Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::MultiRegions::DisContField3DHomogeneous1D Class Reference

#include <DisContField3DHomogeneous1D.h>

Inheritance diagram for Nektar::MultiRegions::DisContField3DHomogeneous1D:
Inheritance graph
[legend]
Collaboration diagram for Nektar::MultiRegions::DisContField3DHomogeneous1D:
Collaboration graph
[legend]

Public Member Functions

 DisContField3DHomogeneous1D ()
 DisContField3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing)
 DisContField3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable)
 DisContField3DHomogeneous1D (const DisContField3DHomogeneous1D &In, const bool DeclarePlanesSetCoeffPhys=true)
 Copy constructor.
virtual ~DisContField3DHomogeneous1D ()
 Destructor.
void SetupBoundaryConditions (const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, SpatialDomains::BoundaryConditions &bcs, const std::string variable)
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="")
 This function evaluates the boundary conditions at a certaintime-level.
const Array< OneD, const
MultiRegions::ExpListSharedPtr > & 
GetBndCondExpansions ()
const Array< OneD, const
SpatialDomains::BoundaryConditionShPtr > & 
GetBndConditions ()
boost::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
Array< OneD,
SpatialDomains::BoundaryConditionShPtr > & 
UpdateBndConditions ()
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 Set up a list of element ids and edge ids the link to the boundary conditions.
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 This funtion extract form a vector containing a full 3D-homogenous-1D field the value associated with a specific boundary conditions. TotField is the full field contaning all the physical values BndVals is the vector where the boundary physical values are stored BndID is the identifier of the boundary region.
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 This function calculate the inner product of two vectors (V1 and V2) respect to the basis along a boundary region. outarray is the inner product result multiplied by the normal to the edge (specified by the BndID)
- Public Member Functions inherited from Nektar::MultiRegions::ExpList3DHomogeneous1D
 ExpList3DHomogeneous1D ()
 Default constructor.
 ExpList3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing)
 ExpList3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &var="DefaultVar")
 Sets up a list of local expansions based on an input mesh.
 ExpList3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::ExpansionMap &expansions)
 Sets up a list of local expansions based on an mesh expansion.
 ExpList3DHomogeneous1D (const ExpList3DHomogeneous1D &In, const bool DeclarePlanesSetCoeffPhys=true)
 Copy constructor.
virtual ~ExpList3DHomogeneous1D ()
 Destructor.
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points $\boldsymbol{x}_i$.
void GetCoords (const int eid, Array< OneD, NekDouble > &xc0, Array< OneD, NekDouble > &xc1, Array< OneD, NekDouble > &xc2)
- Public Member Functions inherited from Nektar::MultiRegions::ExpListHomogeneous1D
 ExpListHomogeneous1D ()
 Default constructor.
 ExpListHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lz, const bool useFFT, const bool dealiasing)
 ExpListHomogeneous1D (const ExpListHomogeneous1D &In)
 Copy constructor.
virtual ~ExpListHomogeneous1D ()
 Destructor.
void Homogeneous1DTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool IsForwards, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 This function discretely evaluates the derivative of a function $f(\boldsymbol{x})$ on the domain consisting of all elements of the expansion.
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
ExpListSharedPtrGetPlane (int n)
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor.
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor.
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor.
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor.
virtual ~ExpList ()
 The default destructor.
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom $N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m$.
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid.
ExpansionType GetExpType (void)
 Returns the type of the expansion.
void SetExpType (ExpansionType Type)
 Returns the type of the expansion.
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements.
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements.
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$.
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element $=Q_{\mathrm{tot}}$.
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$.
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction.
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false.
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis.
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val.
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace.
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys.
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys.
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not.
bool GetPhysState (void) const
 This function indicates whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not.
NekDouble PhysIntegral (void)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion.
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion.
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to all {local} expansion modes $\phi_n^e(\boldsymbol{x})$.
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction.
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function $u(\boldsymbol{x})$ onto the global spectral/hp expansion.
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix.
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements.
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve helmholtz problem.
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction.
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction.
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion.
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void ApplyGeomInfo ()
 Apply geometry information to each expansion.
void WriteTecplotHeader (std::ofstream &outfile, std::string var="")
void WriteTecplotZone (std::ofstream &outfile, int expansion=-1)
void WriteTecplotField (std::ofstream &outfile, int expansion=-1)
void WriteTecplotConnectivity (std::ofstream &outfile, int expansion=-1)
void WriteVtkHeader (std::ofstream &outfile)
void WriteVtkFooter (std::ofstream &outfile)
void WriteVtkPieceHeader (std::ofstream &outfile, int expansion)
void WriteVtkPieceFooter (std::ofstream &outfile, int expansion)
void WriteVtkPieceData (std::ofstream &outfile, int expansion, std::string var="v")
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid.
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val.
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val.
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray.
const Array< OneD, const
NekDouble > & 
GetCoeffs () const
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients.
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array.
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion.
void LocalToGlobal (void)
 Put the coefficients into global ordering using m_coeffs.
void GlobalToLocal (void)
 Put the coefficients into local ordering and place in m_coeffs.
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs.
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs.
const Array< OneD, const
NekDouble > & 
GetPhys () const
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points.
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_\infty$ error of the global spectral/hp element approximation.
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_2$ error with respect to soln of the global spectral/hp element approximation.
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the $H^1$ error of the global spectral/hp element approximation.
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion.
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion.
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction.
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion.
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion.
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction.
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale.
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale.
int GetExpSize (void)
 This function returns the number of elements in the expansion.
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp.
const boost::shared_ptr
< LocalRegions::ExpansionVector
GetExp () const
 This function returns the vector of elements in the expansion.
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the $n^{\mathrm{th}}$ element.
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord.
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n.
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n.
int GetOffset_Elmt_Id (int n) const
 Get the element id associated with the n th consecutive block of data in m_phys and m_coeffs.
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients.
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points.
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
boost::shared_ptr< ExpList > & GetTrace ()
boost::shared_ptr
< AssemblyMapDG > & 
GetTraceMap (void)
const Array< OneD, const int > & GetTraceBndMap (void)
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray.
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void SetUpPhysNormals ()
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
const
NekOptimize::GlobalOptParamSharedPtr
GetGlobalOptParam (void)
map< int, RobinBCInfoSharedPtrGetRobinBCInfo ()
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
std::vector
< LibUtilities::FieldDefinitionsSharedPtr
GetFieldDefinitions ()
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata.
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata.
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case.
void ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case.
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs.
boost::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object.
boost::shared_ptr
< LibUtilities::SessionReader
GetSession ()
 Returns the session object.
boost::shared_ptr
< LibUtilities::Comm
GetComm ()
 Returns the comm object.
SpatialDomains::MeshGraphSharedPtr GetGraph ()

