Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
Nektar::TenTusscher06 Class Reference

#include <TenTusscher06.h>

Inheritance diagram for Nektar::TenTusscher06:
[legend]

Public Member Functions

 TenTusscher06 (const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
 Constructor. More...
 
 ~TenTusscher06 () override
 Desctructor. More...
 
- Public Member Functions inherited from Nektar::CellModel
 CellModel (const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
 
virtual ~CellModel ()
 
void Initialise ()
 Initialise the cell model storage and set initial conditions. More...
 
void TimeIntegrate (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Time integrate the cell model by one PDE timestep. More...
 
void Update (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the derivatives of cell model variables. More...
 
void GenerateSummary (SummaryList &s)
 Print a summary of the cell model. More...
 
size_t GetNumCellVariables ()
 
std::string GetCellVarName (size_t idx)
 
Array< OneD, NekDoubleGetCellSolutionCoeffs (size_t idx)
 
Array< OneD, NekDoubleGetCellSolution (size_t idx)
 

Static Public Member Functions

static CellModelSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 

Protected Types

enum  Variants { eEpicardium , eEndocardium , eMid , eIschemia }
 

Protected Member Functions

void v_Update (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time) override
 
void v_GenerateSummary (SummaryList &s) override
 Prints a summary of the model parameters. More...
 
void v_SetInitialConditions () override
 
- Protected Member Functions inherited from Nektar::CellModel
virtual void v_Update (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)=0
 
virtual void v_GenerateSummary (SummaryList &s)=0
 
virtual std::string v_GetCellVarName (size_t idx)
 
virtual void v_SetInitialConditions ()=0
 
void LoadCellModel ()
 

Protected Attributes

NekDouble g_to
 
NekDouble g_Ks
 
NekDouble s_inf_factor
 
NekDouble s_tau_f1
 
NekDouble s_tau_f2
 
NekDouble s_tau_f3
 
NekDouble s_tau_f4
 
NekDouble s_tau_f5
 
NekDouble k_0
 
enum Variants model_variant
 
- Protected Attributes inherited from Nektar::CellModel
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
MultiRegions::ExpListSharedPtr m_field
 Transmembrane potential field from PDE system. More...
 
size_t m_nq
 Number of physical points. More...
 
size_t m_nvar
 Number of variables in cell model (inc. transmembrane voltage) More...
 
NekDouble m_lastTime
 Timestep for pde model. More...
 
size_t m_substeps
 Number of substeps to take. More...
 
Array< OneD, Array< OneD, NekDouble > > m_cellSol
 Cell model solution variables. More...
 
Array< OneD, Array< OneD, NekDouble > > m_wsp
 Cell model integration workspace. More...
 
bool m_useNodal
 Flag indicating whether nodal projection in use. More...
 
StdRegions::StdNodalTriExpSharedPtr m_nodalTri
 StdNodalTri for cell model calculations. More...
 
StdRegions::StdNodalTetExpSharedPtr m_nodalTet
 
Array< OneD, Array< OneD, NekDouble > > m_nodalTmp
 Temporary array for nodal projection. More...
 
std::vector< int > m_concentrations
 Indices of cell model variables which are concentrations. More...
 
std::vector< int > m_gates
 Indices of cell model variables which are gates. More...
 
Array< OneD, Array< OneD, NekDouble > > m_gates_tau
 Storage for gate tau values. More...
 

Static Protected Attributes

static std::string lookupIds []
 
static std::string def
 

Detailed Description

Definition at line 42 of file TenTusscher06.h.

Member Enumeration Documentation

◆ Variants

Enumerator
eEpicardium 
eEndocardium 
eMid 
eIschemia 

Definition at line 87 of file TenTusscher06.h.

Constructor & Destructor Documentation

◆ TenTusscher06()

Nektar::TenTusscher06::TenTusscher06 ( const LibUtilities::SessionReaderSharedPtr pSession,
const MultiRegions::ExpListSharedPtr pField 
)

Constructor.

Definition at line 64 of file TenTusscher06.cpp.

67 : CellModel(pSession, pField)
68{
69 model_variant = pSession->GetSolverInfoAsEnum<TenTusscher06::Variants>(
70 "CellModelVariant");
71
72 switch (model_variant)
73 {
74 case eEpicardium:
75 g_to = 0.294;
76 g_Ks = 0.392;
77 s_inf_factor = 20.0;
78 s_tau_f1 = 85.0;
79 s_tau_f2 = 45.0;
80 s_tau_f3 = 320.0;
81 s_tau_f4 = 0.0;
82 s_tau_f5 = 1.0;
83 k_0 = 5.4;
84 break;
85 case eEndocardium:
86 g_to = 0.073;
87 g_Ks = 0.392;
88 s_inf_factor = 28.0;
89 s_tau_f1 = 1000.0;
90 s_tau_f2 = 67.0;
91 s_tau_f3 = 1000.0;
92 s_tau_f4 = 8.0;
93 s_tau_f5 = 0.0;
94 k_0 = 5.4;
95 break;
96 case eMid:
97 g_to = 0.294;
98 g_Ks = 0.098;
99 s_inf_factor = 20.0;
100 s_tau_f1 = 85.0;
101 s_tau_f2 = 45.0;
102 s_tau_f3 = 320.0;
103 s_tau_f4 = 0.0;
104 s_tau_f5 = 1.0;
105 k_0 = 5.4;
106 break;
107 case eIschemia:
108 g_to = 0.294;
109 g_Ks = 0.392;
110 s_inf_factor = 20.0;
111 s_tau_f1 = 85.0;
112 s_tau_f2 = 45.0;
113 s_tau_f3 = 320.0;
114 s_tau_f4 = 0.0;
115 s_tau_f5 = 1.0;
116 k_0 = 9.0;
117 break;
118 }
119 m_nvar = 19;
120
121 m_gates.push_back(1);
122 m_gates.push_back(2);
123 m_gates.push_back(3);
124 m_gates.push_back(4);
125 m_gates.push_back(5);
126 m_gates.push_back(6);
127 m_gates.push_back(7);
128 m_gates.push_back(8);
129 m_gates.push_back(9);
130 m_gates.push_back(10);
131 m_gates.push_back(11);
132 m_gates.push_back(12);
133 m_concentrations.push_back(13);
134 m_concentrations.push_back(14);
135 m_concentrations.push_back(15);
136 m_concentrations.push_back(16);
137 m_concentrations.push_back(17);
138 m_concentrations.push_back(18);
139}
std::vector< int > m_concentrations
Indices of cell model variables which are concentrations.
Definition: CellModel.h:139
std::vector< int > m_gates
Indices of cell model variables which are gates.
Definition: CellModel.h:141
size_t m_nvar
Number of variables in cell model (inc. transmembrane voltage)
Definition: CellModel.h:119
CellModel(const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
Definition: CellModel.cpp:66
enum Variants model_variant
Definition: TenTusscher06.h:94

References eEndocardium, eEpicardium, eIschemia, eMid, g_Ks, g_to, k_0, Nektar::CellModel::m_concentrations, Nektar::CellModel::m_gates, Nektar::CellModel::m_nvar, model_variant, s_inf_factor, s_tau_f1, s_tau_f2, s_tau_f3, s_tau_f4, and s_tau_f5.

◆ ~TenTusscher06()

Nektar::TenTusscher06::~TenTusscher06 ( )
inlineoverride

Desctructor.

Definition at line 63 of file TenTusscher06.h.

64 {
65 }

Member Function Documentation

◆ create()

static CellModelSharedPtr Nektar::TenTusscher06::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const MultiRegions::ExpListSharedPtr pField 
)
inlinestatic

Creates an instance of this class.

Definition at line 47 of file TenTusscher06.h.

50 {
52 pField);
53 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ v_GenerateSummary()

void Nektar::TenTusscher06::v_GenerateSummary ( SummaryList s)
overrideprotectedvirtual

Prints a summary of the model parameters.

Implements Nektar::CellModel.

Definition at line 1078 of file TenTusscher06.cpp.

1079{
1080 SolverUtils::AddSummaryItem(s, "Cell model", "TenTusscher06");
1081}
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem().

◆ v_SetInitialConditions()

void Nektar::TenTusscher06::v_SetInitialConditions ( )
overrideprotectedvirtual

Implements Nektar::CellModel.

Definition at line 1086 of file TenTusscher06.cpp.

