Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Static Public Member Functions | Static Public Attributes | Protected Member Functions | List of all members
Nektar::ExactSolverToro Class Reference

#include <ExactSolverToro.h>

Inheritance diagram for Nektar::ExactSolverToro:
Inheritance graph
[legend]
Collaboration diagram for Nektar::ExactSolverToro:
Collaboration graph
[legend]

Static Public Member Functions

static RiemannSolverSharedPtr create ()

Static Public Attributes

static std::string solverName

Protected Member Functions

 ExactSolverToro ()
virtual void v_PointSolve (NekDouble rhoL, NekDouble rhouL, NekDouble rhovL, NekDouble rhowL, NekDouble EL, NekDouble rhoR, NekDouble rhouR, NekDouble rhovR, NekDouble rhowR, NekDouble ER, NekDouble &rhof, NekDouble &rhouf, NekDouble &rhovf, NekDouble &rhowf, NekDouble &Ef)
 Exact Riemann solver for the Euler equations.
- Protected Member Functions inherited from Nektar::CompressibleSolver
 CompressibleSolver ()
virtual void v_Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)
virtual void v_ArraySolve (const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)
virtual void v_PointSolveVisc (NekDouble rhoL, NekDouble rhouL, NekDouble rhovL, NekDouble rhowL, NekDouble EL, NekDouble EpsL, NekDouble rhoR, NekDouble rhouR, NekDouble rhovR, NekDouble rhowR, NekDouble ER, NekDouble EpsR, NekDouble &rhof, NekDouble &rhouf, NekDouble &rhovf, NekDouble &rhowf, NekDouble &Ef, NekDouble &Epsf)
- Protected Member Functions inherited from Nektar::SolverUtils::RiemannSolver
SOLVER_UTILS_EXPORT RiemannSolver ()
void GenerateRotationMatrices (const Array< OneD, const Array< OneD, NekDouble > > &normals)
 Generate rotation matrices for 3D expansions.
void FromToRotation (Array< OneD, const NekDouble > &from, Array< OneD, const NekDouble > &to, NekDouble *mat)
 A function for creating a rotation matrix that rotates a vector from into another vector to.
SOLVER_UTILS_EXPORT void rotateToNormal (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
 Rotate a vector field to trace normal.
SOLVER_UTILS_EXPORT void rotateFromNormal (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const Array< OneD, const Array< OneD, NekDouble > > &normals, const Array< OneD, const Array< OneD, NekDouble > > &vecLocs, Array< OneD, Array< OneD, NekDouble > > &outarray)
 Rotate a vector field from trace normal.
bool CheckScalars (std::string name)
 Determine whether a scalar has been defined in m_scalars.
bool CheckVectors (std::string name)
 Determine whether a vector has been defined in m_vectors.
bool CheckParams (std::string name)
 Determine whether a parameter has been defined in m_params.
bool CheckAuxScal (std::string name)
 Determine whether a scalar has been defined in m_auxScal.
bool CheckAuxVec (std::string name)
 Determine whether a vector has been defined in m_auxVec.

Additional Inherited Members

- Public Member Functions inherited from Nektar::SolverUtils::RiemannSolver
SOLVER_UTILS_EXPORT void Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble > > &Fwd, const Array< OneD, const Array< OneD, NekDouble > > &Bwd, Array< OneD, Array< OneD, NekDouble > > &flux)
 Perform the Riemann solve given the forwards and backwards spaces.
template<typename FuncPointerT , typename ObjectPointerT >
void SetScalar (std::string name, FuncPointerT func, ObjectPointerT obj)
void SetScalar (std::string name, RSScalarFuncType fp)
template<typename FuncPointerT , typename ObjectPointerT >
void SetVector (std::string name, FuncPointerT func, ObjectPointerT obj)
void SetVector (std::string name, RSVecFuncType fp)
template<typename FuncPointerT , typename ObjectPointerT >
void SetParam (std::string name, FuncPointerT func, ObjectPointerT obj)
void SetParam (std::string name, RSParamFuncType fp)
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxScal (std::string name, FuncPointerT func, ObjectPointerT obj)
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxVec (std::string name, FuncPointerT func, ObjectPointerT obj)
std::map< std::string,
RSScalarFuncType > & 
GetScalars ()
std::map< std::string,
RSVecFuncType > & 
GetVectors ()
std::map< std::string,
RSParamFuncType > & 
GetParams ()
- Public Attributes inherited from Nektar::SolverUtils::RiemannSolver
int m_spacedim
- Protected Attributes inherited from Nektar::CompressibleSolver
bool m_pointSolve

Detailed Description

Definition at line 43 of file ExactSolverToro.h.

