Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Functions
FieldConvert.cpp File Reference
#include <string>
#include <boost/algorithm/string.hpp>
#include <boost/program_options.hpp>
#include "Module.h"
Include dependency graph for FieldConvert.cpp:

Go to the source code of this file.

Functions

int main (int argc, char *argv[])

Function Documentation

int main ( int  argc,
char *  argv[] 
)

Definition at line 45 of file FieldConvert.cpp.

References Nektar::Utilities::InputModule::AddFile(), ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::Utilities::eInputModule, Nektar::Utilities::eOutputModule, Nektar::Utilities::eProcessModule, Nektar::LibUtilities::GetCommFactory(), Nektar::Utilities::GetModuleFactory(), Nektar::LibUtilities::NekFactory< tKey, tBase, >::ModuleExists(), and Nektar::LibUtilities::NekFactory< tKey, tBase, >::PrintAvailableClasses().

{
po::options_description desc("Available options");
desc.add_options()
("help,h",
"Produce this help message.")
("modules-list,l",
"Print the list of available modules.")
("output-points,n", po::value<int>(),
"Output at p equipspaced points (for .dat, .vtk).")
("error,e",
"Write error of fields for regression checking")
("range,r", po::value<string>(),
"Define output range i.e. (-r xmin,xmax,ymin,ymax,zmin,zmax) "
"in which any vertex is contained.")
("nprocs", po::value<int>(),
"Used to define nprocs if running serial problem to mimic "
"parallel run.")
("procid", po::value<int>(),
"Process as single procid of a partition of size nproc "
"(-nproc must be specified).")
("modules-opt,p", po::value<string>(),
"Print options for a module.")
("module,m", po::value<vector<string> >(),
"Specify modules which are to be used.")
("useSessionVariables",
"Use variables defined in session for output")
("verbose,v",
"Enable verbose mode.");
po::options_description hidden("Hidden options");
hidden.add_options()
("input-file", po::value<vector<string> >(), "Input filename");
po::options_description cmdline_options;
cmdline_options.add(hidden).add(desc);
po::options_description visible("Allowed options");
visible.add(desc);
po::positional_options_description p;
p.add("input-file", -1);
po::variables_map vm;
try
{
po::store(po::command_line_parser(argc, argv).
options(cmdline_options).positional(p).run(), vm);
po::notify(vm);
}
catch (const std::exception& e)
{
cerr << e.what() << endl;
cerr << desc;
return 1;
}
// Print available modules.
if (vm.count("modules-list"))
{
return 1;
}
if (vm.count("modules-opt"))
{
vector<string> tmp1;
boost::split(tmp1, vm["modules-opt"].as<string>(),
boost::is_any_of(":"));
if (tmp1.size() != 2)
{
cerr << "ERROR: To specify a module, use one of in, out or proc "
<< "together with the filename; for example in:vtk." << endl;
return 1;
}
if (tmp1[0] != "in" && tmp1[0] != "out" && tmp1[0] != "proc")
{
cerr << "ERROR: Invalid module type " << tmp1[0] << endl;
return 1;
}
if (tmp1[0] == "in")
{
}
else if (tmp1[0] == "out")
{
}
else if (tmp1[0] == "proc")
{
}
FieldSharedPtr f = boost::shared_ptr<Field>(new Field());
ModuleKey(t, tmp1[1]), f);
cerr << "Options for module " << tmp1[1] << ":" << endl;
mod->PrintConfig();
return 1;
}
if (vm.count("help") || vm.count("input-file") != 1) {
cerr << "Usage: FieldConvert [options] inputfile.ext1 outputfile.ext2"
<< endl;
cout << desc;
cout << endl;
cout << "Example Usage: \n" << endl;
cout << "\t FieldConvert -m vorticity file.xml file.fld file_vort.fld "
<< endl;
cout << "(This will add vorticity to file file.fld and put it in a "
"new file file_vort.fld) " << endl;
cout << endl;
cout << "\t FieldConvert file.xml file_vort.fld file_vort.dat " << endl;
