Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Friends | List of all members
Nektar::APE Class Reference

#include <APE.h>

Inheritance diagram for Nektar::APE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::APE:
Collaboration graph
[legend]

Public Member Functions

virtual ~APE ()
 Destructor.
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor.
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable.
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor.
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object.
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem.
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem.
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space.
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space.
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve.
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation.
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name.
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name.
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name.
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available.
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics.
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda.
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file.
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session.
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session.
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name.
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow.
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields.
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution.
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution.
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields.
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $.
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $.
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $.
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection.
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection.
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form.
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields.
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields.
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename.
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename.
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file.
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains.
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file.
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file.
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point.
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file.
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary.
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated.
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time.
SOLVER_UTILS_EXPORT int GetNcoeffs ()
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
SOLVER_UTILS_EXPORT int GetNumExpModes ()
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
SOLVER_UTILS_EXPORT int GetNvariables ()
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
SOLVER_UTILS_EXPORT int GetExpSize ()
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
SOLVER_UTILS_EXPORT int GetTotPoints ()
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
SOLVER_UTILS_EXPORT int GetNpoints ()
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
SOLVER_UTILS_EXPORT int GetSteps ()
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
SOLVER_UTILS_EXPORT void SetStepsToOne ()
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
SOLVER_UTILS_EXPORT void FwdTransFields ()
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const string &s1, const string &s2)
 Perform a case-insensitive string comparison.

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class.

Static Public Attributes

static std::string className
 Name of class.

Protected Member Functions

 APE (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members.
virtual void v_InitObject ()
 Initialization object for the APE class.
virtual void v_DoInitialise ()
 Sets up initial conditions.
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side.
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection.
virtual void v_GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 Compute the flux vectors.
virtual void v_GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 Evaulate flux = m_fields*ivel for i th component of Vu for direction j.
virtual void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 Compute the numerical flux through the element boundaries.
virtual void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
void AddSource (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 sourceterm for p' equation obtained from GetSource
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetNormals ()
 Get the normal vectors.
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetVecLocs ()
 Get the locations of the components of the directed fields within the fields array.
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetBasefield ()
 Get the baseflow field.
NekDouble GetGamma ()
 Get the heat capacity ratio.
NekDouble GetRho ()
 Get the density.
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members.
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control.
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem.
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s)
 Print a summary of time stepping parameters.
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file.
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop.
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time)
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members.
int nocase_cmp (const string &s1, const string &s2)
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time.
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution.
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution.
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space.
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space.
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
virtual SOLVER_UTILS_EXPORT void v_Output (void)
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)

Protected Attributes

SolverUtils::RiemannSolverSharedPtr m_riemannSolver
Array< OneD, Array< OneD,
NekDouble > > 
m_traceBasefield
Array< OneD, Array< OneD,
NekDouble > > 
m_vecLocs
NekDouble m_Rho0
 Constant incompressible density (APE)
NekDouble m_gamma
 Isentropic coefficient, Ratio of specific heats (APE)
Array< OneD, Array< OneD,
NekDouble > > 
m_basefield
std::vector< std::string > m_basefield_names
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information.
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme.
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use.
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
NekDouble m_epsilon
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used.
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used.
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used.
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state.
std::vector< int > m_intVariables
std::vector< FilterSharedPtrm_filters
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator.
LibUtilities::SessionReaderSharedPtr m_session
 The session reader.
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output.
Array< OneD,
MultiRegions::ExpListSharedPtr
m_fields
 Array holding all dependent variables.
Array< OneD,
MultiRegions::ExpListSharedPtr
m_base
 Base fields.
Array< OneD,
MultiRegions::ExpListSharedPtr
m_derivedfields
 Array holding all dependent variables.
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object.
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh.
std::string m_filename
 Filename.
std::string m_sessionName
 Name of the session.
NekDouble m_time
 Current time of simulation.
NekDouble m_fintime
 Finish time of the simulation.
NekDouble m_timestep
 Time step size.
NekDouble m_lambda
 Lambda constant in real system if one required.
NekDouble m_checktime
 Time between checkpoints.
int m_steps
 Number of steps to take.
int m_checksteps
 Number of steps between checkpoints.
int m_spacedim
 Spatial dimension (>= expansion dim).
int m_expdim
 Expansion dimension.
bool m_SingleMode
 Flag to determine if single homogeneous mode is used.
bool m_HalfMode
 Flag to determine if half homogeneous mode is used.
bool m_MultipleModes
 Flag to determine if use multiple homogenenous modes are used.
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform.
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations.
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous.
Array< OneD, Array< OneD,
NekDouble > > 
m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction.
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_gradtan
 1 x nvariable x nq
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_tanbasis
 2 x m_spacedim x nq
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields.
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error.
enum HomogeneousType m_HomogeneousType
NekDouble m_LhomX
 physical length in X direction (if homogeneous)
NekDouble m_LhomY
 physical length in Y direction (if homogeneous)
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous)
int m_npointsX
 number of points in X direction (if homogeneous)
int m_npointsY
 number of points in Y direction (if homogeneous)
int m_npointsZ
 number of points in Z direction (if homogeneous)
int m_HomoDirec
 number of homogenous directions
int m_NumMode
 Mode to use in case of single mode analysis.