Constructor & Destructor Documentation

Nektar::ExactSolverToro::ExactSolverToro ( )
protected

Definition at line 49 of file ExactSolverToro.cpp.

Referenced by create().

Member Function Documentation

static RiemannSolverSharedPtr Nektar::ExactSolverToro::create ( )
inlinestatic

Definition at line 46 of file ExactSolverToro.h.

References ExactSolverToro().

void Nektar::ExactSolverToro::v_PointSolve ( NekDouble  rhoL,
NekDouble  rhouL,
NekDouble  rhovL,
NekDouble  rhowL,
NekDouble  EL,
NekDouble  rhoR,
NekDouble  rhouR,
NekDouble  rhovR,
NekDouble  rhowR,
NekDouble  ER,
NekDouble rhof,
NekDouble rhouf,
NekDouble rhovf,
NekDouble rhowf,
NekDouble Ef 
)
protectedvirtual

Exact Riemann solver for the Euler equations.

This algorithm is transcribed from:

"Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction", E. F. Toro (3rd edition, 2009).

The full Fortran 77 routine can be found at the end of chapter 4 (section 4.9). This transcription is essentially the functions STARPU and SAMPLE glued together, and variable names are kept mostly the same. See the preceding chapter which explains the derivation of the solver. The routines PREFUN and GUESSP are kept separate and are reproduced above.

Parameters
rhoLDensity left state.
rhoRDensity right state.
rhouLx-momentum component left state.
rhouRx-momentum component right state.
rhovLy-momentum component left state.
rhovRy-momentum component right state.
rhowLz-momentum component left state.
rhowRz-momentum component right state.
ELEnergy left state.
EREnergy right state.
rhofComputed Riemann flux for density.
rhoufComputed Riemann flux for x-momentum component
rhovfComputed Riemann flux for y-momentum component
rhowfComputed Riemann flux for z-momentum component
EfComputed Riemann flux for energy.

Reimplemented from Nektar::CompressibleSolver.

Definition at line 170 of file ExactSolverToro.cpp.

References ASSERTL0, Nektar::guessp(), Nektar::SolverUtils::RiemannSolver::m_params, NRITER, Nektar::prefun(), and TOL.

