Nektar++
NavierStokesAdvection.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: NavierStokesAdvection.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Evaluation of the Navier Stokes advective term
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38using namespace std;
39
40namespace Nektar
41{
42
45 "True", 0),
47 "False", 1)};
48
51 "Convective", NavierStokesAdvection::create, "Convective");
54 "NonConservative", NavierStokesAdvection::create, "NonConserviative");
55
56/**
57 * Constructor. Creates ...
58 *
59 * \param
60 * \param
61 */
62
64
65{
66}
67
69{
70}
71
75{
76 m_homogen_dealiasing = pSession->DefinesSolverInfo("dealiasing");
77
78 pSession->MatchSolverInfo("SPECTRALHPDEALIASING", "True",
79 m_specHP_dealiasing, false);
80 pSession->MatchSolverInfo("ModeType", "SingleMode", m_SingleMode, false);
81 pSession->MatchSolverInfo("ModeType", "HalfMode", m_HalfMode, false);
82
83 Advection::v_InitObject(pSession, pFields);
84}
85
87 const int nConvectiveFields,
89 const Array<OneD, Array<OneD, NekDouble>> &advVel,
90 const Array<OneD, Array<OneD, NekDouble>> &inarray,
92 [[maybe_unused]] const NekDouble &time,
93 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pFwd,
94 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pBwd)
95{
96 int nqtot = fields[0]->GetTotPoints();
97 ASSERTL1(nConvectiveFields == inarray.size(),
98 "Number of convective fields and Inarray are not compatible");
99
100 // use dimension of Velocity vector to dictate dimension of operation
101 int ndim = advVel.size();
102 Array<OneD, Array<OneD, NekDouble>> AdvVel(advVel.size());
103
105
107
108 for (int i = 0; i < ndim; ++i)
109 {
110 if (fields[i]->GetWaveSpace() && !m_SingleMode && !m_HalfMode &&
112 {
113 velocity[i] = Array<OneD, NekDouble>(nqtot, 0.0);
114 fields[i]->HomogeneousBwdTrans(nqtot, advVel[i], velocity[i]);
115 }
116 else
117 {
118 velocity[i] = advVel[i];
119 }
120 }
121
122 int nPointsTot = fields[0]->GetNpoints();
123 Array<OneD, NekDouble> grad0, grad1, grad2, wkSp;
124
125 NekDouble OneDptscale = 1.5; // factor to rescale 1d points in dealiasing
126
128 {
129 // Get number of points to dealias a quadratic non-linearity
130 nPointsTot = fields[0]->Get1DScaledTotPoints(OneDptscale);
131 }
132
133 // interpolate Advection velocity
134 if (m_specHP_dealiasing) // interpolate advection field to higher space.
135 {
136 for (int i = 0; i < ndim; ++i)
137 {
138 AdvVel[i] = Array<OneD, NekDouble>(nPointsTot);
139 // interpolate infield to 3/2 dimension
140 timer.Start();
141 fields[0]->PhysInterp1DScaled(OneDptscale, velocity[i], AdvVel[i]);
142 timer.Stop();
143 timer.AccumulateRegion("Interp1DScaled");
144 }
145 }
146 else
147 {
148 for (int i = 0; i < ndim; ++i)
149 {
150 AdvVel[i] = velocity[i];
151 }
152 }
153
154 wkSp = Array<OneD, NekDouble>(nPointsTot);
155
156 // Evaluate V\cdot Grad(u)
157 switch (ndim)
158 {
159 case 1:
160 grad0 = Array<OneD, NekDouble>(fields[0]->GetNpoints());
161 for (int n = 0; n < nConvectiveFields; ++n)
162 {
163 fields[0]->PhysDeriv(inarray[n], grad0);
164 if (m_specHP_dealiasing) // interpolate gradient field
165 {
166 Array<OneD, NekDouble> Outarray(nPointsTot);
167 fields[0]->PhysInterp1DScaled(OneDptscale, grad0, wkSp);
168 Vmath::Vmul(nPointsTot, wkSp, 1, AdvVel[0], 1, Outarray, 1);
169 // Galerkin project solution back to origianl spac
170 timer.Start();
171 fields[0]->PhysGalerkinProjection1DScaled(
172 OneDptscale, Outarray, outarray[n]);