1087{
1088 // Values taken from CellML website
1089 switch (model_variant)
1090 {
1091 case eEpicardium:
1092 Vmath::Fill(m_nq, -85.23, m_cellSol[0], 1);
1093 Vmath::Fill(m_nq, 0.00621, m_cellSol[1], 1);
1094 Vmath::Fill(m_nq, 0.4712, m_cellSol[2], 1);
1095 Vmath::Fill(m_nq, 0.0095, m_cellSol[3], 1);
1096 Vmath::Fill(m_nq, 0.00172, m_cellSol[4], 1);
1097 Vmath::Fill(m_nq, 0.7444, m_cellSol[5], 1);
1098 Vmath::Fill(m_nq, 0.7045, m_cellSol[6], 1);
1099 Vmath::Fill(m_nq, 3.373e-5, m_cellSol[7], 1);
1100 Vmath::Fill(m_nq, 0.7888, m_cellSol[8], 1);
1101 Vmath::Fill(m_nq, 0.9755, m_cellSol[9], 1);
1102 Vmath::Fill(m_nq, 0.9953, m_cellSol[10], 1);
1103 Vmath::Fill(m_nq, 0.999998, m_cellSol[11], 1);
1104 Vmath::Fill(m_nq, 2.42e-8, m_cellSol[12], 1);
1105 Vmath::Fill(m_nq, 0.000126, m_cellSol[13], 1);
1106 Vmath::Fill(m_nq, 3.64, m_cellSol[14], 1);
1107 Vmath::Fill(m_nq, 0.00036, m_cellSol[15], 1);
1108 Vmath::Fill(m_nq, 0.9073, m_cellSol[16], 1);
1109 Vmath::Fill(m_nq, 8.604, m_cellSol[17], 1);
1110 Vmath::Fill(m_nq, 136.89, m_cellSol[18], 1);
1111 break;
1112 case eEndocardium:
1113 Vmath::Fill(m_nq, -86.709, m_cellSol[0], 1);
1114 Vmath::Fill(m_nq, 0.00448, m_cellSol[1], 1);
1115 Vmath::Fill(m_nq, 0.476, m_cellSol[2], 1);
1116 Vmath::Fill(m_nq, 0.0087, m_cellSol[3], 1);
1117 Vmath::Fill(m_nq, 0.00155, m_cellSol[4], 1);
1118 Vmath::Fill(m_nq, 0.7573, m_cellSol[5], 1);
1119 Vmath::Fill(m_nq, 0.7225, m_cellSol[6], 1);
1120 Vmath::Fill(m_nq, 3.164e-5, m_cellSol[7], 1);
1121 Vmath::Fill(m_nq, 0.8009, m_cellSol[8], 1);
1122 Vmath::Fill(m_nq, 0.9778, m_cellSol[9], 1);
1123 Vmath::Fill(m_nq, 0.9953, m_cellSol[10], 1);
1124 Vmath::Fill(m_nq, 0.3212, m_cellSol[11], 1);
1125 Vmath::Fill(m_nq, 2.235e-8, m_cellSol[12], 1);
1126 Vmath::Fill(m_nq, 0.00013, m_cellSol[13], 1);
1127 Vmath::Fill(m_nq, 3.715, m_cellSol[14], 1);
1128 Vmath::Fill(m_nq, 0.00036, m_cellSol[15], 1);
1129 Vmath::Fill(m_nq, 0.9068, m_cellSol[16], 1);
1130 Vmath::Fill(m_nq, 10.355, m_cellSol[17], 1);
1131 Vmath::Fill(m_nq, 138.4, m_cellSol[18], 1);
1132 break;
1133 case eMid:
1134 Vmath::Fill(m_nq, -85.423, m_cellSol[0], 1);
1135 Vmath::Fill(m_nq, 0.0165, m_cellSol[1], 1);
1136 Vmath::Fill(m_nq, 0.473, m_cellSol[2], 1);
1137 Vmath::Fill(m_nq, 0.0174, m_cellSol[3], 1);
1138 Vmath::Fill(m_nq, 0.00165, m_cellSol[4], 1);
1139 Vmath::Fill(m_nq, 0.749, m_cellSol[5], 1);
1140 Vmath::Fill(m_nq, 0.6788, m_cellSol[6], 1);
1141 Vmath::Fill(m_nq, 3.288e-5, m_cellSol[7], 1);
1142 Vmath::Fill(m_nq, 0.7026, m_cellSol[8], 1);
1143 Vmath::Fill(m_nq, 0.9526, m_cellSol[9], 1);
1144 Vmath::Fill(m_nq, 0.9942, m_cellSol[10], 1);
1145 Vmath::Fill(m_nq, 0.999998, m_cellSol[11], 1);
1146 Vmath::Fill(m_nq, 2.347e-8, m_cellSol[12], 1);
1147 Vmath::Fill(m_nq, 0.000153, m_cellSol[13], 1);
1148 Vmath::Fill(m_nq, 4.272, m_cellSol[14], 1);
1149 Vmath::Fill(m_nq, 0.00042, m_cellSol[15], 1);
1150 Vmath::Fill(m_nq, 0.8978, m_cellSol[16], 1);
1151 Vmath::Fill(m_nq, 10.132, m_cellSol[17], 1);
1152 Vmath::Fill(m_nq, 138.52, m_cellSol[18], 1);
1153 break;
1154 case eIschemia:
1155 Vmath::Fill(m_nq, -85.23, m_cellSol[0], 1);
1156 Vmath::Fill(m_nq, 0.00621, m_cellSol[1], 1);
1157 Vmath::Fill(m_nq, 0.4712, m_cellSol[2], 1);
1158 Vmath::Fill(m_nq, 0.0095, m_cellSol[3], 1);
1159 Vmath::Fill(m_nq, 0.00172, m_cellSol[4], 1);
1160 Vmath::Fill(m_nq, 0.7444, m_cellSol[5], 1);
1161 Vmath::Fill(m_nq, 0.7045, m_cellSol[6], 1);
1162 Vmath::Fill(m_nq, 3.373e-5, m_cellSol[7], 1);
1163 Vmath::Fill(m_nq, 0.7888, m_cellSol[8], 1);
1164 Vmath::Fill(m_nq, 0.9755, m_cellSol[9], 1);
1165 Vmath::Fill(m_nq, 0.9953, m_cellSol[10], 1);
1166 Vmath::Fill(m_nq, 0.999998, m_cellSol[11], 1);
1167 Vmath::Fill(m_nq, 2.42e-8, m_cellSol[12], 1);
1168 Vmath::Fill(m_nq, 0.000126, m_cellSol[13], 1);
1169 Vmath::Fill(m_nq, 3.64, m_cellSol[14], 1);
1170 Vmath::Fill(m_nq, 0.00036, m_cellSol[15], 1);
1171 Vmath::Fill(m_nq, 0.9073, m_cellSol[16], 1);
1172 Vmath::Fill(m_nq, 8.604, m_cellSol[17], 1);
1173 Vmath::Fill(m_nq, 136.89, m_cellSol[18], 1);
1174 break;
1175 }
1176}
Array< OneD, Array< OneD, NekDouble > > m_cellSol
Cell model solution variables.
Definition: CellModel.h:126
size_t m_nq
Number of physical points.
Definition: CellModel.h:117
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54

References eEndocardium, eEpicardium, eIschemia, eMid, Vmath::Fill(), Nektar::CellModel::m_cellSol, Nektar::CellModel::m_nq, and model_variant.

◆ v_Update()

void Nektar::TenTusscher06::v_Update ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
overrideprotectedvirtual

Implements Nektar::CellModel.

Definition at line 144 of file TenTusscher06.cpp.