Public Attributes

Array< OneD, int > m_BCtoElmMap
 Storage space for the boundary to element and boundary to trace map. This member variable is really allocated just in case a boundary expansion recasting is required at the solver level. Otherwise is the 2 vectors are not filled up. If is needed all the funcitons whihc require to use this map do not have to recalculate it anymore.
Array< OneD, int > m_BCtoEdgMap

Protected Member Functions

virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
void SetUpDG ()
 Set up all DG member variables and maps.
virtual ExpListSharedPtrv_GetTrace ()
virtual AssemblyMapDGSharedPtrv_GetTraceMap ()
virtual const Array< OneD,
const
MultiRegions::ExpListSharedPtr > & 
v_GetBndCondExpansions (void)
virtual const Array< OneD,
const
SpatialDomains::BoundaryConditionShPtr > & 
v_GetBndConditions ()
virtual map< int,
RobinBCInfoSharedPtr
v_GetRobinBCInfo ()
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This method extracts the trace (edges in 2D) for each plane from the field inarray and puts the values in outarray.
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList3DHomogeneous1D
void SetCoeffPhys (void)
 Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m_coeff and m_phys.
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2)
virtual void v_WriteTecplotConnectivity (std::ofstream &outfile, int expansion)
virtual void v_WriteVtkPieceHeader (std::ofstream &outfile, int expansion)
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
virtual Array< OneD, const
NekDouble
v_HomogeneousEnergy (void)
virtual void v_GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces)
- Protected Member Functions inherited from Nektar::MultiRegions::ExpListHomogeneous1D
DNekBlkMatSharedPtr GenHomogeneous1DBlockMatrix (Homogeneous1DMatType mattype, CoeffState coeffstate=eLocal) const
DNekBlkMatSharedPtr GetHomogeneous1DBlockMatrix (Homogeneous1DMatType mattype, CoeffState coeffstate=eLocal) const
NekDouble GetSpecVanVisc (const int k)
virtual void v_SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
virtual int v_GetNumElmts (void)
virtual
LibUtilities::BasisSharedPtr 
v_GetHomogeneousBasis (void)
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
virtual void v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
virtual void v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
virtual void v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual std::vector
< LibUtilities::FieldDefinitionsSharedPtr
v_GetFieldDefinitions (void)
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list.
virtual void v_ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
virtual void v_WriteVtkPieceData (std::ofstream &outfile, int expansion, std::string var)
virtual void v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
virtual
LibUtilities::TranspositionSharedPtr 
v_GetTransposition (void)
virtual Array< OneD, const
unsigned int > 
v_GetZIDs (void)
virtual ExpListSharedPtrv_GetPlane (int n)
virtual NekDouble v_GetHomoLen (void)
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
boost::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype.
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
boost::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map.
void GlobalEigenSystem (const boost::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
boost::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey.
boost::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap.
void ReadGlobalOptimizationParameters ()
virtual boost::shared_ptr
< ExpList > & 
v_UpdateBndCondExpansion (int i)
virtual void v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
virtual void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
virtual const Array< OneD,
const int > & 
v_GetTraceBndMap ()
virtual void v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing)
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
virtual void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
virtual void v_FillBndCondFromField ()
virtual void v_LocalToGlobal (void)
virtual void v_GlobalToLocal (void)
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
virtual void v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
virtual void v_SetUpPhysNormals ()
virtual void v_ReadGlobalOptimizationParameters ()
virtual void v_WriteTecplotHeader (std::ofstream &outfile, std::string var="")
virtual void v_WriteTecplotZone (std::ofstream &outfile, int expansion)
virtual void v_WriteTecplotField (std::ofstream &outfile, int expansion)
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
virtual Array< OneD, const
unsigned int > 
v_GetYIDs (void)
void ExtractFileBCs (const std::string &fileName, const std::string &varName, const boost::shared_ptr< ExpList > locExpList)

