Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Private Member Functions | Friends | List of all members
Nektar::NavierStokesCFE Class Reference

#include <NavierStokesCFE.h>

Inheritance diagram for Nektar::NavierStokesCFE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::NavierStokesCFE:
Collaboration graph
[legend]

Public Member Functions

virtual ~NavierStokesCFE ()
 problem type selector
- Public Member Functions inherited from Nektar::CompressibleFlowSystem
virtual ~CompressibleFlowSystem ()
 Destructor for CompressibleFlowSystem class.
NekDouble GetStabilityLimit (int n)
 Function to calculate the stability limit for DG/CG.
Array< OneD, NekDoubleGetStabilityLimitVector (const Array< OneD, int > &ExpOrder)
 Function to calculate the stability limit for DG/CG (a vector of them).
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor.
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable.
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor.
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object.
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem.
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem.
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space.
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space.
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve.
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation.
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name.
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name.
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name.
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available.
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics.
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda.
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file.
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session.
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session.
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name.
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow.
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields.
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution.
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution.
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields.
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $.
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $.
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $.
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection.
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection.
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form.
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields.
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields.
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename.
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename.
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file.
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains.
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file.
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file.
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point.
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file.
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary.
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated.
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time.
SOLVER_UTILS_EXPORT int GetNcoeffs ()
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
SOLVER_UTILS_EXPORT int GetNumExpModes ()
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
SOLVER_UTILS_EXPORT int GetNvariables ()
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
SOLVER_UTILS_EXPORT int GetExpSize ()
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
SOLVER_UTILS_EXPORT int GetTotPoints ()
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
SOLVER_UTILS_EXPORT int GetNpoints ()
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
SOLVER_UTILS_EXPORT int GetSteps ()
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
SOLVER_UTILS_EXPORT void SetStepsToOne ()
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
SOLVER_UTILS_EXPORT void FwdTransFields ()
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const string &s1, const string &s2)
 Perform a case-insensitive string comparison.

Static Public Member Functions

static
SolverUtils::EquationSystemSharedPtr 
create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class.

Public Attributes

ProblemType m_problemType

Static Public Attributes

static std::string className
 Name of class.
- Static Public Attributes inherited from Nektar::CompressibleFlowSystem
static std::string className
 Name of class.

Protected Member Functions

 NavierStokesCFE (const LibUtilities::SessionReaderSharedPtr &pSession)
virtual void v_InitObject ()
 Initialization object for CompressibleFlowSystem class.
virtual void v_GenerateSummary (SolverUtils::SummaryList &s)
 Print a summary of time stepping parameters.
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
virtual void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
- Protected Member Functions inherited from Nektar::CompressibleFlowSystem
 CompressibleFlowSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
void GetFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Return the flux vector for the compressible Euler equations.
void GetFluxVectorDeAlias (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Return the flux vector for the compressible Euler equations by using the de-aliasing technique.
void GetViscousFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
 Return the flux vector for the LDG diffusion problem.
void GetFluxVectorPDESC (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
void GetViscousFluxVectorDeAlias (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
 Return the flux vector for the LDG diffusion problem.
void WallBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary conditions for compressible flow problems.
void WallViscousBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary conditions for viscous compressible flow problems.
void SymmetryBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Symmetry boundary conditions for compressible flow problems.
void RiemannInvariantBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Outflow characteristic boundary conditions for compressible flow problems.
void ExtrapOrder0BC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Extrapolation of order 0 for all the variables such that, at the boundaries, a trivial Riemann problem is solved.
void GetVelocityVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
void GetSoundSpeed (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure, Array< OneD, NekDouble > &soundspeed)
void GetMach (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &soundspeed, Array< OneD, NekDouble > &mach)
void GetTemperature (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure, Array< OneD, NekDouble > &temperature)
void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Calculate the pressure field $ p = (\gamma-1)(E-\frac{1}{2}\rho\| \mathbf{v} \|^2) $ assuming an ideal gas law.
void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, const Array< OneD, const Array< OneD, NekDouble > > &velocity, Array< OneD, NekDouble > &pressure)
void GetEnthalpy (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure, Array< OneD, NekDouble > &enthalpy)
void GetEntropy (const Array< OneD, const Array< OneD, NekDouble > > &physfield, const Array< OneD, const NekDouble > &pressure, const Array< OneD, const NekDouble > &temperature, Array< OneD, NekDouble > &entropy)
void GetSmoothArtificialViscosity (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &eps_bar)
void GetDynamicViscosity (const Array< OneD, const NekDouble > &temperature, Array< OneD, NekDouble > &mu)
void GetStdVelocity (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &stdV)
void GetSensor (const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, NekDouble > &Sensor, Array< OneD, NekDouble > &SensorKappa)
void GetElementDimensions (Array< OneD, Array< OneD, NekDouble > > &outarray, Array< OneD, NekDouble > &hmin)
void GetAbsoluteVelocity (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &Vtot)
void GetArtificialDynamicViscosity (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &mu_var)
void SetVarPOrderElmt (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &PolyOrder)
void GetForcingTerm (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > outarrayForcing)
virtual NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop.
NekDouble GetGasConstant ()
NekDouble GetGamma ()
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetVecLocs ()
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetNormals ()
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members.
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control.
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem.
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions.
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file.
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time)
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members.
int nocase_cmp (const string &s1, const string &s2)
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time.
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution.
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution.
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space.
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space.
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
virtual SOLVER_UTILS_EXPORT void v_Output (void)
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)