148{
149 for (size_t i = 0; i < m_nq; ++i)
150 {
151 // Inputs:
152 // Time units: millisecond
153 NekDouble var_chaste_interface__membrane__V = inarray[0][i];
154 // Units: millivolt; Initial value: -85.23
156 var_chaste_interface__rapid_time_dependent_potassium_current_Xr1_gate__Xr1 =
157 inarray[1][i];
158 // Units: dimensionless; Initial value: 0.00621
160 var_chaste_interface__rapid_time_dependent_potassium_current_Xr2_gate__Xr2 =
161 inarray[2][i];
162 // Units: dimensionless; Initial value: 0.4712
164 var_chaste_interface__slow_time_dependent_potassium_current_Xs_gate__Xs =
165 inarray[3][i];
166 // Units: dimensionless; Initial value: 0.0095
167 NekDouble var_chaste_interface__fast_sodium_current_m_gate__m =
168 inarray[4][i];
169 // Units: dimensionless; Initial value: 0.00172
170 NekDouble var_chaste_interface__fast_sodium_current_h_gate__h =
171 inarray[5][i];
172 // Units: dimensionless; Initial value: 0.7444
173 NekDouble var_chaste_interface__fast_sodium_current_j_gate__j =
174 inarray[6][i];
175 // Units: dimensionless; Initial value: 0.7045
176 NekDouble var_chaste_interface__L_type_Ca_current_d_gate__d =
177 inarray[7][i];
178 // Units: dimensionless; Initial value: 3.373e-5
179 NekDouble var_chaste_interface__L_type_Ca_current_f_gate__f =
180 inarray[8][i];
181 // Units: dimensionless; Initial value: 0.7888
182 NekDouble var_chaste_interface__L_type_Ca_current_f2_gate__f2 =
183 inarray[9][i];
184 // Units: dimensionless; Initial value: 0.9755
185 NekDouble var_chaste_interface__L_type_Ca_current_fCass_gate__fCass =
186 inarray[10][i];
187 // Units: dimensionless; Initial value: 0.9953
188 NekDouble var_chaste_interface__transient_outward_current_s_gate__s =
189 inarray[11][i];
190 // Units: dimensionless; Initial value: 0.999998
191 NekDouble var_chaste_interface__transient_outward_current_r_gate__r =
192 inarray[12][i];
193 // Units: dimensionless; Initial value: 2.42e-8
194 NekDouble var_chaste_interface__calcium_dynamics__Ca_i = inarray[13][i];
195 // Units: millimolar; Initial value: 0.000126
196 NekDouble var_chaste_interface__calcium_dynamics__Ca_SR =
197 inarray[14][i];
198 // Units: millimolar; Initial value: 3.64
199 NekDouble var_chaste_interface__calcium_dynamics__Ca_ss =
200 inarray[15][i];
201 // Units: millimolar; Initial value: 0.00036
202 NekDouble var_chaste_interface__calcium_dynamics__R_prime =
203 inarray[16][i];
204 // Units: dimensionless; Initial value: 0.9073
205 NekDouble var_chaste_interface__sodium_dynamics__Na_i = inarray[17][i];
206 // Units: millimolar; Initial value: 8.604
207 NekDouble var_chaste_interface__potassium_dynamics__K_i =
208 inarray[18][i];
209 // Units: millimolar; Initial value: 136.89
210
211 // Mathematics
212 NekDouble d_dt_chaste_interface__membrane__V;
213 const NekDouble var_membrane__R = 8314.472; // joule_per_mole_kelvin
214 const NekDouble var_membrane__T = 310.0; // kelvin
215 const NekDouble var_membrane__F = 96485.3415; // coulomb_per_millimole
216 const NekDouble var_membrane__Cm = 0.185; // microF
217 const NekDouble var_membrane__V_c = 0.016404; // micrometre3
218 const NekDouble var_inward_rectifier_potassium_current__V =
219 var_chaste_interface__membrane__V; // millivolt
220 const NekDouble var_reversal_potentials__K_i =
221 var_chaste_interface__potassium_dynamics__K_i; // millimolar
222 const NekDouble var_reversal_potentials__R =
223 var_membrane__R; // joule_per_mole_kelvin
224 const NekDouble var_reversal_potentials__T = var_membrane__T; // kelvin
225 const NekDouble var_reversal_potentials__F =
226 var_membrane__F; // coulomb_per_millimole
227 const NekDouble var_potassium_dynamics__K_o = k_0; // millimolar
228 const NekDouble var_reversal_potentials__K_o =
229 var_potassium_dynamics__K_o; // millimolar
230 const NekDouble var_reversal_potentials__E_K =
231 ((var_reversal_potentials__R * var_reversal_potentials__T) /
232 var_reversal_potentials__F) *
233 log(var_reversal_potentials__K_o /
234 var_reversal_potentials__K_i); // millivolt
235 const NekDouble var_inward_rectifier_potassium_current__E_K =
236 var_reversal_potentials__E_K; // millivolt
237 const NekDouble var_inward_rectifier_potassium_current__beta_K1 =
238 ((3.0 *
239 exp(0.0002 * ((var_inward_rectifier_potassium_current__V -
240 var_inward_rectifier_potassium_current__E_K) +
241 100.0))) +
242 exp(0.1 * ((var_inward_rectifier_potassium_current__V -
243 var_inward_rectifier_potassium_current__E_K) -
244 10.0))) /
245 (1.0 +
246 exp((-0.5) *
247 (var_inward_rectifier_potassium_current__V -
248 var_inward_rectifier_potassium_current__E_K))); // dimensionless
249 const NekDouble var_inward_rectifier_potassium_current__alpha_K1 =
250 0.1 /
251 (1.0 + exp(0.06 * ((var_inward_rectifier_potassium_current__V -
252 var_inward_rectifier_potassium_current__E_K) -
253 200.0))); // dimensionless
254 const NekDouble var_inward_rectifier_potassium_current__xK1_inf =
255 var_inward_rectifier_potassium_current__alpha_K1 /
256 (var_inward_rectifier_potassium_current__alpha_K1 +
257 var_inward_rectifier_potassium_current__beta_K1); // dimensionless
258 const NekDouble var_inward_rectifier_potassium_current__K_o =
259 var_potassium_dynamics__K_o; // millimolar
260 const NekDouble var_inward_rectifier_potassium_current__g_K1 =
261 5.405; // nanoS_per_picoF
262 const NekDouble var_inward_rectifier_potassium_current__i_K1 =
263 var_inward_rectifier_potassium_current__g_K1 *
264 var_inward_rectifier_potassium_current__xK1_inf *
265 sqrt(var_inward_rectifier_potassium_current__K_o / 5.4) *
266 (var_inward_rectifier_potassium_current__V -
267 var_inward_rectifier_potassium_current__E_K); // picoA_per_picoF
268 const NekDouble var_transient_outward_current__s =
269 var_chaste_interface__transient_outward_current_s_gate__s; // dimensionless
270 const NekDouble var_transient_outward_current__r =
271 var_chaste_interface__transient_outward_current_r_gate__r; // dimensionless
272 const NekDouble var_transient_outward_current__g_to =
273 g_to; // nanoS_per_picoF
274 const NekDouble var_transient_outward_current__V =
275 var_chaste_interface__membrane__V; // millivolt
276 const NekDouble var_transient_outward_current__E_K =
277 var_reversal_potentials__E_K; // millivolt
278 const NekDouble var_transient_outward_current__i_to =
279 var_transient_outward_current__g_to *
280 var_transient_outward_current__r *
281 var_transient_outward_current__s *
282 (var_transient_outward_current__V -
283 var_transient_outward_current__E_K); // picoA_per_picoF
284 const NekDouble var_rapid_time_dependent_potassium_current__Xr1 =
285 var_chaste_interface__rapid_time_dependent_potassium_current_Xr1_gate__Xr1; // dimensionless
286 const NekDouble var_rapid_time_dependent_potassium_current__Xr2 =
287 var_chaste_interface__rapid_time_dependent_potassium_current_Xr2_gate__Xr2; // dimensionless
288 const NekDouble var_rapid_time_dependent_potassium_current__V =
289 var_chaste_interface__membrane__V; // millivolt
290 const NekDouble var_rapid_time_dependent_potassium_current__K_o =
291 var_potassium_dynamics__K_o; // millimolar
292 const NekDouble var_rapid_time_dependent_potassium_current__E_K =
293 var_reversal_potentials__E_K; // millivolt
294 const NekDouble var_rapid_time_dependent_potassium_current__g_Kr =
295 0.153; // nanoS_per_picoF
296 const NekDouble var_rapid_time_dependent_potassium_current__i_Kr =
297 var_rapid_time_dependent_potassium_current__g_Kr *
298 sqrt(var_rapid_time_dependent_potassium_current__K_o / 5.4) *
299 var_rapid_time_dependent_potassium_current__Xr1 *
300 var_rapid_time_dependent_potassium_current__Xr2 *
301 (var_rapid_time_dependent_potassium_current__V -
302 var_rapid_time_dependent_potassium_current__E_K); // picoA_per_picoF
303 const NekDouble var_slow_time_dependent_potassium_current__g_Ks =
304 g_Ks; // nanoS_per_picoF
305 const NekDouble var_sodium_dynamics__Na_o = 140.0; // millimolar
306 const NekDouble var_reversal_potentials__Na_o =
307 var_sodium_dynamics__Na_o; // millimolar
308 const NekDouble var_reversal_potentials__Na_i =
309 var_chaste_interface__sodium_dynamics__Na_i; // millimolar
310 const NekDouble var_reversal_potentials__P_kna = 0.03; // dimensionless
311 const NekDouble var_reversal_potentials__E_Ks =
312 ((var_reversal_potentials__R * var_reversal_potentials__T) /
313 var_reversal_potentials__F) *
314 log((var_reversal_potentials__K_o +
315 (var_reversal_potentials__P_kna *
316 var_reversal_potentials__Na_o)) /
317 (var_reversal_potentials__K_i +
318 (var_reversal_potentials__P_kna *
319 var_reversal_potentials__Na_i))); // millivolt
320 const NekDouble var_slow_time_dependent_potassium_current__E_Ks =
321 var_reversal_potentials__E_Ks; // millivolt
322 const NekDouble var_slow_time_dependent_potassium_current__V =
323 var_chaste_interface__membrane__V; // millivolt
324 const NekDouble var_slow_time_dependent_potassium_current__Xs =
325 var_chaste_interface__slow_time_dependent_potassium_current_Xs_gate__Xs; // dimensionless
326 const NekDouble var_slow_time_dependent_potassium_current__i_Ks =
327 var_slow_time_dependent_potassium_current__g_Ks *
328 pow(var_slow_time_dependent_potassium_current__Xs, 2.0) *
329 (var_slow_time_dependent_potassium_current__V -
330 var_slow_time_dependent_potassium_current__E_Ks); // picoA_per_picoF