173 timer.Stop();
174 timer.AccumulateRegion("GalerinProject");
175 }
176 else
177 {
178 Vmath::Vmul(nPointsTot, grad0, 1, AdvVel[0], 1, outarray[n],
179 1);
180 }
181 }
182 break;
183 case 2:
184 grad0 = Array<OneD, NekDouble>(nqtot);
185 grad1 = Array<OneD, NekDouble>(nqtot);
186 for (int n = 0; n < nConvectiveFields; ++n)
187 {
188 fields[0]->PhysDeriv(inarray[n], grad0, grad1);
189
190 if (m_specHP_dealiasing) // interpolate gradient field
191 {
192 Array<OneD, NekDouble> Outarray(nPointsTot);
193 fields[0]->PhysInterp1DScaled(OneDptscale, grad0, wkSp);
194 Vmath::Vmul(nPointsTot, wkSp, 1, AdvVel[0], 1, Outarray, 1);
195 timer.Start();
196 fields[0]->PhysInterp1DScaled(OneDptscale, grad1, wkSp);
197 timer.Stop();
198 timer.AccumulateRegion("Interp1DScaled");
199 Vmath::Vvtvp(nPointsTot, wkSp, 1, AdvVel[1], 1, Outarray, 1,
200 Outarray, 1);
201 // Galerkin project solution back to original space
202 timer.Start();
203 fields[0]->PhysGalerkinProjection1DScaled(
204 OneDptscale, Outarray, outarray[n]);
205 timer.Stop();
206 timer.AccumulateRegion("GalerinProject");
207 }
208 else
209 {
210 Vmath::Vmul(nPointsTot, grad0, 1, AdvVel[0], 1, outarray[n],
211 1);
212 Vmath::Vvtvp(nPointsTot, grad1, 1, AdvVel[1], 1,
213 outarray[n], 1, outarray[n], 1);
214 }
215 }
216 break;
217 case 3:
218 if (m_homogen_dealiasing == true && m_specHP_dealiasing == true)
219 {
222 ndim * nConvectiveFields);
223 Array<OneD, Array<OneD, NekDouble>> Outarray(nConvectiveFields);
224 for (int i = 0; i < ndim; i++)
225 {
226 grad[i] = Array<OneD, NekDouble>(nqtot);
227 }
228 for (int i = 0; i < ndim * nConvectiveFields; i++)
229 {
230 gradScaled[i] = Array<OneD, NekDouble>(nPointsTot);
231 }
232 for (int i = 0; i < nConvectiveFields; i++)
233 {
234 Outarray[i] = Array<OneD, NekDouble>(nPointsTot);
235 }
236
237 for (int n = 0; n < nConvectiveFields; n++)
238 {
239 fields[0]->PhysDeriv(inarray[n], grad[0], grad[1], grad[2]);
240 for (int i = 0; i < ndim; i++)
241 {
242 timer.Start();
243 fields[0]->PhysInterp1DScaled(OneDptscale, grad[i],
244 gradScaled[n * ndim + i]);
245 timer.Stop();
246 timer.AccumulateRegion("Interp1DScaled");
247 }
248 }
249
250 fields[0]->DealiasedDotProd(nPointsTot, AdvVel, gradScaled,
251 Outarray);
252
253 timer.Start();
254 for (int n = 0; n < nConvectiveFields; n++)
255 {
256 fields[0]->PhysGalerkinProjection1DScaled(
257 OneDptscale, Outarray[n], outarray[n]);
258 }
259 timer.Stop();
260 timer.AccumulateRegion("GalerinProject");
261 }
262 else if (m_homogen_dealiasing == true &&
263 m_specHP_dealiasing == false)
264 {
266 nConvectiveFields);
267 Array<OneD, Array<OneD, NekDouble>> Outarray(nConvectiveFields);
268 for (int i = 0; i < ndim * nConvectiveFields; i++)
269 {
270 grad[i] = Array<OneD, NekDouble>(nPointsTot);
271 }
272 for (int i = 0; i < nConvectiveFields; i++)
273 {
274 Outarray[i] = Array<OneD, NekDouble>(nPointsTot);
275 }
276
277 for (int n = 0; n < nConvectiveFields; n++)
278 {
279 fields[0]->PhysDeriv(inarray[n], grad[n * ndim + 0],
280 grad[n * ndim + 1],
281 grad[n * ndim + 2]);
282 }
283
284 fields[0]->DealiasedDotProd(nPointsTot, AdvVel, grad, outarray);
285 }
286 else
287 {
288 grad0 = Array<OneD, NekDouble>(nqtot);
289 grad1 = Array<OneD, NekDouble>(nqtot);
290 grad2 = Array<OneD, NekDouble>(nqtot);
291 Array<OneD, NekDouble> tmp = grad2;
292 for (int n = 0; n < nConvectiveFields; ++n)
293 {
294 if (fields[0]->GetWaveSpace() == true &&
295 fields[0]->GetExpType() == MultiRegions::e3DH1D)