Protected Attributes

Array< OneD,
MultiRegions::ExpListSharedPtr
m_bndCondExpansions
 An object which contains the discretised boundary conditions.
ExpListSharedPtr m_trace
Array< OneD, int > m_traceBndMap
Array< OneD,
SpatialDomains::BoundaryConditionShPtr
m_bndConditions
 An array which contains the information about the boundary condition on the different boundary regions.

Private Member Functions

virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing)
virtual void v_EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
virtual boost::shared_ptr
< ExpList > & 
v_UpdateBndCondExpansion (int i)
virtual Array< OneD,
SpatialDomains::BoundaryConditionShPtr > & 
v_UpdateBndConditions ()
virtual const Array< OneD,
const int > & 
v_GetTraceBndMap ()

Additional Inherited Members

- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static
SpatialDomains::BoundaryConditionShPtr 
GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)

Detailed Description

Definition at line 53 of file DisContField3DHomogeneous1D.h.

Constructor & Destructor Documentation

Nektar::MultiRegions::DisContField3DHomogeneous1D::DisContField3DHomogeneous1D ( void  )
Nektar::MultiRegions::DisContField3DHomogeneous1D::DisContField3DHomogeneous1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const LibUtilities::BasisKey HomoBasis,
const NekDouble  lhom,
const bool  useFFT,
const bool  dealiasing 
)

Definition at line 54 of file DisContField3DHomogeneous1D.cpp.

: ExpList3DHomogeneous1D(pSession,HomoBasis,lhom,useFFT,dealiasing),
{
}
Nektar::MultiRegions::DisContField3DHomogeneous1D::DisContField3DHomogeneous1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const LibUtilities::BasisKey HomoBasis,
const NekDouble  lhom,
const bool  useFFT,
const bool  dealiasing,
const SpatialDomains::MeshGraphSharedPtr graph2D,
const std::string &  variable 
)

Definition at line 89 of file DisContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpList::GetExp(), Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_exp, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, Nektar::MultiRegions::ExpList::m_session, m_trace, Nektar::MultiRegions::ExpList3DHomogeneous1D::SetCoeffPhys(), SetupBoundaryConditions(), and SetUpDG().

: ExpList3DHomogeneous1D(pSession, HomoBasis, lhom, useFFT,
dealiasing),
{
int i, n, nel;
// note that nzplanes can be larger than nzmodes
AllocateSharedPtr(pSession, graph2D, variable, true, false);
nel = m_planes[0]->GetExpSize();
for (i = 0; i < nel; ++i)
{
(*m_exp).push_back(m_planes[0]->GetExp(i));
}
for (n = 1; n < m_planes.num_elements(); ++n)
{
AllocateSharedPtr(*plane_zero, graph2D,
variable, true, false);
for(i = 0; i < nel; ++i)
{
(*m_exp).push_back((*m_exp)[i]);
}
}
// Set up trace object.
Array<OneD, ExpListSharedPtr> trace(m_planes.num_elements());
for (n = 0; n < m_planes.num_elements(); ++n)
{
trace[n] = m_planes[n]->GetTrace();
}
pSession, HomoBasis, lhom, useFFT, dealiasing, trace);
// Setup default optimisation information
nel = GetExpSize();
// Do not set up BCs if default variable
if(variable.compare("DefaultVar") != 0)
{
SetupBoundaryConditions(HomoBasis, lhom, bcs, variable);
}
}
Nektar::MultiRegions::DisContField3DHomogeneous1D::DisContField3DHomogeneous1D ( const DisContField3DHomogeneous1D In,
const bool  DeclarePlanesSetCoeffPhys = true 
)

Copy constructor.

Definition at line 66 of file DisContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, and Nektar::MultiRegions::ExpList3DHomogeneous1D::SetCoeffPhys().