Private Member Functions

void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 Apply the Boundary Conditions to the APE equations.
void WallBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary conditions for the APE equations.

Friends

class MemoryManager< APE >

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1).
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...

Detailed Description

Definition at line 47 of file APE.h.

Constructor & Destructor Documentation

Nektar::APE::~APE ( )
virtual

Destructor.

Destructor for APE class.

Definition at line 133 of file APE.cpp.

{
}
Nektar::APE::APE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Initialises UnsteadySystem class members.

Definition at line 48 of file APE.cpp.

: UnsteadySystem(pSession)
{
}

Member Function Documentation

void Nektar::APE::AddSource ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
protected

sourceterm for p' equation obtained from GetSource

Definition at line 530 of file APE.cpp.

References Nektar::MultiRegions::eDiscontinuous, Nektar::SolverUtils::EquationSystem::EvaluateFunction(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_time, and Vmath::Vadd().

Referenced by DoOdeRhs().

{
int ncoeffs = outarray[0].num_elements();
int nq = inarray[0].num_elements();
Array<OneD, NekDouble> source(nq);
EvaluateFunction("S", source, "Source", m_time);
{
m_fields[0]->IProductWRTBase(source,source);
}
Vmath::Vadd(ncoeffs,source,1,outarray[0],1,outarray[0],1);
}
static EquationSystemSharedPtr Nektar::APE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 54 of file APE.h.

{
p->InitObject();
return p;
}
void Nektar::APE::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection.

Definition at line 383 of file APE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

{
int i;
int nvariables = inarray.num_elements();
int nq = m_fields[0]->GetNpoints();
// deep copy
for(int i = 0; i < nvariables; ++i)
{
Vmath::Vcopy(nq,inarray[i],1,outarray[i],1);
}
{
{
SetBoundaryConditions(outarray,time);
break;
}
{
Array<OneD, NekDouble> coeffs(m_fields[0]->GetNcoeffs());
for(i = 0; i < nvariables; ++i)
{
m_fields[i]->FwdTrans(outarray[i],coeffs);
m_fields[i]->BwdTrans_IterPerExp(coeffs,outarray[i]);
}
break;
}
default:
ASSERTL0(false,"Unknown projection scheme");
break;
}
}
void Nektar::APE::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the right-hand side.

Definition at line 273 of file APE.cpp.

References AddSource(), ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetFluxVector(), Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Neg(), Vmath::Vadd(), Vmath::Vcopy(), Nektar::SolverUtils::EquationSystem::WeakDGAdvection(), and Vmath::Zero().

Referenced by v_InitObject().