296 {
297 fields[0]->HomogeneousBwdTrans(nqtot, inarray[n], tmp);
298 fields[0]->PhysDeriv(tmp, grad0, grad1);
299 // Take d/dz derivative using wave space field
300 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
301 inarray[n], outarray[n]);
302 fields[0]->HomogeneousBwdTrans(nqtot, outarray[n],
303 grad2);
304 }
305 else if (fields[0]->GetWaveSpace() == true &&
306 fields[0]->GetExpType() == MultiRegions::e3DH2D)
307 {
308 fields[0]->HomogeneousBwdTrans(nqtot, inarray[n], tmp);
309 fields[0]->PhysDeriv(tmp, grad0);
310 // Take d/dy derivative using wave space field
311 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
312 inarray[n], outarray[n]);
313 fields[0]->HomogeneousBwdTrans(nqtot, outarray[n],
314 grad1);
315 // Take d/dz derivative using wave space field
316 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
317 inarray[n], outarray[n]);
318 fields[0]->HomogeneousBwdTrans(nqtot, outarray[n],
319 grad2);
320 }
321 else
322 {
323 fields[0]->PhysDeriv(inarray[n], grad0, grad1, grad2);
324 }
325 if (m_specHP_dealiasing) // interpolate spectral/hp gradient
326 // field
327 {
328 Array<OneD, NekDouble> Outarray(nPointsTot);
329 timer.Start();
330 fields[0]->PhysInterp1DScaled(OneDptscale, grad0, wkSp);
331 timer.Stop();
332 timer.AccumulateRegion("Interp1DScaled");
333 Vmath::Vmul(nPointsTot, wkSp, 1, AdvVel[0], 1, Outarray,
334 1);
335
336 timer.Start();
337 fields[0]->PhysInterp1DScaled(OneDptscale, grad1, wkSp);
338 timer.Stop();
339 timer.AccumulateRegion("Interp1DScaled");
340 Vmath::Vvtvp(nPointsTot, wkSp, 1, AdvVel[1], 1,
341 Outarray, 1, Outarray, 1);
342
343 timer.Start();
344 fields[0]->PhysInterp1DScaled(OneDptscale, grad2, wkSp);
345 timer.Stop();
346 timer.AccumulateRegion("Interp1DScaled");
347 Vmath::Vvtvp(nPointsTot, wkSp, 1, AdvVel[2], 1,
348 Outarray, 1, Outarray, 1);
349 timer.Start();
350 fields[0]->PhysGalerkinProjection1DScaled(
351 OneDptscale, Outarray, outarray[n]);
352 timer.Stop();
353 timer.AccumulateRegion("GalerinProject");
354 }
355 else
356 {
357 Vmath::Vmul(nPointsTot, grad0, 1, AdvVel[0], 1,
358 outarray[n], 1);
359 Vmath::Vvtvp(nPointsTot, grad1, 1, AdvVel[1], 1,
360 outarray[n], 1, outarray[n], 1);
361 Vmath::Vvtvp(nPointsTot, grad2, 1, AdvVel[2], 1,
362 outarray[n], 1, outarray[n], 1);
363 }
364
365 if (fields[0]->GetWaveSpace() == true)
366 {
367 fields[0]->HomogeneousFwdTrans(nqtot, outarray[n],
368 outarray[n]);
369 }
370 }
371 }
372 break;
373 default:
374 ASSERTL0(false, "dimension unknown");
375 }
376
377 for (int n = 0; n < nConvectiveFields; ++n)
378 {
379 Vmath::Neg(nqtot, outarray[n], 1);
380 }
381}
382
383} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.
void AccumulateRegion(std::string, int iolevel=0)
Accumulate elapsed time for a region.
Definition: Timer.cpp:70
void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
Initialises the advection object.
static SolverUtils::AdvectionSharedPtr create(std::string)
Creates an instance of this class.
void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
static std::string className
Name of class.
static std::string navierStokesAdvectionTypeLookupIds[]
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:81
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
Definition: Advection.cpp:295
std::shared_ptr< SessionReader > SessionReaderSharedPtr
const std::vector< NekDouble > velocity
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366