: ExpList3DHomogeneous1D (In,false),
m_bndCondExpansions (In.m_bndCondExpansions),
m_bndConditions (In.m_bndConditions)
{
if (DeclarePlanesSetCoeffPhys)
{
boost::dynamic_pointer_cast<DisContField2D> (In.m_planes[0]);
for(int n = 0; n < m_planes.num_elements(); ++n)
{
m_planes[n] =
AllocateSharedPtr(*zero_plane, false);
}
}
}
Nektar::MultiRegions::DisContField3DHomogeneous1D::~DisContField3DHomogeneous1D ( )
virtual

Destructor.

Default destructor.

Definition at line 161 of file DisContField3DHomogeneous1D.cpp.

{
}

Member Function Documentation

void Nektar::MultiRegions::DisContField3DHomogeneous1D::EvaluateBoundaryConditions ( const NekDouble  time = 0.0,
const std::string  varName = "" 
)

This function evaluates the boundary conditions at a certaintime-level.

Based on the boundary condition $g(\boldsymbol{x},t)$ evaluated at a given time-level t, this function transforms the boundary conditions onto the coefficients of the (one-dimensional) boundary expansion. Depending on the type of boundary conditions, these expansion coefficients are calculated in different ways:

  • Dirichlet boundary conditions
    In order to ensure global $C^0$ continuity of the spectral/hp approximation, the Dirichlet boundary conditions are projected onto the boundary expansion by means of a modified $C^0$ continuous Galerkin projection. This projection can be viewed as a collocation projection at the vertices, followed by an $L^2$ projection on the interior modes of the edges. The resulting coefficients $\boldsymbol{\hat{u}}^{\mathcal{D}}$ will be stored for the boundary expansion.
  • Neumann boundary conditions In the discrete Galerkin formulation of the problem to be solved, the Neumann boundary conditions appear as the set of surface integrals:

    \[\boldsymbol{\hat{g}}=\int_{\Gamma} \phi^e_n(\boldsymbol{x})g(\boldsymbol{x})d(\boldsymbol{x})\quad \forall n \]

    As a result, it are the coefficients $\boldsymbol{\hat{g}}$ that will be stored in the boundary expansion
Parameters
timeThe time at which the boundary conditions should be evaluated

Definition at line 226 of file DisContField3DHomogeneous1D.cpp.

References Nektar::SpatialDomains::eTimeDependent, Nektar::MultiRegions::ExpList::GetCoeffs(), m_bndCondExpansions, m_bndConditions, Nektar::MultiRegions::ExpListHomogeneous1D::m_homogeneousBasis, Nektar::MultiRegions::ExpListHomogeneous1D::m_lhom, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, Nektar::MultiRegions::ExpListHomogeneous1D::m_transposition, and Nektar::MultiRegions::ExpList::UpdateCoeffs().

Referenced by SetupBoundaryConditions(), and v_EvaluateBoundaryConditions().

{
int n;
const Array<OneD, const NekDouble> z = m_homogeneousBasis->GetZ();
Array<OneD, NekDouble> local_z(m_planes.num_elements());
for (n = 0; n < m_planes.num_elements(); n++)
{
local_z[n] = z[m_transposition->GetPlaneID(n)];
}
for (n = 0; n < m_planes.num_elements(); ++n)
{
m_planes[n]->EvaluateBoundaryConditions(
time, varName, 0.5*m_lhom*(1.0+local_z[n]));
}
// Fourier transform coefficient space boundary values
// This will only be undertaken for time dependent
// boundary conditions unless time == 0.0 which is the
// case when the method is called from the constructor.
for (n = 0; n < m_bndCondExpansions.num_elements(); ++n)
{
if (time == 0.0 || m_bndConditions[n]->GetUserDefined() ==
{
m_bndCondExpansions[n]->HomogeneousFwdTrans(
}
}
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::GetBCValues ( Array< OneD, NekDouble > &  BndVals,
const Array< OneD, NekDouble > &  TotField,
int  BndID 
)

This funtion extract form a vector containing a full 3D-homogenous-1D field the value associated with a specific boundary conditions. TotField is the full field contaning all the physical values BndVals is the vector where the boundary physical values are stored BndID is the identifier of the boundary region.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 378 of file DisContField3DHomogeneous1D.cpp.

References Nektar::StdRegions::StdExpansion::GetEdgePhysVals(), Nektar::MultiRegions::ExpList::GetExp(), Nektar::MultiRegions::ExpList::GetPhys_Offset(), m_BCtoEdgMap, m_BCtoElmMap, m_bndCondExpansions, m_bndConditions, and Nektar::MultiRegions::ExpListHomogeneous1D::m_planes.

Referenced by v_GetBCValues().