331 const NekDouble var_L_type_Ca_current__Ca_ss =
332 var_chaste_interface__calcium_dynamics__Ca_ss; // millimolar
333 const NekDouble var_L_type_Ca_current__g_CaL =
334 3.98e-05; // litre_per_farad_second
335 const NekDouble var_L_type_Ca_current__f =
336 var_chaste_interface__L_type_Ca_current_f_gate__f; // dimensionless
337 const NekDouble var_L_type_Ca_current__d =
338 var_chaste_interface__L_type_Ca_current_d_gate__d; // dimensionless
339 const NekDouble var_L_type_Ca_current__F =
340 var_membrane__F; // coulomb_per_millimole
341 const NekDouble var_L_type_Ca_current__f2 =
342 var_chaste_interface__L_type_Ca_current_f2_gate__f2; // dimensionless
343 const NekDouble var_L_type_Ca_current__fCass =
344 var_chaste_interface__L_type_Ca_current_fCass_gate__fCass; // dimensionless
345 const NekDouble var_L_type_Ca_current__V =
346 var_chaste_interface__membrane__V; // millivolt
347 const NekDouble var_L_type_Ca_current__T = var_membrane__T; // kelvin
348 const NekDouble var_calcium_dynamics__Ca_o = 2.0; // millimolar
349 const NekDouble var_L_type_Ca_current__Ca_o =
350 var_calcium_dynamics__Ca_o; // millimolar
351 const NekDouble var_L_type_Ca_current__R =
352 var_membrane__R; // joule_per_mole_kelvin
353 const NekDouble var_L_type_Ca_current__i_CaL =
354 (((var_L_type_Ca_current__g_CaL * var_L_type_Ca_current__d *
355 var_L_type_Ca_current__f * var_L_type_Ca_current__f2 *
356 var_L_type_Ca_current__fCass * 4.0 *
357 (var_L_type_Ca_current__V - 15.0) *
358 pow(var_L_type_Ca_current__F, 2.0)) /
359 (var_L_type_Ca_current__R * var_L_type_Ca_current__T)) *
360 ((0.25 * var_L_type_Ca_current__Ca_ss *
361 exp((2.0 * (var_L_type_Ca_current__V - 15.0) *
362 var_L_type_Ca_current__F) /
363 (var_L_type_Ca_current__R * var_L_type_Ca_current__T))) -
364 var_L_type_Ca_current__Ca_o)) /
365 (exp((2.0 * (var_L_type_Ca_current__V - 15.0) *
366 var_L_type_Ca_current__F) /
367 (var_L_type_Ca_current__R * var_L_type_Ca_current__T)) -
368 1.0); // picoA_per_picoF
369 const NekDouble var_sodium_potassium_pump_current__Na_i =
370 var_chaste_interface__sodium_dynamics__Na_i; // millimolar
371 const NekDouble var_sodium_potassium_pump_current__R =
372 var_membrane__R; // joule_per_mole_kelvin
373 const NekDouble var_sodium_potassium_pump_current__T =
374 var_membrane__T; // kelvin
375 const NekDouble var_sodium_potassium_pump_current__V =
376 var_chaste_interface__membrane__V; // millivolt
377 const NekDouble var_sodium_potassium_pump_current__K_mk =
378 1.0; // millimolar
379 const NekDouble var_sodium_potassium_pump_current__P_NaK =
380 2.724; // picoA_per_picoF
381 const NekDouble var_sodium_potassium_pump_current__K_mNa =
382 40.0; // millimolar
383 const NekDouble var_sodium_potassium_pump_current__F =
384 var_membrane__F; // coulomb_per_millimole
385 const NekDouble var_sodium_potassium_pump_current__K_o =
386 var_potassium_dynamics__K_o; // millimolar
387 const NekDouble var_sodium_potassium_pump_current__i_NaK =
388 ((((var_sodium_potassium_pump_current__P_NaK *
389 var_sodium_potassium_pump_current__K_o) /
390 (var_sodium_potassium_pump_current__K_o +
391 var_sodium_potassium_pump_current__K_mk)) *
392 var_sodium_potassium_pump_current__Na_i) /
393 (var_sodium_potassium_pump_current__Na_i +
394 var_sodium_potassium_pump_current__K_mNa)) /
395 (1.0 +
396 (0.1245 * exp(((-0.1) * var_sodium_potassium_pump_current__V *
397 var_sodium_potassium_pump_current__F) /
398 (var_sodium_potassium_pump_current__R *
399 var_sodium_potassium_pump_current__T))) +
400 (0.0353 *
401 exp(((-var_sodium_potassium_pump_current__V) *
402 var_sodium_potassium_pump_current__F) /
403 (var_sodium_potassium_pump_current__R *
404 var_sodium_potassium_pump_current__T)))); // picoA_per_picoF
405 const NekDouble var_fast_sodium_current__j =
406 var_chaste_interface__fast_sodium_current_j_gate__j; // dimensionless
407 const NekDouble var_fast_sodium_current__h =
408 var_chaste_interface__fast_sodium_current_h_gate__h; // dimensionless
409 const NekDouble var_fast_sodium_current__g_Na =
410 14.838; // nanoS_per_picoF
411 const NekDouble var_fast_sodium_current__m =
412 var_chaste_interface__fast_sodium_current_m_gate__m; // dimensionless
413 const NekDouble var_fast_sodium_current__V =
414 var_chaste_interface__membrane__V; // millivolt
415 const NekDouble var_reversal_potentials__E_Na =
416 ((var_reversal_potentials__R * var_reversal_potentials__T) /
417 var_reversal_potentials__F) *
418 log(var_reversal_potentials__Na_o /
419 var_reversal_potentials__Na_i); // millivolt
420 const NekDouble var_fast_sodium_current__E_Na =
421 var_reversal_potentials__E_Na; // millivolt
422 const NekDouble var_fast_sodium_current__i_Na =
423 var_fast_sodium_current__g_Na *
424 pow(var_fast_sodium_current__m, 3.0) * var_fast_sodium_current__h *
425 var_fast_sodium_current__j *
426 (var_fast_sodium_current__V -
427 var_fast_sodium_current__E_Na); // picoA_per_picoF
428 const NekDouble var_sodium_background_current__V =
429 var_chaste_interface__membrane__V; // millivolt
430 const NekDouble var_sodium_background_current__E_Na =
431 var_reversal_potentials__E_Na; // millivolt
432 const NekDouble var_sodium_background_current__g_bna =
433 0.00029; // nanoS_per_picoF
434 const NekDouble var_sodium_background_current__i_b_Na =
435 var_sodium_background_current__g_bna *
436 (var_sodium_background_current__V -
437 var_sodium_background_current__E_Na); // picoA_per_picoF
438 const NekDouble var_sodium_calcium_exchanger_current__alpha =
439 2.5; // dimensionless
440 const NekDouble var_sodium_calcium_exchanger_current__gamma =
441 0.35; // dimensionless
442 const NekDouble var_sodium_calcium_exchanger_current__K_sat =
443 0.1; // dimensionless
444 const NekDouble var_sodium_calcium_exchanger_current__Km_Ca =
445 1.38; // millimolar
446 const NekDouble var_sodium_calcium_exchanger_current__K_NaCa =
447 1000.0; // picoA_per_picoF
448 const NekDouble var_sodium_calcium_exchanger_current__F =
449 var_membrane__F; // coulomb_per_millimole
450 const NekDouble var_sodium_calcium_exchanger_current__Ca_i =
451 var_chaste_interface__calcium_dynamics__Ca_i; // millimolar
452 const NekDouble var_sodium_calcium_exchanger_current__Ca_o =
453 var_calcium_dynamics__Ca_o; // millimolar
454 const NekDouble var_sodium_calcium_exchanger_current__V =
455 var_chaste_interface__membrane__V; // millivolt
456 const NekDouble var_sodium_calcium_exchanger_current__R =
457 var_membrane__R; // joule_per_mole_kelvin
458 const NekDouble var_sodium_calcium_exchanger_current__Km_Nai =
459 87.5; // millimolar
460 const NekDouble var_sodium_calcium_exchanger_current__Na_o =
461 var_sodium_dynamics__Na_o; // millimolar
462 const NekDouble var_sodium_calcium_exchanger_current__Na_i =
463 var_chaste_interface__sodium_dynamics__Na_i; // millimolar
464 const NekDouble var_sodium_calcium_exchanger_current__T =
465 var_membrane__T; // kelvin
466 const NekDouble var_sodium_calcium_exchanger_current__i_NaCa =
467 (var_sodium_calcium_exchanger_current__K_NaCa *
468 ((exp((var_sodium_calcium_exchanger_current__gamma *
469 var_sodium_calcium_exchanger_current__V *
470 var_sodium_calcium_exchanger_current__F) /
471 (var_sodium_calcium_exchanger_current__R *
472 var_sodium_calcium_exchanger_current__T)) *
473 pow(var_sodium_calcium_exchanger_current__Na_i, 3.0) *
474 var_sodium_calcium_exchanger_current__Ca_o) -
475 (exp(((var_sodium_calcium_exchanger_current__gamma - 1.0) *
476 var_sodium_calcium_exchanger_current__V *
477 var_sodium_calcium_exchanger_current__F) /
478 (var_sodium_calcium_exchanger_current__R *
479 var_sodium_calcium_exchanger_current__T)) *
480 pow(var_sodium_calcium_exchanger_current__Na_o, 3.0) *
481 var_sodium_calcium_exchanger_current__Ca_i *
482 var_sodium_calcium_exchanger_current__alpha))) /
483 ((pow(var_sodium_calcium_exchanger_current__Km_Nai, 3.0) +
484 pow(var_sodium_calcium_exchanger_current__Na_o, 3.0)) *
485 (var_sodium_calcium_exchanger_current__Km_Ca +
486 var_sodium_calcium_exchanger_current__Ca_o) *
487 (1.0 +
488 (var_sodium_calcium_exchanger_current__K_sat *
489 exp(((var_sodium_calcium_exchanger_current__gamma - 1.0) *
490 var_sodium_calcium_exchanger_current__V *
491 var_sodium_calcium_exchanger_current__F) /
492 (var_sodium_calcium_exchanger_current__R *
493 var_sodium_calcium_exchanger_current__T))))); // picoA_per_picoF
494 const NekDouble var_reversal_potentials__Ca_o =
495 var_calcium_dynamics__Ca_o; // millimolar
496 const NekDouble var_reversal_potentials__Ca_i =
497 var_chaste_interface__calcium_dynamics__Ca_i; // millimolar
498 const NekDouble var_reversal_potentials__E_Ca =
499 ((0.5 * var_reversal_potentials__R * var_reversal_potentials__T) /
500 var_reversal_potentials__F) *
501 log(var_reversal_potentials__Ca_o /
502 var_reversal_potentials__Ca_i); // millivolt
503 const NekDouble var_calcium_background_current__E_Ca =
504 var_reversal_potentials__E_Ca; // millivolt
505 const NekDouble var_calcium_background_current__g_bca =
506 0.000592; // nanoS_per_picoF
507 const NekDouble var_calcium_background_current__V =
508 var_chaste_interface__membrane__V; // millivolt
509 const NekDouble var_calcium_background_current__i_b_Ca =
510 var_calcium_background_current__g_bca *
511 (var_calcium_background_current__V -
512 var_calcium_background_current__E_Ca); // picoA_per_picoF