cout << "(process file_vort.fld and make a tecplot output "
"file_vort.dat) " << endl;
return 1;
}
ASSERTL0(vm.count("input-file"),
"Must specify input(s) and/or output file.");
vector<string> inout = vm["input-file"].as<vector<string> >();
/*
* Process list of modules. Each element of the vector of module strings can
* be in the following form:
*
* modname:arg1=a:arg2=b:arg3=c:arg4:arg5=asd
*
* where the only required argument is 'modname', specifing the name of the
* module to load.
*/
FieldSharedPtr f = boost::shared_ptr<Field>(new Field());
{
if(vm.count("procid"))
{
int nprocs, rank;
ASSERTL0(vm.count("nprocs"),
"Must specify --nprocs when using --procid option");
nprocs = vm["nprocs"].as<int>();
rank = vm["procid"].as<int>();
f->m_comm = boost::shared_ptr<FieldConvertComm>(
new FieldConvertComm(argc, argv, nprocs,rank));
}
else
{
"ParallelMPI", argc, argv);
}
}
else
{
"Serial", argc, argv);
}
vector<ModuleSharedPtr> modules;
vector<string> modcmds;
if (vm.count("verbose"))
{
f->m_verbose = true;
}
if (vm.count("module"))
{
modcmds = vm["module"].as<vector<string> >();
}
// Add input and output modules to beginning and end of this vector.
modcmds.insert(modcmds.begin(), inout.begin(), inout.end()-1);
modcmds.push_back(*(inout.end()-1));
int nInput = inout.size()-1;
InputModuleSharedPtr inputModule;
for (int i = 0; i < modcmds.size(); ++i)
{
// First split each command by the colon separator.
vector<string> tmp1;
ModuleKey module;
int offset = 1;
boost::split(tmp1, modcmds[i], boost::is_any_of(":"));
if (i < nInput || i == modcmds.size() - 1)
{
module.first = (i < nInput ? eInputModule : eOutputModule);
// If no colon detected, automatically detect mesh type from
// file extension. Otherwise override and use tmp1[1] as the
// module to load. This also allows us to pass options to
// input/output modules. So, for example, to override
// filename.xml to be read as vtk, you use:
//
// filename.xml:vtk:opt1=arg1:opt2=arg2
if (tmp1.size() == 1)
{
int dot = tmp1[0].find_last_of('.') + 1;
string ext = tmp1[0].substr(dot, tmp1[0].length() - dot);
if(ext == "gz")
{
string tmp2 = tmp1[0].substr(0,dot-1);
dot = tmp2.find_last_of('.') + 1;
ext = tmp1[0].substr(dot,tmp1[0].length()-dot);
}
module.second = ext;
tmp1.push_back(string(i < nInput ? "infile=" : "outfile=")
+tmp1[0]);
}
else
{
module.second = tmp1[1];
tmp1.push_back(string(i < nInput ? "infile=" : "outfile=")
+tmp1[0]);
offset++;
}
}
else
{
module.first = eProcessModule;
module.second = tmp1[0];
}
// Create module.
mod = GetModuleFactory().CreateInstance(module, f);
modules.push_back(mod);
if (i < nInput)
{
inputModule = boost::dynamic_pointer_cast<InputModule>(mod);
inputModule->AddFile(module.second, tmp1[0]);
}
// Set options for this module.
for (int j = offset; j < tmp1.size(); ++j)
{
vector<string> tmp2;
boost::split(tmp2, tmp1[j], boost::is_any_of("="));
if (tmp2.size() == 1)
{
mod->RegisterConfig(tmp2[0], "1");
}
else if (tmp2.size() == 2)
{
mod->RegisterConfig(tmp2[0], tmp2[1]);
}
else
{
cerr << "ERROR: Invalid module configuration: format is "
<< "either :arg or :arg=val" << endl;
abort();
}
}
// Ensure configuration options have been set.
mod->SetDefaults();
}
// If any output module has to reset points then set intput modules to match
bool RequiresEquiSpaced = false;
for (int i = 0; i < modules.size(); ++i)
{
if(modules[i]->GetRequireEquiSpaced())
{
RequiresEquiSpaced = true;
}
}
if (RequiresEquiSpaced)
{
for (int i = 0; i < modules.size(); ++i)
{
modules[i]->SetRequireEquiSpaced(true);
}
}
// Run field process.
for (int i = 0; i < modules.size(); ++i)
{
modules[i]->Process(vm);
cout.flush();
}
return 0;
}