{
Array<OneD, const NekDouble> tmp_Tot;
Array<OneD, NekDouble> tmp_BC;
int cnt = 0;
int pos = 0;
int exp_size, exp_size_per_plane, elmtID, boundaryID;
int offset, exp_dim;
for (int k = 0; k < m_planes.num_elements(); k++)
{
for (int n = 0; n < m_bndConditions.num_elements(); ++n)
{
exp_size = m_bndCondExpansions[n]->GetExpSize();
exp_size_per_plane = exp_size/m_planes.num_elements();
for (int i = 0; i < exp_size_per_plane; i++)
{
if(n == BndID)
{
elmtID = m_BCtoElmMap[cnt];
boundaryID = m_BCtoEdgMap[cnt];
exp_dim = m_bndCondExpansions[n]->
GetExp(i+k*exp_size_per_plane)->GetTotPoints();
offset = GetPhys_Offset(elmtID);
elmt = GetExp(elmtID);
temp_BC_exp = boost::dynamic_pointer_cast<
m_bndCondExpansions[n]->GetExp(
i+k*exp_size_per_plane));
elmt->GetEdgePhysVals(boundaryID, temp_BC_exp,
tmp_Tot = TotField + offset,
tmp_BC = BndVals + pos);
pos += exp_dim;
}
cnt++;
}
}
}
}
const Array< OneD, const MultiRegions::ExpListSharedPtr > & Nektar::MultiRegions::DisContField3DHomogeneous1D::GetBndCondExpansions ( )
inline

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 294 of file DisContField3DHomogeneous1D.h.

References m_bndCondExpansions.

Referenced by v_GetBndCondExpansions().

{
}
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::DisContField3DHomogeneous1D::GetBndConditions ( )
inline

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 300 of file DisContField3DHomogeneous1D.h.

References m_bndConditions.

Referenced by v_GetBndConditions().

{
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::GetBoundaryToElmtMap ( Array< OneD, int > &  ElmtID,
Array< OneD, int > &  EdgeID 
)

Set up a list of element ids and edge ids the link to the boundary conditions.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 329 of file DisContField3DHomogeneous1D.cpp.

References m_BCtoEdgMap, m_BCtoElmMap, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, and Vmath::Vcopy().

Referenced by v_GetBoundaryToElmtMap().

{
if(m_BCtoElmMap.num_elements() == 0)
{
Array<OneD, int> ElmtID_tmp;
Array<OneD, int> EdgeID_tmp;
m_planes[0]->GetBoundaryToElmtMap(ElmtID_tmp, EdgeID_tmp);
int nel_per_plane = m_planes[0]->GetExpSize();
int nplanes = m_planes.num_elements();
int MapSize = ElmtID_tmp.num_elements();
ElmtID = Array<OneD, int>(nplanes*MapSize);
EdgeID = Array<OneD, int>(nplanes*MapSize);
// If this mesh (or partition) has no BCs, skip this step
if (MapSize > 0)
{
for(int i = 0; i < nplanes; i++)
{
for(int j = 0; j < MapSize; j++)
{
ElmtID[j+i*MapSize] = ElmtID_tmp[j]+i*nel_per_plane;
EdgeID[j+i*MapSize] = EdgeID_tmp[j];
}
}
m_BCtoElmMap = Array<OneD, int>(nplanes*MapSize);
m_BCtoEdgMap = Array<OneD, int>(nplanes*MapSize);
Vmath::Vcopy(nplanes*MapSize,ElmtID,1,m_BCtoElmMap,1);
Vmath::Vcopy(nplanes*MapSize,EdgeID,1,m_BCtoEdgMap,1);
}
}
else
{
int MapSize = m_BCtoElmMap.num_elements();
ElmtID = Array<OneD, int>(MapSize);
EdgeID = Array<OneD, int>(MapSize);
Vmath::Vcopy(MapSize, m_BCtoElmMap, 1, ElmtID, 1);
Vmath::Vcopy(MapSize, m_BCtoEdgMap, 1, EdgeID, 1);
}
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::NormVectorIProductWRTBase ( Array< OneD, const NekDouble > &  V1,
Array< OneD, const NekDouble > &  V2,
Array< OneD, NekDouble > &  outarray,
int  BndID 
)

This function calculate the inner product of two vectors (V1 and V2) respect to the basis along a boundary region. outarray is the inner product result multiplied by the normal to the edge (specified by the BndID)

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 427 of file DisContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpList::GetCoeff_Offset(), Nektar::MultiRegions::ExpList::GetExp(), Nektar::MultiRegions::ExpList::GetPhys_Offset(), m_BCtoElmMap, m_bndCondExpansions, m_bndConditions, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, and Nektar::StdRegions::StdExpansion::NormVectorIProductWRTBase().

Referenced by v_NormVectorIProductWRTBase().