513 const NekDouble var_potassium_pump_current__g_pK =
514 0.0146; // nanoS_per_picoF
515 const NekDouble var_potassium_pump_current__V =
516 var_chaste_interface__membrane__V; // millivolt
517 const NekDouble var_potassium_pump_current__E_K =
518 var_reversal_potentials__E_K; // millivolt
519 const NekDouble var_potassium_pump_current__i_p_K =
520 (var_potassium_pump_current__g_pK *
521 (var_potassium_pump_current__V -
522 var_potassium_pump_current__E_K)) /
523 (1.0 + exp((25.0 - var_potassium_pump_current__V) /
524 5.98)); // picoA_per_picoF
525 const NekDouble var_calcium_pump_current__K_pCa = 0.0005; // millimolar
526 const NekDouble var_calcium_pump_current__Ca_i =
527 var_chaste_interface__calcium_dynamics__Ca_i; // millimolar
528 const NekDouble var_calcium_pump_current__g_pCa =
529 0.1238; // picoA_per_picoF
530 const NekDouble var_calcium_pump_current__i_p_Ca =
531 (var_calcium_pump_current__g_pCa * var_calcium_pump_current__Ca_i) /
532 (var_calcium_pump_current__Ca_i +
533 var_calcium_pump_current__K_pCa); // picoA_per_picoF
534 const NekDouble var_chaste_interface__membrane__i_Stim = 0.0;
535 const NekDouble var_rapid_time_dependent_potassium_current_Xr1_gate__V =
536 var_rapid_time_dependent_potassium_current__V; // millivolt
537 const NekDouble
538 var_rapid_time_dependent_potassium_current_Xr1_gate__alpha_xr1 =
539 450.0 /
540 (1.0 +
541 exp(((-45.0) -
542 var_rapid_time_dependent_potassium_current_Xr1_gate__V) /
543 10.0)); // dimensionless
544 const NekDouble
545 var_rapid_time_dependent_potassium_current_Xr1_gate__beta_xr1 =
546 6.0 /
547 (1.0 +
548 exp((var_rapid_time_dependent_potassium_current_Xr1_gate__V +
549 30.0) /
550 11.5)); // dimensionless
551 const NekDouble
552 var_rapid_time_dependent_potassium_current_Xr1_gate__tau_xr1 =
553 1.0 *
554 var_rapid_time_dependent_potassium_current_Xr1_gate__alpha_xr1 *
555 var_rapid_time_dependent_potassium_current_Xr1_gate__beta_xr1; // millisecond
556 const NekDouble
557 var_rapid_time_dependent_potassium_current_Xr1_gate__xr1_inf =
558 1.0 /
559 (1.0 +
560 exp(((-26.0) -
561 var_rapid_time_dependent_potassium_current_Xr1_gate__V) /
562 7.0)); // dimensionless
563 const NekDouble var_rapid_time_dependent_potassium_current_Xr2_gate__V =
564 var_rapid_time_dependent_potassium_current__V; // millivolt
565 const NekDouble
566 var_rapid_time_dependent_potassium_current_Xr2_gate__alpha_xr2 =
567 3.0 /
568 (1.0 +
569 exp(((-60.0) -
570 var_rapid_time_dependent_potassium_current_Xr2_gate__V) /
571 20.0)); // dimensionless
572 const NekDouble
573 var_rapid_time_dependent_potassium_current_Xr2_gate__beta_xr2 =
574 1.12 /
575 (1.0 +
576 exp((var_rapid_time_dependent_potassium_current_Xr2_gate__V -
577 60.0) /
578 20.0)); // dimensionless
579 const NekDouble
580 var_rapid_time_dependent_potassium_current_Xr2_gate__tau_xr2 =
581 1.0 *
582 var_rapid_time_dependent_potassium_current_Xr2_gate__alpha_xr2 *
583 var_rapid_time_dependent_potassium_current_Xr2_gate__beta_xr2; // millisecond
584 const NekDouble
585 var_rapid_time_dependent_potassium_current_Xr2_gate__xr2_inf =
586 1.0 /
587 (1.0 +
588 exp((var_rapid_time_dependent_potassium_current_Xr2_gate__V +
589 88.0) /
590 24.0)); // dimensionless
591 const NekDouble var_slow_time_dependent_potassium_current_Xs_gate__V =
592 var_slow_time_dependent_potassium_current__V; // millivolt
593 const NekDouble
594 var_slow_time_dependent_potassium_current_Xs_gate__beta_xs =
595 1.0 /
596 (1.0 +
597 exp((var_slow_time_dependent_potassium_current_Xs_gate__V -
598 35.0) /
599 15.0)); // dimensionless
600 const NekDouble
601 var_slow_time_dependent_potassium_current_Xs_gate__alpha_xs =
602 1400.0 /
603 sqrt(
604 1.0 +
605 exp((5.0 -
606 var_slow_time_dependent_potassium_current_Xs_gate__V) /
607 6.0)); // dimensionless
608 const NekDouble
609 var_slow_time_dependent_potassium_current_Xs_gate__tau_xs =
610 (1.0 *
611 var_slow_time_dependent_potassium_current_Xs_gate__alpha_xs *
612 var_slow_time_dependent_potassium_current_Xs_gate__beta_xs) +
613 80.0; // millisecond
614 const NekDouble
615 var_slow_time_dependent_potassium_current_Xs_gate__xs_inf =
616 1.0 /
617 (1.0 +
618 exp(((-5.0) -
619 var_slow_time_dependent_potassium_current_Xs_gate__V) /
620 14.0)); // dimensionless
621 const NekDouble var_fast_sodium_current_m_gate__V =
622 var_fast_sodium_current__V; // millivolt
623 const NekDouble var_fast_sodium_current_m_gate__alpha_m =
624 1.0 / (1.0 + exp(((-60.0) - var_fast_sodium_current_m_gate__V) /
625 5.0)); // dimensionless
626 const NekDouble var_fast_sodium_current_m_gate__beta_m =
627 (0.1 /
628 (1.0 + exp((var_fast_sodium_current_m_gate__V + 35.0) / 5.0))) +
629 (0.1 / (1.0 + exp((var_fast_sodium_current_m_gate__V - 50.0) /
630 200.0))); // dimensionless
631 const NekDouble var_fast_sodium_current_m_gate__tau_m =
632 1.0 * var_fast_sodium_current_m_gate__alpha_m *
633 var_fast_sodium_current_m_gate__beta_m; // millisecond
634 const NekDouble var_fast_sodium_current_m_gate__m_inf =
635 1.0 / pow(1.0 + exp(((-56.86) - var_fast_sodium_current_m_gate__V) /
636 9.03),
637 2.0); // dimensionless
638 const NekDouble var_fast_sodium_current_h_gate__V =
639 var_fast_sodium_current__V; // millivolt
640 const NekDouble var_fast_sodium_current_h_gate__h_inf =
641 1.0 /
642 pow(1.0 + exp((var_fast_sodium_current_h_gate__V + 71.55) / 7.43),
643 2.0); // dimensionless
644 const NekDouble var_fast_sodium_current_h_gate__beta_h =
645 (var_fast_sodium_current_h_gate__V < (-40.0))
646 ? ((2.7 * exp(0.079 * var_fast_sodium_current_h_gate__V)) +
647 (310000.0 * exp(0.3485 * var_fast_sodium_current_h_gate__V)))
648 : (0.77 /
649 (0.13 *
650 (1.0 + exp((var_fast_sodium_current_h_gate__V + 10.66) /
651 (-11.1))))); // per_millisecond
652 const NekDouble var_fast_sodium_current_h_gate__alpha_h =
653 (var_fast_sodium_current_h_gate__V < (-40.0))
654 ? (0.057 *
655 exp((-(var_fast_sodium_current_h_gate__V + 80.0)) / 6.8))
656 : 0.0; // per_millisecond
657 const NekDouble var_fast_sodium_current_h_gate__tau_h =
658 1.0 / (var_fast_sodium_current_h_gate__alpha_h +
659 var_fast_sodium_current_h_gate__beta_h); // millisecond
660 const NekDouble var_fast_sodium_current_j_gate__V =
661 var_fast_sodium_current__V; // millivolt
662 const NekDouble var_fast_sodium_current_j_gate__j_inf =
663 1.0 /
664 pow(1.0 + exp((var_fast_sodium_current_j_gate__V + 71.55) / 7.43),
665 2.0); // dimensionless
666 const NekDouble var_fast_sodium_current_j_gate__alpha_j =
667 (var_fast_sodium_current_j_gate__V < (-40.0))
668 ? ((((((-25428.0) *
669 exp(0.2444 * var_fast_sodium_current_j_gate__V)) -
670 (6.948e-06 *
671 exp((-0.04391) * var_fast_sodium_current_j_gate__V))) *
672 (var_fast_sodium_current_j_gate__V + 37.78)) /
673 1.0) /
674 (1.0 +
675 exp(0.311 * (var_fast_sodium_current_j_gate__V + 79.23))))
676 : 0.0; // per_millisecond
677 const NekDouble var_fast_sodium_current_j_gate__beta_j =
678 (var_fast_sodium_current_j_gate__V < (-40.0))
679 ? ((0.02424 *
680 exp((-0.01052) * var_fast_sodium_current_j_gate__V)) /
681 (1.0 + exp((-0.1378) *
682 (var_fast_sodium_current_j_gate__V + 40.14))))
683 : ((0.6 * exp(0.057 * var_fast_sodium_current_j_gate__V)) /
684 (1.0 + exp((-0.1) * (var_fast_sodium_current_j_gate__V +
685 32.0)))); // per_millisecond
686 const NekDouble var_fast_sodium_current_j_gate__tau_j =
687 1.0 / (var_fast_sodium_current_j_gate__alpha_j +
688 var_fast_sodium_current_j_gate__beta_j); // millisecond
689 const NekDouble var_L_type_Ca_current_d_gate__V =
690 var_L_type_Ca_current__V; // millivolt
691 const NekDouble var_L_type_Ca_current_d_gate__alpha_d =
692 (1.4 /
693 (1.0 + exp(((-35.0) - var_L_type_Ca_current_d_gate__V) / 13.0))) +
694 0.25; // dimensionless
695 const NekDouble var_L_type_Ca_current_d_gate__gamma_d =
696 1.0 / (1.0 + exp((50.0 - var_L_type_Ca_current_d_gate__V) /
697 20.0)); // millisecond
698 const NekDouble var_L_type_Ca_current_d_gate__beta_d =
699 1.4 / (1.0 + exp((var_L_type_Ca_current_d_gate__V + 5.0) /
700 5.0)); // dimensionless
701 const NekDouble var_L_type_Ca_current_d_gate__tau_d =
702 (1.0 * var_L_type_Ca_current_d_gate__alpha_d *
703 var_L_type_Ca_current_d_gate__beta_d) +
704 var_L_type_Ca_current_d_gate__gamma_d; // millisecond
705 const NekDouble var_L_type_Ca_current_d_gate__d_inf =
706 1.0 / (1.0 + exp(((-8.0) - var_L_type_Ca_current_d_gate__V) /
707 7.5)); // dimensionless
708 const NekDouble var_L_type_Ca_current_f_gate__V =
709 var_L_type_Ca_current__V; // millivolt
710 const NekDouble var_L_type_Ca_current_f_gate__tau_f =
711 (1102.5 *
712 exp((-pow(var_L_type_Ca_current_f_gate__V + 27.0, 2.0)) / 225.0)) +
713 (200.0 /
714 (1.0 + exp((13.0 - var_L_type_Ca_current_f_gate__V) / 10.0))) +
715 (180.0 /
716 (1.0 + exp((var_L_type_Ca_current_f_gate__V + 30.0) / 10.0))) +
717 20.0; // millisecond
718 const NekDouble var_L_type_Ca_current_f_gate__f_inf =
719 1.0 / (1.0 + exp((var_L_type_Ca_current_f_gate__V + 20.0) /
720 7.0)); // dimensionless
721 const NekDouble var_L_type_Ca_current_f2_gate__V =
722 var_L_type_Ca_current__V; // millivolt
723 const NekDouble var_L_type_Ca_current_f2_gate__f2_inf =
724 (0.67 /
725 (1.0 + exp((var_L_type_Ca_current_f2_gate__V + 35.0) / 7.0))) +
726 0.33; // dimensionless
727 const NekDouble var_L_type_Ca_current_f2_gate__tau_f2 =
728 (562.0 * exp((-pow(var_L_type_Ca_current_f2_gate__V + 27.0, 2.0)) /