{
static NekDouble gamma = m_params["gamma"]();
// Left and right variables.
NekDouble uL = rhouL / rhoL;
NekDouble vL = rhovL / rhoL;
NekDouble wL = rhowL / rhoL;
NekDouble uR = rhouR / rhoR;
NekDouble vR = rhovR / rhoR;
NekDouble wR = rhowR / rhoR;
// Left and right pressure.
NekDouble pL = (gamma - 1.0) *
(EL - 0.5 * (rhouL*uL + rhovL*vL + rhowL*wL));
NekDouble pR = (gamma - 1.0) *
(ER - 0.5 * (rhouR*uR + rhovR*vR + rhowR*wR));
// Compute gammas.
NekDouble g[] = { gamma,
(gamma-1.0)/(2.0*gamma),
(gamma+1.0)/(2.0*gamma),
2.0*gamma/(gamma-1.0),
2.0/(gamma-1.0),
2.0/(gamma+1.0),
(gamma-1.0)/(gamma+1.0),
0.5*(gamma-1.0),
gamma-1.0 };
// Compute sound speeds.
NekDouble cL = sqrt(gamma * pL / rhoL);
NekDouble cR = sqrt(gamma * pR / rhoR);
ASSERTL0(g[4]*(cL+cR) > (uR-uL), "Vacuum is generated by given data.");
// Guess initial pressure.
NekDouble pOld = guessp(g, rhoL, uL, pL, cL, rhoR, uR, pR, cR);
NekDouble uDiff = uR - uL;
NekDouble p, fL, fR, fLd, fRd, change;
int k;
// Newton-Raphson iteration for pressure in star region.
for (k = 0; k < NRITER; ++k)
{
prefun(g, pOld, rhoL, pL, cL, fL, fLd);
prefun(g, pOld, rhoR, pR, cR, fR, fRd);
p = pOld - (fL+fR+uDiff) / (fLd+fRd);
change = 2 * fabs((p-pOld)/(p+pOld));
if (change <= TOL)
{
break;
}
if (p < 0.0)
{
p = TOL;
}
pOld = p;
}
ASSERTL0(k < NRITER, "Divergence in Newton-Raphson scheme");
// Compute velocity in star region.
NekDouble u = 0.5*(uL+uR+fR-fL);
// -- SAMPLE ROUTINE --
// The variable S aligns with the Fortran parameter S of the SAMPLE
// routine, but is hard-coded as 0 (and should be optimised out by the
// compiler). Since we are using a Godunov scheme we pick this as 0 (see
// chapter 6 of Toro 2009).
const NekDouble S = 0.0;
// Computed primitive variables.
NekDouble outRho, outU, outV, outW, outP;
if (S <= u)
{
if (p <= pL)
{
// Left rarefaction
NekDouble shL = uL - cL;
if (S <= shL)
{
// Sampled point is left data state.
outRho = rhoL;
outU = uL;
outV = vL;
outW = wL;
outP = pL;
}
else
{
NekDouble cmL = cL*pow(p/pL, g[1]);
NekDouble stL = u - cmL;
if (S > stL)
{
// Sampled point is star left state
outRho = rhoL*pow(p/pL, 1.0/gamma);
outU = u;
outV = vL;
outW = wL;
outP = p;
}
else
{
// Sampled point is inside left fan
NekDouble c = g[5]*(cL + g[7]*(uL - S));
outRho = rhoL*pow(c/cL, g[4]);
outU = g[5]*(cL + g[7]*uL + S);
outV = vL;
outW = wL;
outP = pL*pow(c/cL, g[3]);
}
}
}
else
{
// Left shock
NekDouble pmL = p / pL;
NekDouble SL = uL - cL*sqrt(g[2]*pmL + g[1]);
if (S <= SL)
{
// Sampled point is left data state
outRho = rhoL;
outU = uL;
outV = vL;
outW = wL;
outP = pL;
}
else
{
// Sampled point is star left state
outRho = rhoL*(pmL + g[6])/(pmL*g[6] + 1.0);
outU = u;
outV = vL;
outW = wL;
outP = p;
}
}
}
else
{
if (p > pR)
{
// Right shock
NekDouble pmR = p/pR;
NekDouble SR = uR + cR*sqrt(g[2]*pmR + g[1]);
if (S >= SR)
{
// Sampled point is right data state
outRho = rhoR;
outU = uR;
outV = vR;
outW = wR;
outP = pR;
}
else
{
// Sampled point is star right state
outRho = rhoR*(pmR + g[6])/(pmR*g[6] + 1.0);
outU = u;
outV = vR;
outW = wR;
outP = p;
}
}
else
{
// Right rarefaction
NekDouble shR = uR + cR;
if (S >= shR)
{
// Sampled point is right data state
outRho = rhoR;
outU = uR;
outV = vR;
outW = wR;
outP = pR;
}
else
{
NekDouble cmR = cR*pow(p/pR, g[1]);
NekDouble stR = u + cmR;
if (S <= stR)
{
// Sampled point is star right state
outRho = rhoR*pow(p/pR, 1.0/gamma);
outU = u;
outV = vR;
outW = wR;
outP = p;
}
else
{
// Sampled point is inside left fan
NekDouble c = g[5]*(cR - g[7]*(uR-S));
outRho = rhoR*pow(c/cR, g[4]);
outU = g[5]*(-cR + g[7]*uR + S);
outV = vR;
outW = wR;
outP = pR*pow(c/cR, g[3]);
}
}
}
}
// Transform computed primitive variables to fluxes.
rhof = outRho * outU;
rhouf = outP + outRho*outU*outU;
rhovf = outRho * outU * outV;
rhowf = outRho * outU * outW;
Ef = outU*(outP/(gamma-1.0) + 0.5*outRho*
(outU*outU + outV*outV + outW*outW) + outP);
}

Member Data Documentation

std::string Nektar::ExactSolverToro::solverName
static
Initial value:

Definition at line 52 of file ExactSolverToro.h.