{
int i;
int ndim = m_spacedim;
int nvariables = inarray.num_elements();
int ncoeffs = GetNcoeffs();
int nq = GetTotPoints();
{
{
//-------------------------------------------------------
//inarray in physical space
Array<OneD, Array<OneD, NekDouble> > modarray(nvariables);
for (i = 0; i < nvariables; ++i)
{
modarray[i] = Array<OneD, NekDouble>(ncoeffs);
}
// get the advection part
// input: physical space
// output: modal space
// straighforward DG
WeakDGAdvection(inarray, modarray, true, true);
// negate the outarray since moving terms to the rhs
for(i = 0; i < nvariables; ++i)
{
Vmath::Neg(ncoeffs,modarray[i],1);
}
// Add "source term"
// input: physical space
// output: modal space (JOSEF)
AddSource(inarray, modarray);
for(i = 0; i < nvariables; ++i)
{
m_fields[i]->MultiplyByElmtInvMass(modarray[i],modarray[i]);
m_fields[i]->BwdTrans(modarray[i],outarray[i]);
}
break;
}
{
Array<OneD, Array<OneD, NekDouble> > physarray(nvariables);
Array<OneD, Array<OneD, NekDouble> > modarray(nvariables);
for (i = 0; i < nvariables; ++i)
{
physarray[i] = Array<OneD, NekDouble>(nq);
modarray[i] = Array<OneD, NekDouble>(ncoeffs);
}
// deep copy
for(i = 0; i < nvariables; ++i)
{
Vmath::Vcopy(nq,inarray[i],1,physarray[i],1);
}
Array<OneD, Array<OneD, NekDouble> > fluxvector(ndim);
for(i = 0; i < ndim; ++i)
{
fluxvector[i] = Array<OneD, NekDouble>(nq);
}
Array<OneD,NekDouble> tmp(nq);
Array<OneD, NekDouble>tmp1(nq);
for(i = 0; i < nvariables; ++i)
{
// Get the ith component of the flux vector in (physical space)
APE::GetFluxVector(i, physarray, fluxvector);
Vmath::Zero(nq, outarray[i], 1);
for (int j = 0; j < ndim; ++j)
{
// Get the ith component of the flux vector in (physical space)
m_fields[0]->PhysDeriv(j,fluxvector[j],tmp1);
Vmath::Vadd(nq, outarray[i], 1, tmp1, 1, outarray[i], 1);
}
Vmath::Neg(nq,outarray[i],1);
}
// Add "source term"
// input: physical space
// output: modal space
AddSource(physarray,outarray);
break;
}
default:
ASSERTL0(false,"Unknown projection scheme for the APE");
break;
}
}
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetBasefield ( )
protected

Get the baseflow field.

Definition at line 568 of file APE.cpp.

References m_basefield, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, and m_traceBasefield.

Referenced by v_InitObject().

{
for (int i = 0; i < m_spacedim +1; i++)
{
m_fields[0]->ExtractTracePhys(m_basefield[i], m_traceBasefield[i]);
}
}
NekDouble Nektar::APE::GetGamma ( )
protected

Get the heat capacity ratio.

Definition at line 581 of file APE.cpp.

References m_gamma.

Referenced by v_InitObject().

{
return m_gamma;
}
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetNormals ( )
protected

Get the normal vectors.

Definition at line 550 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_traceNormals.

Referenced by v_InitObject().

{
}
NekDouble Nektar::APE::GetRho ( )
protected

Get the density.

Definition at line 590 of file APE.cpp.

References m_Rho0.

Referenced by v_InitObject().

{
return m_Rho0;
}
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetVecLocs ( )
protected

Get the locations of the components of the directed fields within the fields array.

Definition at line 559 of file APE.cpp.

References m_vecLocs.

Referenced by v_InitObject().

{
return m_vecLocs;
}
void Nektar::APE::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
private

Apply the Boundary Conditions to the APE equations.

Definition at line 429 of file APE.cpp.

References Nektar::SpatialDomains::eTimeDependent, Nektar::SpatialDomains::eWall, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, and WallBC().

Referenced by DoOdeProjection().

{
std::string varName;
int nvariables = m_fields.num_elements();
int cnt = 0;
// loop over Boundary Regions
for(int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
{
// Wall Boundary Condition
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() == SpatialDomains::eWall)
{
WallBC(n, cnt, inarray);
}
// Time Dependent Boundary Condition (specified in meshfile)
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() == SpatialDomains::eTimeDependent)
{
for (int i = 0; i < nvariables; ++i)
{
varName = m_session->GetVariable(i);
m_fields[i]->EvaluateBoundaryConditions(time, varName);
}
}
cnt +=m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
}
}
void Nektar::APE::v_DoInitialise ( void  )
protectedvirtual

Sets up initial conditions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 142 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::SetInitialConditions().

void Nektar::APE::v_GetFluxVector ( const int  i,
Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  flux 
)
protectedvirtual

Compute the flux vectors.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 208 of file APE.cpp.

References ASSERTL1, Nektar::SolverUtils::EquationSystem::EvaluateFunction(), m_basefield, m_basefield_names, m_gamma, m_Rho0, Vmath::Smul(), Vmath::Vadd(), Vmath::Vmul(), and Vmath::Zero().

Referenced by v_GetFluxVector().