729 240.0)) +
730 (31.0 /
731 (1.0 + exp((25.0 - var_L_type_Ca_current_f2_gate__V) / 10.0))) +
732 (80.0 / (1.0 + exp((var_L_type_Ca_current_f2_gate__V + 30.0) /
733 10.0))); // millisecond
734 const NekDouble var_L_type_Ca_current_fCass_gate__Ca_ss =
735 var_L_type_Ca_current__Ca_ss; // millimolar
736 const NekDouble var_L_type_Ca_current_fCass_gate__tau_fCass =
737 (80.0 /
738 (1.0 + pow(var_L_type_Ca_current_fCass_gate__Ca_ss / 0.05, 2.0))) +
739 2.0; // millisecond
740 const NekDouble var_L_type_Ca_current_fCass_gate__fCass_inf =
741 (0.6 /
742 (1.0 + pow(var_L_type_Ca_current_fCass_gate__Ca_ss / 0.05, 2.0))) +
743 0.4; // dimensionless
744 const NekDouble var_transient_outward_current_s_gate__V =
745 var_transient_outward_current__V; // millivolt
746 const NekDouble var_transient_outward_current_s_gate__s_inf =
747 1.0 / (1.0 + exp((var_transient_outward_current_s_gate__V +
748 s_inf_factor) /
749 5.0)); // dimensionless
750 const NekDouble var_transient_outward_current_s_gate__tau_s =
751 (s_tau_f1 *
752 exp((-pow(var_transient_outward_current_s_gate__V + s_tau_f2,
753 2.0)) /
754 s_tau_f3)) +
755 s_tau_f4 +
756 s_tau_f5 *
757 ((5.0 /
758 (1.0 + exp((var_transient_outward_current_s_gate__V - 20.0) /
759 5.0))) +
760 3.0); // millisecond
761 const NekDouble var_transient_outward_current_r_gate__V =
762 var_transient_outward_current__V; // millivolt
763 const NekDouble var_transient_outward_current_r_gate__r_inf =
764 1.0 / (1.0 + exp((20.0 - var_transient_outward_current_r_gate__V) /
765 6.0)); // dimensionless
766 const NekDouble var_transient_outward_current_r_gate__tau_r =
767 (9.5 *
768 exp((-pow(var_transient_outward_current_r_gate__V + 40.0, 2.0)) /
769 1800.0)) +
770 0.8; // millisecond
771 const NekDouble var_calcium_dynamics__Ca_i =
772 var_chaste_interface__calcium_dynamics__Ca_i; // millimolar
773 const NekDouble var_calcium_dynamics__Ca_SR =
774 var_chaste_interface__calcium_dynamics__Ca_SR; // millimolar
775 const NekDouble var_calcium_dynamics__Ca_ss =
776 var_chaste_interface__calcium_dynamics__Ca_ss; // millimolar
777 const NekDouble var_calcium_dynamics__V_rel = 0.102; // per_millisecond
778 const NekDouble var_calcium_dynamics__R_prime =
779 var_chaste_interface__calcium_dynamics__R_prime; // dimensionless
780 const NekDouble var_calcium_dynamics__k1_prime =
781 0.15; // per_millimolar2_per_millisecond
782 const NekDouble var_calcium_dynamics__max_sr = 2.5; // dimensionless
783 const NekDouble var_calcium_dynamics__EC = 1.5; // millimolar
784 const NekDouble var_calcium_dynamics__min_sr = 1.0; // dimensionless
785 const NekDouble var_calcium_dynamics__kcasr =
786 var_calcium_dynamics__max_sr -
787 ((var_calcium_dynamics__max_sr - var_calcium_dynamics__min_sr) /
788 (1.0 + pow(var_calcium_dynamics__EC / var_calcium_dynamics__Ca_SR,
789 2.0))); // dimensionless
790 const NekDouble var_calcium_dynamics__k1 =
791 var_calcium_dynamics__k1_prime /
792 var_calcium_dynamics__kcasr; // per_millimolar2_per_millisecond
793 const NekDouble var_calcium_dynamics__k3 = 0.06; // per_millisecond
794 const NekDouble var_calcium_dynamics__O =
795 (var_calcium_dynamics__k1 * pow(var_calcium_dynamics__Ca_ss, 2.0) *
796 var_calcium_dynamics__R_prime) /
797 (var_calcium_dynamics__k3 +
798 (var_calcium_dynamics__k1 *
799 pow(var_calcium_dynamics__Ca_ss, 2.0))); // dimensionless
800 const NekDouble var_calcium_dynamics__i_rel =
801 var_calcium_dynamics__V_rel * var_calcium_dynamics__O *
802 (var_calcium_dynamics__Ca_SR -
803 var_calcium_dynamics__Ca_ss); // millimolar_per_millisecond
804 const NekDouble var_calcium_dynamics__Vmax_up =
805 0.006375; // millimolar_per_millisecond
806 const NekDouble var_calcium_dynamics__K_up = 0.00025; // millimolar
807 const NekDouble var_calcium_dynamics__i_up =
808 var_calcium_dynamics__Vmax_up /
809 (1.0 + (pow(var_calcium_dynamics__K_up, 2.0) /
810 pow(var_calcium_dynamics__Ca_i,
811 2.0))); // millimolar_per_millisecond
812 const NekDouble var_calcium_dynamics__V_leak =
813 0.00036; // per_millisecond
814 const NekDouble var_calcium_dynamics__i_leak =
815 var_calcium_dynamics__V_leak *
816 (var_calcium_dynamics__Ca_SR -
817 var_calcium_dynamics__Ca_i); // millimolar_per_millisecond
818 const NekDouble var_calcium_dynamics__V_xfer =
819 0.0038; // per_millisecond
820 const NekDouble var_calcium_dynamics__i_xfer =
821 var_calcium_dynamics__V_xfer *
822 (var_calcium_dynamics__Ca_ss -
823 var_calcium_dynamics__Ca_i); // millimolar_per_millisecond
824 const NekDouble var_calcium_dynamics__k2_prime =
825 0.045; // per_millimolar_per_millisecond
826 const NekDouble var_calcium_dynamics__k2 =
827 var_calcium_dynamics__k2_prime *
828 var_calcium_dynamics__kcasr; // per_millimolar_per_millisecond
829 const NekDouble var_calcium_dynamics__k4 = 0.005; // per_millisecond
830 const NekDouble var_calcium_dynamics__Buf_c = 0.2; // millimolar
831 const NekDouble var_calcium_dynamics__K_buf_c = 0.001; // millimolar
832 const NekDouble var_calcium_dynamics__Ca_i_bufc =
833 1.0 /
834 (1.0 +
835 ((var_calcium_dynamics__Buf_c * var_calcium_dynamics__K_buf_c) /
836 pow(var_calcium_dynamics__Ca_i + var_calcium_dynamics__K_buf_c,
837 2.0))); // dimensionless
838 const NekDouble var_calcium_dynamics__K_buf_sr = 0.3; // millimolar
839 const NekDouble var_calcium_dynamics__Buf_sr = 10.0; // millimolar
840 const NekDouble var_calcium_dynamics__Ca_sr_bufsr =
841 1.0 /
842 (1.0 +
843 ((var_calcium_dynamics__Buf_sr * var_calcium_dynamics__K_buf_sr) /
844 pow(var_calcium_dynamics__Ca_SR + var_calcium_dynamics__K_buf_sr,
845 2.0))); // dimensionless
846 const NekDouble var_calcium_dynamics__Buf_ss = 0.4; // millimolar
847 const NekDouble var_calcium_dynamics__K_buf_ss = 0.00025; // millimolar
848 const NekDouble var_calcium_dynamics__Ca_ss_bufss =
849 1.0 /
850 (1.0 +
851 ((var_calcium_dynamics__Buf_ss * var_calcium_dynamics__K_buf_ss) /
852 pow(var_calcium_dynamics__Ca_ss + var_calcium_dynamics__K_buf_ss,
853 2.0))); // dimensionless
854 const NekDouble var_calcium_dynamics__V_sr = 0.001094; // micrometre3
855 const NekDouble var_calcium_dynamics__V_ss = 5.468e-05; // micrometre3
856 const NekDouble var_calcium_dynamics__V_c =
857 var_membrane__V_c; // micrometre3
858 const NekDouble var_calcium_dynamics__F =
859 var_membrane__F; // coulomb_per_millimole
860 const NekDouble var_calcium_dynamics__Cm = var_membrane__Cm; // microF
861 const NekDouble var_calcium_dynamics__i_CaL =
862 var_L_type_Ca_current__i_CaL; // picoA_per_picoF
863 const NekDouble var_calcium_dynamics__i_NaCa =
864 var_sodium_calcium_exchanger_current__i_NaCa; // picoA_per_picoF
865 const NekDouble var_calcium_dynamics__i_p_Ca =
866 var_calcium_pump_current__i_p_Ca; // picoA_per_picoF
867 const NekDouble var_calcium_dynamics__i_b_Ca =
868 var_calcium_background_current__i_b_Ca; // picoA_per_picoF
869 const NekDouble var_calcium_dynamics__d_Ca_i_d_environment__time =
870 var_calcium_dynamics__Ca_i_bufc *
871 (((((var_calcium_dynamics__i_leak - var_calcium_dynamics__i_up) *
872 var_calcium_dynamics__V_sr) /
873 var_calcium_dynamics__V_c) +
874 var_calcium_dynamics__i_xfer) -
875 ((1.0 *
876 ((var_calcium_dynamics__i_b_Ca + var_calcium_dynamics__i_p_Ca) -
877 (2.0 * var_calcium_dynamics__i_NaCa)) *
878 var_calcium_dynamics__Cm) /
879 (2.0 * 1.0 * var_calcium_dynamics__V_c *
880 var_calcium_dynamics__F))); // 'millimole per litre per
881 // millisecond'
882 const NekDouble var_calcium_dynamics__d_Ca_SR_d_environment__time =
883 var_calcium_dynamics__Ca_sr_bufsr *
884 (var_calcium_dynamics__i_up -
885 (var_calcium_dynamics__i_rel +
886 var_calcium_dynamics__i_leak)); // 'millimole per litre per
887 // millisecond'
888 const NekDouble var_calcium_dynamics__d_Ca_ss_d_environment__time =
889 var_calcium_dynamics__Ca_ss_bufss *
890 (((((-1.0) * var_calcium_dynamics__i_CaL *
891 var_calcium_dynamics__Cm) /
892 (2.0 * 1.0 * var_calcium_dynamics__V_ss *
893 var_calcium_dynamics__F)) +
894 ((var_calcium_dynamics__i_rel * var_calcium_dynamics__V_sr) /
895 var_calcium_dynamics__V_ss)) -
896 ((var_calcium_dynamics__i_xfer * var_calcium_dynamics__V_c) /
897 var_calcium_dynamics__V_ss)); // 'millimole per litre per
898 // millisecond'
899 const NekDouble var_calcium_dynamics__d_R_prime_d_environment__time =
900 ((-var_calcium_dynamics__k2) * var_calcium_dynamics__Ca_ss *
901 var_calcium_dynamics__R_prime) +
902 (var_calcium_dynamics__k4 *
903 (1.0 - var_calcium_dynamics__R_prime)); // per_millisecond
904 const NekDouble var_sodium_dynamics__F =
905 var_membrane__F; // coulomb_per_millimole
906 const NekDouble var_sodium_dynamics__Cm = var_membrane__Cm; // microF
907 const NekDouble var_sodium_dynamics__V_c =
908 var_membrane__V_c; // micrometre3
909 const NekDouble var_sodium_dynamics__i_Na =
910 var_fast_sodium_current__i_Na; // picoA_per_picoF
911 const NekDouble var_sodium_dynamics__i_NaCa =
912 var_sodium_calcium_exchanger_current__i_NaCa; // picoA_per_picoF
913 const NekDouble var_sodium_dynamics__i_NaK =
914 var_sodium_potassium_pump_current__i_NaK; // picoA_per_picoF
915 const NekDouble var_sodium_dynamics__i_b_Na =
916 var_sodium_background_current__i_b_Na; // picoA_per_picoF
917 const NekDouble var_sodium_dynamics__d_Na_i_d_environment__time =
918 (((-1.0) *
919 (var_sodium_dynamics__i_Na + var_sodium_dynamics__i_b_Na +