{
Array<OneD, NekDouble> tmp_V1;
Array<OneD, NekDouble> tmp_V2;
Array<OneD, NekDouble> tmp_outarray;
int cnt = 0;
int exp_size, exp_size_per_plane, elmtID, Phys_offset, Coef_offset;
for(int k = 0; k < m_planes.num_elements(); k++)
{
for(int n = 0; n < m_bndConditions.num_elements(); ++n)
{
exp_size = m_bndCondExpansions[n]->GetExpSize();
exp_size_per_plane = exp_size/m_planes.num_elements();
for(int i = 0; i < exp_size_per_plane; i++)
{
if(n == BndID)
{
elmtID = m_BCtoElmMap[cnt];
Phys_offset = m_bndCondExpansions[n]->
GetPhys_Offset(i+k*exp_size_per_plane);
Coef_offset = m_bndCondExpansions[n]->
GetCoeff_Offset(i+k*exp_size_per_plane);
elmt = GetExp(elmtID);
temp_BC_exp = boost::dynamic_pointer_cast<
m_bndCondExpansions[n]->GetExp(
i+k*exp_size_per_plane));
tmp_V1 = V1 + Phys_offset,
tmp_V2 = V2 + Phys_offset,
tmp_outarray = outarray + Coef_offset);
}
cnt++;
}
}
}
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::SetupBoundaryConditions ( const LibUtilities::BasisKey HomoBasis,
const NekDouble  lhom,
SpatialDomains::BoundaryConditions bcs,
const std::string  variable 
)

Definition at line 165 of file DisContField3DHomogeneous1D.cpp.

References Nektar::SpatialDomains::ePeriodic, EvaluateBoundaryConditions(), Nektar::MultiRegions::ExpList::GetBoundaryCondition(), Nektar::SpatialDomains::BoundaryConditions::GetBoundaryConditions(), Nektar::SpatialDomains::BoundaryConditions::GetBoundaryRegions(), m_bndCondExpansions, m_bndConditions, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, Nektar::MultiRegions::ExpList::m_session, Nektar::MultiRegions::ExpListHomogeneous1D::m_useFFT, and UpdateBndCondExpansion().

Referenced by Nektar::MultiRegions::ContField3DHomogeneous1D::ContField3DHomogeneous1D(), and DisContField3DHomogeneous1D().

{
int n;
// Setup an ExpList2DHomogeneous1D expansion for boundary
// conditions and link to class declared in m_planes
SpatialDomains::BoundaryRegionCollection::const_iterator it;
// count the number of non-periodic boundary regions
int cnt = 0;
for (it = bregions.begin(); it != bregions.end(); ++it)
{
GetBoundaryCondition(bconditions, it->first, variable);
if (boundaryCondition->GetBoundaryConditionType()
{
cnt++;
}
}
m_bndConditions = m_planes[0]->UpdateBndConditions();
int nplanes = m_planes.num_elements();
Array<OneD, MultiRegions::ExpListSharedPtr>
PlanesBndCondExp(nplanes);
cnt = 0;
for (it = bregions.begin(); it != bregions.end(); ++it)
{
GetBoundaryCondition(bconditions, it->first, variable);
if(boundaryCondition->GetBoundaryConditionType() !=
{
for (n = 0; n < nplanes; ++n)
{
PlanesBndCondExp[n] = m_planes[n]->
}
AllocateSharedPtr(m_session, HomoBasis, lhom,
m_useFFT, false,
PlanesBndCondExp);
}
}
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::SetUpDG ( )
protected

Set up all DG member variables and maps.

Definition at line 525 of file DisContField3DHomogeneous1D.cpp.

References m_bndCondExpansions, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, and m_traceBndMap.

Referenced by DisContField3DHomogeneous1D().

{
const int nPlanes = m_planes.num_elements();
const int nTracePlane = m_planes[0]->GetTrace()->GetExpSize();
// Get trace map from first plane.
AssemblyMapDGSharedPtr traceMap = m_planes[0]->GetTraceMap();
const Array<OneD, const int> &traceBndMap
= traceMap->GetBndCondTraceToGlobalTraceMap();
int mapSize = traceBndMap.num_elements();
// Set up trace boundary map
m_traceBndMap = Array<OneD, int>(nPlanes * mapSize);
int i, n, e, cnt = 0, cnt1 = 0;
for (i = 0; i < m_bndCondExpansions.num_elements(); ++i)
{
int nExp = m_bndCondExpansions[i]->GetExpSize();
int nPlaneExp = nExp / nPlanes;
for (n = 0; n < nPlanes; ++n)
{
const int offset = n * nTracePlane;
for (e = 0; e < nPlaneExp; ++e)
{
m_traceBndMap[cnt++] = offset + traceBndMap[cnt1+e];
}
}
cnt1 += nPlaneExp;
}
}
MultiRegions::ExpListSharedPtr & Nektar::MultiRegions::DisContField3DHomogeneous1D::UpdateBndCondExpansion ( int  i)
inline

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 306 of file DisContField3DHomogeneous1D.h.

References m_bndCondExpansions.

Referenced by SetupBoundaryConditions(), and v_UpdateBndCondExpansion().