{
ASSERTL1(flux.num_elements() == m_basefield.num_elements() - 1,
"Dimension of flux array and velocity array do not match");
int nq = physfield[0].num_elements();
NekDouble tmp0 = 0.0;
Array<OneD, NekDouble> tmp1(nq);
Array<OneD, NekDouble> tmp2(nq);
if (i == 0)
{
// F_{adv,p',j} = \gamma p_0 u'_j + p' \bar{u}_j
for (int j = 0; j < flux.num_elements(); ++j)
{
Vmath::Zero(nq, flux[j], 1);
// construct \gamma p_0 u'_j term
Vmath::Smul(nq, m_gamma, m_basefield[0], 1, tmp1, 1);
Vmath::Vmul(nq, tmp1, 1, physfield[j+1], 1, tmp1, 1);
// construct p' \bar{u}_j term
Vmath::Vmul(nq, physfield[0], 1, m_basefield[j+1], 1, tmp2, 1);
// add both terms
Vmath::Vadd(nq, tmp1, 1, tmp2, 1, flux[j], 1);
}
}
else
{
// F_{adv,u'_i,j} = (p'/ rho + \bar{u}_k u'_k) \delta_{ij}
for (int j = 0; j < flux.num_elements(); ++j)
{
Vmath::Zero(nq, flux[j], 1);
if (i-1 == j)
{
// contruct p'/ rho term
tmp0 = 1 / m_Rho0;
Vmath::Smul(nq, tmp0, physfield[0], 1, flux[j], 1);
// construct \bar{u}_k u'_k term
Vmath::Zero(nq, tmp1, 1);
for (int k = 0; k < flux.num_elements(); ++k)
{
Vmath::Vmul(nq, physfield[k+1], 1, m_basefield[k+1], 1, tmp2, 1);
Vmath::Vadd(nq, tmp1, 1, tmp2, 1, tmp1, 1);
}
// add terms
Vmath::Vadd(nq, flux[j], 1, tmp1, 1, flux[j], 1);
}
}
}
}
void Nektar::APE::v_GetFluxVector ( const int  i,
const int  j,
Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  flux 
)
protectedvirtual

Evaulate flux = m_fields*ivel for i th component of Vu for direction j.

Compute the flux vectors.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 197 of file APE.cpp.

References v_GetFluxVector().

{
v_GetFluxVector(i, physfield, flux);
}
void Nektar::APE::v_InitObject ( )
protectedvirtual

Initialization object for the APE class.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 58 of file APE.cpp.

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, GetBasefield(), GetGamma(), GetNormals(), GetRho(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), GetVecLocs(), m_basefield, m_basefield_names, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, m_Rho0, m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_traceBasefield, and m_vecLocs.

{
// TODO: We have a bug somewhere in the 1D boundary conditions. Therefore 1D
// problems are currently disabled. This should get fixed in the future.
ASSERTL0(m_spacedim > 1, "1D problems currently not supported by the APE class.");
// Load constant incompressible density
m_session->LoadParameter("Rho0", m_Rho0, 1.204);
// Load isentropic coefficient, Ratio of specific heats
m_session->LoadParameter("Gamma", m_gamma, 1.4);
// Define Baseflow fields
m_basefield = Array<OneD, Array<OneD, NekDouble> >(m_spacedim + 1);
m_basefield_names.push_back("P0");
m_basefield_names.push_back("U0");
m_basefield_names.push_back("V0");
m_basefield_names.push_back("W0");
// Resize the advection velocities vector to dimension of the problem
// if discontinuous determine numerical flux to use
{
// Do not forwards transform initial condition
// Define the normal velocity fields
if (m_fields[0]->GetTrace())
{
m_traceBasefield = Array<OneD, Array<OneD, NekDouble> > (m_spacedim+1);
for (int i = 0; i < m_spacedim + 1; i++)
{
m_traceBasefield[i] = Array<OneD, NekDouble>(GetTraceNpoints());
}
}
// Set up locations of velocity and base velocity vectors.
m_vecLocs = Array<OneD, Array<OneD, NekDouble> >(1);
m_vecLocs[0] = Array<OneD, NekDouble>(m_spacedim);
for (int i = 0; i < m_spacedim; ++i)
{
// u', v', w'
m_vecLocs[0][i] = 1 + i;
}
string riemName;
m_session->LoadSolverInfo("UpwindType", riemName, "APEUpwind");
riemName = "APEUpwind";
m_riemannSolver->SetVector("N", &APE::GetNormals, this);
m_riemannSolver->SetVector("basefield", &APE::GetBasefield, this);
m_riemannSolver->SetAuxVec("vecLocs", &APE::GetVecLocs, this);
m_riemannSolver->SetParam ("Gamma", &APE::GetGamma, this);
m_riemannSolver->SetParam ("Rho", &APE::GetRho, this);
}
{
}
else
{
ASSERTL0(false, "Implicit APE not set up.");
}
}
void Nektar::APE::v_NumericalFlux ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numflux 
)
protectedvirtual

Compute the numerical flux through the element boundaries.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 152 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, m_riemannSolver, and Nektar::SolverUtils::EquationSystem::m_spacedim.