Private Member Functions

void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)

Friends

class MemoryManager< NavierStokesCFE >

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
- Protected Attributes inherited from Nektar::CompressibleFlowSystem
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
SolverUtils::RiemannSolverSharedPtr m_riemannSolverLDG
SolverUtils::AdvectionSharedPtr m_advection
SolverUtils::DiffusionSharedPtr m_diffusion
Array< OneD, Array< OneD,
NekDouble > > 
m_vecLocs
NekDouble m_gamma
NekDouble m_pInf
NekDouble m_rhoInf
NekDouble m_uInf
NekDouble m_vInf
NekDouble m_wInf
NekDouble m_gasConstant
NekDouble m_Twall
std::string m_ViscosityType
std::string m_shockCaptureType
std::string m_EqTypeStr
NekDouble m_mu
NekDouble m_Skappa
NekDouble m_Kappa
NekDouble m_mu0
NekDouble m_FacL
NekDouble m_FacH
NekDouble m_eps_max
NekDouble m_thermalConductivity
NekDouble m_Cp
NekDouble m_C1
NekDouble m_C2
NekDouble m_hFactor
NekDouble m_Prandtl
StdRegions::StdQuadExpSharedPtr m_OrthoQuadExp
StdRegions::StdHexExpSharedPtr m_OrthoHexExp
bool m_smoothDiffusion

Detailed Description

Definition at line 59 of file NavierStokesCFE.h.

Constructor & Destructor Documentation

Nektar::NavierStokesCFE::~NavierStokesCFE ( )
virtual

problem type selector

Definition at line 85 of file NavierStokesCFE.cpp.

{
}
Nektar::NavierStokesCFE::NavierStokesCFE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 45 of file NavierStokesCFE.cpp.

{
}

Member Function Documentation

static SolverUtils::EquationSystemSharedPtr Nektar::NavierStokesCFE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Reimplemented from Nektar::CompressibleFlowSystem.

Definition at line 65 of file NavierStokesCFE.h.

void Nektar::NavierStokesCFE::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 204 of file NavierStokesCFE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_projectionType, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

{
int i;
int nvariables = inarray.num_elements();
{
{
// Just copy over array
int npoints = GetNpoints();
for(i = 0; i < nvariables; ++i)
{
Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
}
SetBoundaryConditions(outarray, time);
break;
}
{
ASSERTL0(false, "No Continuous Galerkin for full compressible "
"Navier-Stokes equations");
break;
}
default:
ASSERTL0(false, "Unknown projection scheme");
break;
}
}
void Nektar::NavierStokesCFE::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 129 of file NavierStokesCFE.cpp.

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::GetPressure(), Nektar::CompressibleFlowSystem::GetTemperature(), Nektar::CompressibleFlowSystem::m_advection, Nektar::CompressibleFlowSystem::m_diffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Neg(), Vmath::Vadd(), Vmath::Vcopy(), and Vmath::Vdiv().

Referenced by v_InitObject().

