 m_scalars[name] = fp;
74 }

References m_scalars, and CellMLToNektar.pycml::name.

◆ SetVector() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetVector ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 77 of file RiemannSolver.h.

78 {
79 m_vectors[name] = std::bind(func, obj);
80 }

References m_vectors, and CellMLToNektar.pycml::name.

◆ SetVector() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetVector ( std::string  name,
RSVecFuncType  fp 
)
inline

Definition at line 82 of file RiemannSolver.h.

83 {
84 m_vectors[name] = fp;
85 }

References m_vectors, and CellMLToNektar.pycml::name.

◆ Solve()

void Nektar::SolverUtils::RiemannSolver::Solve ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble > > &  Fwd,
const Array< OneD, const Array< OneD, NekDouble > > &  Bwd,
Array< OneD, Array< OneD, NekDouble > > &  flux 
)

Perform the Riemann solve given the forwards and backwards spaces.

This routine calls the virtual function v_Solve to perform the Riemann solve. If the flag m_requiresRotation is set, then the velocity field is rotated to the normal direction to perform dimensional splitting, and the resulting fluxes are rotated back to the Cartesian directions before being returned. For the Rotation to work, the normal vectors "N" and the location of the vector components in Fwd "vecLocs"must be set via the SetAuxVec() method.

Parameters
FwdForwards trace space.
BwdBackwards trace space.
fluxResultant flux along trace space.

Definition at line 102 of file RiemannSolver.cpp.

106{
108 {
109 ASSERTL1(CheckVectors("N"), "N not defined.");
110 ASSERTL1(CheckAuxVec("vecLocs"), "vecLocs not defined.");
111 const Array<OneD, const Array<OneD, NekDouble>> normals =
112 m_vectors["N"]();
113 const Array<OneD, const Array<OneD, NekDouble>> vecLocs =
114 m_auxVec["vecLocs"]();
115
116 int nFields = Fwd.size();
117 int nPts = Fwd[0].size();
118
119 if (m_rotStorage[0].size() != nFields ||
120 m_rotStorage[0][0].size() != nPts)
121 {
122 for (int i = 0; i < 3; ++i)
123 {
124 m_rotStorage[i] = Array<OneD, Array<OneD, NekDouble>>(nFields);
125 for (int j = 0; j < nFields; ++j)
126 {
127 m_rotStorage[i][j] = Array<OneD, NekDouble>(nPts);
128 }
129 }
130 }
131
132 rotateToNormal(Fwd, normals, vecLocs, m_rotStorage[0]);
133 rotateToNormal(Bwd, normals, vecLocs, m_rotStorage[1]);
135 rotateFromNormal(m_rotStorage[2], normals, vecLocs, flux);
136 }
137 else
138 {
139 v_Solve(nDim, Fwd, Bwd, flux);
140 }
141}
SOLVER_UTILS_EXPORT void rotateToNormal(const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
Rotate a vector field to trace normal.
virtual void v_Solve(const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)=0
SOLVER_UTILS_EXPORT void rotateFromNormal(const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
Rotate a vector field from trace normal.

References ASSERTL1, CheckAuxVec(), CheckVectors(), m_auxVec, m_requiresRotation, m_rotStorage, m_vectors, rotateFromNormal(), rotateToNormal(), and v_Solve().

◆ v_CalcFluxJacobian()

void Nektar::SolverUtils::RiemannSolver::v_CalcFluxJacobian ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble > > &  Fwd,
const Array< OneD, const Array< OneD, NekDouble > > &  Bwd,
const Array< OneD, const Array< OneD, NekDouble > > &  normals,
DNekBlkMatSharedPtr FJac,
DNekBlkMatSharedPtr BJac 
)
protectedvirtual

Definition at line 541 of file RiemannSolver.cpp.

548{
549 NEKERROR(ErrorUtil::efatal, "v_CalcFluxJacobian not specified.");
550}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by CalcFluxJacobian().

◆ v_Solve()

virtual void Nektar::SolverUtils::RiemannSolver::v_Solve ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble > > &  Fwd,
const Array< OneD, const Array< OneD, NekDouble > > &  Bwd,
Array< OneD, Array< OneD, NekDouble > > &  flux 
)
protectedpure virtual

Member Data Documentation

◆ m_auxScal

std::map<std::string, RSScalarFuncType> Nektar::SolverUtils::RiemannSolver::m_auxScal
protected

Map of auxiliary scalar function types.

Definition at line 148 of file RiemannSolver.h.

Referenced by CheckAuxScal(), and SetAuxScal().

◆ m_auxVec

std::map<std::string, RSVecFuncType> Nektar::SolverUtils::RiemannSolver::m_auxVec
protected

Map of auxiliary vector function types.

Definition at line 150 of file RiemannSolver.h.

Referenced by CalcFluxJacobian(), CheckAuxVec(), SetAuxVec(), and Solve().

◆ m_params

std::map<std::string, RSParamFuncType> Nektar::SolverUtils::RiemannSolver::m_params
protected

◆ m_requiresRotation

bool Nektar::SolverUtils::RiemannSolver::m_requiresRotation
protected

◆ m_rotMat

Array<OneD, Array<OneD, NekDouble> > Nektar::SolverUtils::RiemannSolver::m_rotMat
protected

Rotation matrices for each trace quadrature point.

Definition at line 152 of file RiemannSolver.h.

Referenced by GenerateRotationMatrices(), rotateFromNormal(), rotateToNormal(), and Nektar::RoeSolverSIMD::v_Solve().

◆ m_rotStorage

Array<OneD, Array<OneD, Array<OneD, NekDouble> > > Nektar::SolverUtils::RiemannSolver::m_rotStorage
protected

Rotation storage.

Definition at line 154 of file RiemannSolver.h.

Referenced by Solve().

◆ m_scalars

std::map<std::string, RSScalarFuncType> Nektar::SolverUtils::RiemannSolver::m_scalars
protected

◆ m_spacedim

int Nektar::SolverUtils::RiemannSolver::m_spacedim

Definition at line 130 of file RiemannSolver.h.

◆ m_vectors

std::map<std::string, RSVecFuncType> Nektar::SolverUtils::RiemannSolver::m_vectors
protected