{
//Number the points of the shared edges of the elements
int ntp = GetTraceTotPoints();
int nvar = physfield.num_elements();
// temporary arrays
Array<OneD, Array<OneD, NekDouble> > Fwd(nvar);
Array<OneD, Array<OneD, NekDouble> > Bwd(nvar);
for (int i = 0; i < nvar; ++i)
{
Fwd[i] = Array<OneD, NekDouble>(ntp);
Bwd[i] = Array<OneD, NekDouble>(ntp);
}
// get the physical values at the trace
for (int i = 0; i < nvar; ++i)
{
m_fields[i]->GetFwdBwdTracePhys(physfield[i],Fwd[i],Bwd[i]);
}
// Solve the Riemann problem
m_riemannSolver->Solve(m_spacedim, Fwd, Bwd, numflux);
}
void Nektar::APE::v_NumericalFlux ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numfluxX,
Array< OneD, Array< OneD, NekDouble > > &  numfluxY 
)
protectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 185 of file APE.cpp.

References ASSERTL0.

{
ASSERTL0(false, "This function is not implemented for this equation.");
}
void Nektar::APE::WallBC ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Wall boundary conditions for the APE equations.

Definition at line 462 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vvtvp().

Referenced by SetBoundaryConditions().

{
int nTracePts = GetTraceTotPoints();
int nVariables = physarray.num_elements();
const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
// Get physical values of the forward trace
Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
for (int i = 0; i < nVariables; ++i)
{
Fwd[i] = Array<OneD, NekDouble>(nTracePts);
m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
}
// Adjust the physical values of the trace to take
// user defined boundaries into account
int id1, id2, nBCEdgePts;
int eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
for (int e = 0; e < eMax; ++e)
{
nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
GetExp(e)->GetTotPoints();
id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
// For 2D/3D, define: v* = v - 2(v.n)n
Array<OneD, NekDouble> tmp(nBCEdgePts, 0.0);
// Calculate (v.n)
for (int i = 0; i < m_spacedim; ++i)
{
Vmath::Vvtvp(nBCEdgePts,
&Fwd[1+i][id2], 1,
&m_traceNormals[i][id2], 1,
&tmp[0], 1,
&tmp[0], 1);
}
// Calculate 2.0(v.n)
Vmath::Smul(nBCEdgePts, -2.0, &tmp[0], 1, &tmp[0], 1);
// Calculate v* = v - 2.0(v.n)n
for (int i = 0; i < m_spacedim; ++i)
{
Vmath::Vvtvp(nBCEdgePts,
&tmp[0], 1,
&m_traceNormals[i][id2], 1,
&Fwd[1+i][id2], 1,
&Fwd[1+i][id2], 1);
}
// Copy boundary adjusted values into the boundary expansion
for (int i = 0; i < nVariables; ++i)
{
Vmath::Vcopy(nBCEdgePts,
&Fwd[i][id2], 1,
&(m_fields[i]->GetBndCondExpansions()[bcRegion]->UpdatePhys())[id1], 1);
}
}
}

Friends And Related Function Documentation

friend class MemoryManager< APE >
friend

Definition at line 51 of file APE.h.

Member Data Documentation

string Nektar::APE::className
static
Initial value:
"APE", APE::create,
"Acoustic perturbation equations in conservative variables.")

Name of class.

Definition at line 62 of file APE.h.

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_basefield
protected

Definition at line 77 of file APE.h.

Referenced by GetBasefield(), v_GetFluxVector(), and v_InitObject().

std::vector<std::string> Nektar::APE::m_basefield_names
protected

Definition at line 78 of file APE.h.

Referenced by v_GetFluxVector(), and v_InitObject().

NekDouble Nektar::APE::m_gamma
protected

Isentropic coefficient, Ratio of specific heats (APE)

Definition at line 76 of file APE.h.

Referenced by GetGamma(), v_GetFluxVector(), and v_InitObject().

NekDouble Nektar::APE::m_Rho0
protected

Constant incompressible density (APE)

Definition at line 74 of file APE.h.

Referenced by GetRho(), v_GetFluxVector(), and v_InitObject().

SolverUtils::RiemannSolverSharedPtr Nektar::APE::m_riemannSolver
protected

Definition at line 70 of file APE.h.

Referenced by v_InitObject(), and v_NumericalFlux().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_traceBasefield
protected

Definition at line 71 of file APE.h.

Referenced by GetBasefield(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_vecLocs
protected

Definition at line 72 of file APE.h.

Referenced by GetVecLocs(), and v_InitObject().