{
}
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::DisContField3DHomogeneous1D::UpdateBndConditions ( )
inline

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 312 of file DisContField3DHomogeneous1D.h.

References m_bndConditions.

Referenced by v_UpdateBndConditions().

{
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_EvaluateBoundaryConditions ( const NekDouble  time = 0.0,
const std::string  varName = "",
const NekDouble  x2_in = NekConstants::kNekUnsetDouble,
const NekDouble  x3_in = NekConstants::kNekUnsetDouble 
)
privatevirtual

Definition at line 308 of file DisContField3DHomogeneous1D.cpp.

References EvaluateBoundaryConditions().

{
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_ExtractTracePhys ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

This method extracts the trace (edges in 2D) for each plane from the field inarray and puts the values in outarray.

It assumes the field is C0 continuous so that it can overwrite the edge data when visited by the two adjacent elements.

Parameters
inarrayAn array containing the 2D data from which we wish to extract the edge data.
outarrayThe resulting edge information.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 498 of file DisContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, and Vmath::Vcopy().

Referenced by v_ExtractTracePhys().

{
int nPoints_plane = m_planes[0]->GetTotPoints();
int nTracePts = m_planes[0]->GetTrace()->GetTotPoints();
for (int i = 0; i < m_planes.num_elements(); ++i)
{
Array<OneD, NekDouble> inarray_plane(nPoints_plane, 0.0);
Array<OneD, NekDouble> outarray_plane(nPoints_plane, 0.0);
Vmath::Vcopy(nPoints_plane,
&inarray[i*nPoints_plane], 1,
&inarray_plane[0], 1);
m_planes[i]->ExtractTracePhys(inarray_plane, outarray_plane);
Vmath::Vcopy(nTracePts,
&outarray_plane[0], 1,
&outarray[i*nTracePts], 1);
}
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_ExtractTracePhys ( Array< OneD, NekDouble > &  outarray)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 478 of file DisContField3DHomogeneous1D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::m_phys, Nektar::MultiRegions::ExpList::m_physState, and v_ExtractTracePhys().

{
"Field must be in physical state to extract trace space.");
}
virtual void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetBCValues ( Array< OneD, NekDouble > &  BndVals,
const Array< OneD, NekDouble > &  TotField,
int  BndID 
)
inlineprotectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 205 of file DisContField3DHomogeneous1D.h.

References GetBCValues().

{
GetBCValues(BndVals, TotField, BndID);
}
virtual const Array<OneD,const MultiRegions::ExpListSharedPtr>& Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetBndCondExpansions ( void  )
inlineprotectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 238 of file DisContField3DHomogeneous1D.h.

References GetBndCondExpansions().

{
}
virtual const Array<OneD,const SpatialDomains::BoundaryConditionShPtr>& Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetBndConditions ( void  )
inlineprotectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 245 of file DisContField3DHomogeneous1D.h.

References GetBndConditions().

{
return GetBndConditions();
}
virtual void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetBoundaryToElmtMap ( Array< OneD, int > &  ElmtID,
Array< OneD, int > &  EdgeID 
)
inlineprotectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 198 of file DisContField3DHomogeneous1D.h.

References GetBoundaryToElmtMap().

{
GetBoundaryToElmtMap(ElmtID, EdgeID);
}
virtual map<int, RobinBCInfoSharedPtr> Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetRobinBCInfo ( void  )
inlineprotectedvirtual
Todo:
Fix Robin BCs for homogeneous case

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 251 of file DisContField3DHomogeneous1D.h.

{
return map<int, RobinBCInfoSharedPtr>();
}
virtual ExpListSharedPtr& Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetTrace ( )
inlineprotectedvirtual
Todo:
Fix in another way considering all the planes

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 226 of file DisContField3DHomogeneous1D.h.

References m_trace.

{
return m_trace;
}
virtual const Array<OneD, const int>& Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetTraceBndMap ( )
inlineprivatevirtual

Definition at line 284 of file DisContField3DHomogeneous1D.h.

References m_traceBndMap.

{
return m_traceBndMap;
}
virtual AssemblyMapDGSharedPtr& Nektar::MultiRegions::DisContField3DHomogeneous1D::v_GetTraceMap ( void  )
inlineprotectedvirtual
Todo:
Fix in another way considering all the planes

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 232 of file DisContField3DHomogeneous1D.h.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes.

{
return m_planes[0]->GetTraceMap();
}
void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_HelmSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const FlagList flags,
const StdRegions::ConstFactorMap factors,
const StdRegions::VarCoeffMap varcoeff,
const Array< OneD, const NekDouble > &  dirForcing 
)
privatevirtual

Definition at line 261 of file DisContField3DHomogeneous1D.cpp.

References Nektar::StdRegions::eFactorLambda, Nektar::MultiRegions::ExpListHomogeneous1D::GetSpecVanVisc(), Nektar::MultiRegions::ExpListHomogeneous1D::HomogeneousFwdTrans(), Nektar::MultiRegions::ExpListHomogeneous1D::m_lhom, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, Nektar::MultiRegions::ExpListHomogeneous1D::m_transposition, and Nektar::MultiRegions::ExpList::m_WaveSpace.