920 (3.0 * var_sodium_dynamics__i_NaK) +
921 (3.0 * var_sodium_dynamics__i_NaCa))) /
922 (1.0 * var_sodium_dynamics__V_c * var_sodium_dynamics__F)) *
923 var_sodium_dynamics__Cm; // 'millimole per litre per millisecond'
924 const NekDouble var_potassium_dynamics__F =
925 var_membrane__F; // coulomb_per_millimole
926 const NekDouble var_potassium_dynamics__Cm = var_membrane__Cm; // microF
927 const NekDouble var_potassium_dynamics__V_c =
928 var_membrane__V_c; // micrometre3
929 const NekDouble var_potassium_dynamics__i_K1 =
930 var_inward_rectifier_potassium_current__i_K1; // picoA_per_picoF
931 const NekDouble var_potassium_dynamics__i_to =
932 var_transient_outward_current__i_to; // picoA_per_picoF
933 const NekDouble var_potassium_dynamics__i_NaK =
934 var_sodium_potassium_pump_current__i_NaK; // picoA_per_picoF
935 const NekDouble var_potassium_dynamics__i_Kr =
936 var_rapid_time_dependent_potassium_current__i_Kr; // picoA_per_picoF
937 const NekDouble var_potassium_dynamics__i_Ks =
938 var_slow_time_dependent_potassium_current__i_Ks; // picoA_per_picoF
939 const NekDouble var_potassium_dynamics__i_p_K =
940 var_potassium_pump_current__i_p_K; // picoA_per_picoF
941 const NekDouble
942 var_potassium_dynamics__chaste_interface__chaste_membrane_capacitance =
943 1.0; // uF_per_cm2
944 const NekDouble var_potassium_dynamics__i_Stim_converter =
945 var_chaste_interface__membrane__i_Stim; // uA_per_cm2
946 const NekDouble var_potassium_dynamics__i_Stim =
947 var_potassium_dynamics__i_Stim_converter /
948 var_potassium_dynamics__chaste_interface__chaste_membrane_capacitance; // picoA_per_picoF
949 const NekDouble var_potassium_dynamics__d_K_i_d_environment__time =
950 (((-1.0) *
951 ((var_potassium_dynamics__i_K1 + var_potassium_dynamics__i_to +
952 var_potassium_dynamics__i_Kr + var_potassium_dynamics__i_Ks +
953 var_potassium_dynamics__i_p_K +
954 var_potassium_dynamics__i_Stim) -
955 (2.0 * var_potassium_dynamics__i_NaK))) /
956 (1.0 * var_potassium_dynamics__V_c * var_potassium_dynamics__F)) *
957 var_potassium_dynamics__Cm; // 'millimole per litre per millisecond'
958 const NekDouble
959 var_chaste_interface__calcium_dynamics__d_Ca_i_d_environment__time =
960 var_calcium_dynamics__d_Ca_i_d_environment__time; // millimolar_per_millisecond
961 const NekDouble
962 var_chaste_interface__calcium_dynamics__d_Ca_SR_d_environment__time =
963 var_calcium_dynamics__d_Ca_SR_d_environment__time; // millimolar_per_millisecond
964 const NekDouble
965 var_chaste_interface__calcium_dynamics__d_Ca_ss_d_environment__time =
966 var_calcium_dynamics__d_Ca_ss_d_environment__time; // millimolar_per_millisecond
967 const NekDouble
968 var_chaste_interface__calcium_dynamics__d_R_prime_d_environment__time =
969 var_calcium_dynamics__d_R_prime_d_environment__time; // per_millisecond
970 const NekDouble
971 var_chaste_interface__sodium_dynamics__d_Na_i_d_environment__time =
972 var_sodium_dynamics__d_Na_i_d_environment__time; // millimolar_per_millisecond
973 const NekDouble
974 var_chaste_interface__potassium_dynamics__d_K_i_d_environment__time =
975 var_potassium_dynamics__d_K_i_d_environment__time; // millimolar_per_millisecond
976 const NekDouble d_dt_chaste_interface__calcium_dynamics__Ca_i =
977 var_chaste_interface__calcium_dynamics__d_Ca_i_d_environment__time; // 'millimole per litre per millisecond'
978 const NekDouble d_dt_chaste_interface__calcium_dynamics__Ca_SR =
979 var_chaste_interface__calcium_dynamics__d_Ca_SR_d_environment__time; // 'millimole per litre per millisecond'
980 const NekDouble d_dt_chaste_interface__calcium_dynamics__Ca_ss =
981 var_chaste_interface__calcium_dynamics__d_Ca_ss_d_environment__time; // 'millimole per litre per millisecond'
982 const NekDouble d_dt_chaste_interface__calcium_dynamics__R_prime =
983 var_chaste_interface__calcium_dynamics__d_R_prime_d_environment__time; // per_millisecond
984 const NekDouble d_dt_chaste_interface__sodium_dynamics__Na_i =
985 var_chaste_interface__sodium_dynamics__d_Na_i_d_environment__time; // 'millimole per litre per millisecond'
986 const NekDouble d_dt_chaste_interface__potassium_dynamics__K_i =
987 var_chaste_interface__potassium_dynamics__d_K_i_d_environment__time; // 'millimole per litre per millisecond'
988
989 const NekDouble var_membrane__i_K1 =
990 var_inward_rectifier_potassium_current__i_K1; // picoA_per_picoF
991 const NekDouble var_membrane__i_to =
992 var_transient_outward_current__i_to; // picoA_per_picoF
993 const NekDouble var_membrane__i_Kr =
994 var_rapid_time_dependent_potassium_current__i_Kr; // picoA_per_picoF
995 const NekDouble var_membrane__i_Ks =
996 var_slow_time_dependent_potassium_current__i_Ks; // picoA_per_picoF
997 const NekDouble var_membrane__i_CaL =
998 var_L_type_Ca_current__i_CaL; // picoA_per_picoF
999 const NekDouble var_membrane__i_NaK =
1000 var_sodium_potassium_pump_current__i_NaK; // picoA_per_picoF
1001 const NekDouble var_membrane__i_Na =
1002 var_fast_sodium_current__i_Na; // picoA_per_picoF
1003 const NekDouble var_membrane__i_b_Na =
1004 var_sodium_background_current__i_b_Na; // picoA_per_picoF
1005 const NekDouble var_membrane__i_NaCa =
1006 var_sodium_calcium_exchanger_current__i_NaCa; // picoA_per_picoF
1007 const NekDouble var_membrane__i_b_Ca =
1008 var_calcium_background_current__i_b_Ca; // picoA_per_picoF
1009 const NekDouble var_membrane__i_p_K =
1010 var_potassium_pump_current__i_p_K; // picoA_per_picoF
1011 const NekDouble var_membrane__i_p_Ca =
1012 var_calcium_pump_current__i_p_Ca; // picoA_per_picoF
1013 const NekDouble var_membrane__i_Stim_converter =
1014 var_chaste_interface__membrane__i_Stim; // uA_per_cm2
1015 const NekDouble
1016 var_membrane__chaste_interface__chaste_membrane_capacitance =
1017 1.0; // uF_per_cm2
1018 const NekDouble var_membrane__i_Stim =
1019 var_membrane__i_Stim_converter /
1020 var_membrane__chaste_interface__chaste_membrane_capacitance; // picoA_per_picoF
1021 const NekDouble var_membrane__d_V_d_environment__time =
1022 ((-1.0) / 1.0) *
1023 (var_membrane__i_K1 + var_membrane__i_to + var_membrane__i_Kr +
1024 var_membrane__i_Ks + var_membrane__i_CaL + var_membrane__i_NaK +
1025 var_membrane__i_Na + var_membrane__i_b_Na + var_membrane__i_NaCa +
1026 var_membrane__i_b_Ca + var_membrane__i_p_K + var_membrane__i_p_Ca +
1027 var_membrane__i_Stim); // 'millivolt per millisecond'
1028 const NekDouble
1029 var_chaste_interface__membrane__d_V_d_environment__time =
1030 var_membrane__d_V_d_environment__time; // ___units_1
1031 d_dt_chaste_interface__membrane__V =
1032 var_chaste_interface__membrane__d_V_d_environment__time; // 'millivolt
1033 // per
1034 // millisecond'
1035 outarray[0][i] = d_dt_chaste_interface__membrane__V;
1036 outarray[1][i] =
1037 var_rapid_time_dependent_potassium_current_Xr1_gate__xr1_inf;
1038 m_gates_tau[0][i] =
1039 var_rapid_time_dependent_potassium_current_Xr1_gate__tau_xr1;
1040 outarray[2][i] =
1041 var_rapid_time_dependent_potassium_current_Xr2_gate__xr2_inf;
1042 m_gates_tau[1][i] =
1043 var_rapid_time_dependent_potassium_current_Xr2_gate__tau_xr2;
1044 outarray[3][i] =
1045 var_slow_time_dependent_potassium_current_Xs_gate__xs_inf;
1046 m_gates_tau[2][i] =
1047 var_slow_time_dependent_potassium_current_Xs_gate__tau_xs;
1048 outarray[4][i] = var_fast_sodium_current_m_gate__m_inf;
1049 m_gates_tau[3][i] = var_fast_sodium_current_m_gate__tau_m;
1050 outarray[5][i] = var_fast_sodium_current_h_gate__h_inf;
1051 m_gates_tau[4][i] = var_fast_sodium_current_h_gate__tau_h;
1052 outarray[6][i] = var_fast_sodium_current_j_gate__j_inf;
1053 m_gates_tau[5][i] = var_fast_sodium_current_j_gate__tau_j;
1054 outarray[7][i] = var_L_type_Ca_current_d_gate__d_inf;
1055 m_gates_tau[6][i] = var_L_type_Ca_current_d_gate__tau_d;
1056 outarray[8][i] = var_L_type_Ca_current_f_gate__f_inf;
1057 m_gates_tau[7][i] = var_L_type_Ca_current_f_gate__tau_f;
1058 outarray[9][i] = var_L_type_Ca_current_f2_gate__f2_inf;
1059 m_gates_tau[8][i] = var_L_type_Ca_current_f2_gate__tau_f2;
1060 outarray[10][i] = var_L_type_Ca_current_fCass_gate__fCass_inf;
1061 m_gates_tau[9][i] = var_L_type_Ca_current_fCass_gate__tau_fCass;
1062 outarray[11][i] = var_transient_outward_current_s_gate__s_inf;
1063 m_gates_tau[10][i] = var_transient_outward_current_s_gate__tau_s;
1064 outarray[12][i] = var_transient_outward_current_r_gate__r_inf;
1065 m_gates_tau[11][i] = var_transient_outward_current_r_gate__tau_r;
1066 outarray[13][i] = d_dt_chaste_interface__calcium_dynamics__Ca_i;
1067 outarray[14][i] = d_dt_chaste_interface__calcium_dynamics__Ca_SR;
1068 outarray[15][i] = d_dt_chaste_interface__calcium_dynamics__Ca_ss;
1069 outarray[16][i] = d_dt_chaste_interface__calcium_dynamics__R_prime;
1070 outarray[17][i] = d_dt_chaste_interface__sodium_dynamics__Na_i;
1071 outarray[18][i] = d_dt_chaste_interface__potassium_dynamics__K_i;
1072 }
1073}
Array< OneD, Array< OneD, NekDouble > > m_gates_tau
Storage for gate tau values.
Definition: CellModel.h:143
double NekDouble
scalarT< T > log(scalarT< T > in)
Definition: scalar.hpp:303
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References g_Ks, g_to, k_0, tinysimd::log(), Nektar::CellModel::m_gates_tau, Nektar::CellModel::m_nq, s_inf_factor, s_tau_f1, s_tau_f2, s_tau_f3, s_tau_f4, s_tau_f5, and tinysimd::sqrt().

Member Data Documentation

◆ className

std::string Nektar::TenTusscher06::className
static
Initial value:
=
"TenTusscher06", TenTusscher06::create, "ten Tusscher 2006.")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
static CellModelSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
Creates an instance of this class.
Definition: TenTusscher06.h:47
CellModelFactory & GetCellModelFactory()
Definition: CellModel.cpp:46

Name of class.

Definition at line 56 of file TenTusscher06.h.

◆ def

std::string Nektar::TenTusscher06::def
staticprotected
Initial value:
=
"Epicardium")
static std::string RegisterDefaultSolverInfo(const std::string &pName, const std::string &pValue)
Registers the default string value of a solver info property.

Definition at line 97 of file TenTusscher06.h.

◆ g_Ks

NekDouble Nektar::TenTusscher06::g_Ks
protected

Definition at line 78 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ g_to

NekDouble Nektar::TenTusscher06::g_to
protected

Definition at line 77 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ k_0

NekDouble Nektar::TenTusscher06::k_0
protected

Definition at line 85 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ lookupIds

std::string Nektar::TenTusscher06::lookupIds
staticprotected
Initial value:
= {
"CellModelVariant", "Epicardium", TenTusscher06::eEpicardium),
"CellModelVariant", "Endocardium", TenTusscher06::eEndocardium),
"CellModelVariant", "Ischemia", TenTusscher06::eIschemia)}
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.

Definition at line 96 of file TenTusscher06.h.

◆ model_variant

enum Variants Nektar::TenTusscher06::model_variant
protected

Definition at line 94 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_SetInitialConditions().

◆ s_inf_factor

NekDouble Nektar::TenTusscher06::s_inf_factor
protected

Definition at line 79 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ s_tau_f1

NekDouble Nektar::TenTusscher06::s_tau_f1
protected

Definition at line 80 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ s_tau_f2

NekDouble Nektar::TenTusscher06::s_tau_f2
protected

Definition at line 81 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ s_tau_f3

NekDouble Nektar::TenTusscher06::s_tau_f3
protected

Definition at line 82 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ s_tau_f4

NekDouble Nektar::TenTusscher06::s_tau_f4
protected

Definition at line 83 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().

◆ s_tau_f5

NekDouble Nektar::TenTusscher06::s_tau_f5
protected

Definition at line 84 of file TenTusscher06.h.

Referenced by TenTusscher06(), and v_Update().