{
int n;
int cnt = 0;
int cnt1 = 0;
NekDouble beta;
Array<OneD, NekDouble> e_out;
Array<OneD, NekDouble> fce(inarray.num_elements());
// Transform forcing function in half-physical space if required
{
fce = inarray;
}
else
{
HomogeneousFwdTrans(inarray,fce);
}
for (n = 0; n < m_planes.num_elements(); ++n)
{
if (n != 1 || m_transposition->GetK(n) != 0)
{
beta = 2*M_PI*(m_transposition->GetK(n))/m_lhom;
new_factors = factors;
// add in Homogeneous Fourier direction and SVV if turned on
new_factors[StdRegions::eFactorLambda] +=
beta*beta*(1+GetSpecVanVisc(n));
m_planes[n]->HelmSolve(
fce + cnt,
e_out = outarray + cnt1,
flags, new_factors, varcoeff, dirForcing);
}
cnt += m_planes[n]->GetTotPoints();
cnt1 += m_planes[n]->GetNcoeffs();
}
}
virtual void Nektar::MultiRegions::DisContField3DHomogeneous1D::v_NormVectorIProductWRTBase ( Array< OneD, const NekDouble > &  V1,
Array< OneD, const NekDouble > &  V2,
Array< OneD, NekDouble > &  outarray,
int  BndID 
)
inlineprotectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 213 of file DisContField3DHomogeneous1D.h.

References NormVectorIProductWRTBase().

{
NormVectorIProductWRTBase(V1,V2,outarray,BndID);
}
boost::shared_ptr< ExpList > & Nektar::MultiRegions::DisContField3DHomogeneous1D::v_UpdateBndCondExpansion ( int  i)
privatevirtual

Definition at line 318 of file DisContField3DHomogeneous1D.cpp.

References UpdateBndCondExpansion().

{
}
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::DisContField3DHomogeneous1D::v_UpdateBndConditions ( )
privatevirtual

Definition at line 324 of file DisContField3DHomogeneous1D.cpp.

References UpdateBndConditions().

{
}

Member Data Documentation

Array<OneD, int> Nektar::MultiRegions::DisContField3DHomogeneous1D::m_BCtoEdgMap

Definition at line 169 of file DisContField3DHomogeneous1D.h.

Referenced by GetBCValues(), and GetBoundaryToElmtMap().

Array<OneD, int> Nektar::MultiRegions::DisContField3DHomogeneous1D::m_BCtoElmMap

Storage space for the boundary to element and boundary to trace map. This member variable is really allocated just in case a boundary expansion recasting is required at the solver level. Otherwise is the 2 vectors are not filled up. If is needed all the funcitons whihc require to use this map do not have to recalculate it anymore.

Definition at line 168 of file DisContField3DHomogeneous1D.h.

Referenced by GetBCValues(), GetBoundaryToElmtMap(), and NormVectorIProductWRTBase().

Array<OneD, MultiRegions::ExpListSharedPtr> Nektar::MultiRegions::DisContField3DHomogeneous1D::m_bndCondExpansions
protected

An object which contains the discretised boundary conditions.

It is an array of size equal to the number of boundary regions and consists of entries of the type MultiRegions::ExpList1D. Every entry corresponds to the one-dimensional spectral/hp expansion on a single boundary region. The values of the boundary conditions are stored as the coefficients of the one-dimensional expansion.

Definition at line 185 of file DisContField3DHomogeneous1D.h.

Referenced by EvaluateBoundaryConditions(), GetBCValues(), GetBndCondExpansions(), NormVectorIProductWRTBase(), SetupBoundaryConditions(), SetUpDG(), and UpdateBndCondExpansion().

Array<OneD,SpatialDomains::BoundaryConditionShPtr> Nektar::MultiRegions::DisContField3DHomogeneous1D::m_bndConditions
protected

An array which contains the information about the boundary condition on the different boundary regions.

Definition at line 196 of file DisContField3DHomogeneous1D.h.

Referenced by EvaluateBoundaryConditions(), GetBCValues(), GetBndConditions(), NormVectorIProductWRTBase(), SetupBoundaryConditions(), and UpdateBndConditions().

ExpListSharedPtr Nektar::MultiRegions::DisContField3DHomogeneous1D::m_trace
protected

Definition at line 187 of file DisContField3DHomogeneous1D.h.

Referenced by DisContField3DHomogeneous1D(), and v_GetTrace().

Array<OneD, int> Nektar::MultiRegions::DisContField3DHomogeneous1D::m_traceBndMap
protected

Definition at line 189 of file DisContField3DHomogeneous1D.h.

Referenced by SetUpDG(), and v_GetTraceBndMap().