{
int i;
int nvariables = inarray.num_elements();
int npoints = GetNpoints();
Array<OneD, Array<OneD, NekDouble> > advVel(m_spacedim);
Array<OneD, Array<OneD, NekDouble> > outarrayAdv(nvariables);
Array<OneD, Array<OneD, NekDouble> > outarrayDiff(nvariables);
Array<OneD, Array<OneD, NekDouble> > inarrayTemp(nvariables-1);
Array<OneD, Array<OneD, NekDouble> > inarrayDiff(nvariables-1);
for (i = 0; i < nvariables; ++i)
{
outarrayAdv[i] = Array<OneD, NekDouble>(npoints, 0.0);
outarrayDiff[i] = Array<OneD, NekDouble>(npoints, 0.0);
}
for (i = 0; i < nvariables-1; ++i)
{
inarrayTemp[i] = Array<OneD, NekDouble>(npoints, 0.0);
inarrayDiff[i] = Array<OneD, NekDouble>(npoints, 0.0);
}
// Advection term in physical rhs form
m_advection->Advect(nvariables, m_fields, advVel, inarray, outarrayAdv);
for (i = 0; i < nvariables; ++i)
{
Vmath::Neg(npoints, outarrayAdv[i], 1);
}
// Extract pressure and temperature
Array<OneD, NekDouble > pressure (npoints, 0.0);
Array<OneD, NekDouble > temperature(npoints, 0.0);
GetPressure(inarray, pressure);
GetTemperature(inarray, pressure, temperature);
// Extract velocities
for (i = 1; i < nvariables-1; ++i)
{
Vmath::Vdiv(npoints,
inarray[i], 1,
inarray[0], 1,
inarrayTemp[i-1], 1);
}
// Copy velocities into new inarrayDiff
for (i = 0; i < nvariables-2; ++i)
{
Vmath::Vcopy(npoints, inarrayTemp[i], 1, inarrayDiff[i], 1);
}
// Copy temperature into new inarrayDiffusion
Vmath::Vcopy(npoints,
temperature, 1,
inarrayDiff[nvariables-2], 1);
// Diffusion term in physical rhs form
m_diffusion->Diffuse(nvariables, m_fields, inarrayDiff, outarrayDiff);
for (i = 0; i < nvariables; ++i)
{
Vmath::Vadd(npoints,
outarrayAdv[i], 1,
outarrayDiff[i], 1,
outarray[i], 1);
}
}
void Nektar::NavierStokesCFE::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
private

Definition at line 239 of file NavierStokesCFE.cpp.

References ASSERTL0, Nektar::SpatialDomains::eExtrapOrder0, Nektar::SpatialDomains::eRiemannInvariant, Nektar::SpatialDomains::eSymmetry, Nektar::SpatialDomains::eTimeDependent, Nektar::SpatialDomains::eWall, Nektar::SpatialDomains::eWallViscous, Nektar::CompressibleFlowSystem::ExtrapOrder0BC(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::CompressibleFlowSystem::RiemannInvariantBC(), Nektar::CompressibleFlowSystem::SymmetryBC(), and Nektar::CompressibleFlowSystem::WallViscousBC().

Referenced by DoOdeProjection().

{
std::string varName;
int nvariables = m_fields.num_elements();
int cnt = 0;
// loop over Boundary Regions
for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
{
// Wall Boundary Condition
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
{
ASSERTL0(false, "Wall is a wrong bc for the full "
"compressible Navier-Stokes equations");
}
// Wall Boundary Condition
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
{
WallViscousBC(n, cnt, inarray);
}
// Symmetric Boundary Condition
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
{
SymmetryBC(n, cnt, inarray);
}
// Riemann invariant characteristic Boundary Condition (CBC)
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
{
RiemannInvariantBC(n, cnt, inarray);
}
// Extrapolation of the data at the boundaries
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
{
ExtrapOrder0BC(n, cnt, inarray);
}
// Time Dependent Boundary Condition (specified in meshfile)
if (m_fields[0]->GetBndConditions()[n]->GetUserDefined()
{
for (int i = 0; i < nvariables; ++i)
{
varName = m_session->GetVariable(i);
m_fields[i]->EvaluateBoundaryConditions(time, varName);
}
}
cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
}
}
void Nektar::NavierStokesCFE::v_GenerateSummary ( SolverUtils::SummaryList s)
protectedvirtual

Print a summary of time stepping parameters.

Print out a summary with some relevant information.

Reimplemented from Nektar::CompressibleFlowSystem.

Definition at line 90 of file NavierStokesCFE.cpp.

References Nektar::SolverUtils::AddSummaryItem(), m_problemType, and Nektar::ProblemTypeMap.

void Nektar::NavierStokesCFE::v_InitObject ( )
protectedvirtual
void Nektar::NavierStokesCFE::v_SetInitialConditions ( NekDouble  initialtime = 0.0,
bool  dumpInitialConditions = true,
const int  domain = 0 
)
protectedvirtual

Set the physical fields based on a restart file, or a function describing the initial condition given in the session.

Parameters
initialtimeTime at which to evaluate the function.
dumpInitialConditionsWrite the initial condition to file?

Reimplemented from Nektar::CompressibleFlowSystem.

Definition at line 96 of file NavierStokesCFE.cpp.

References Nektar::SolverUtils::EquationSystem::Checkpoint_Output(), Vmath::FillWhiteNoise(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, and Vmath::Vadd().

{
//insert white noise in initial condition
NekDouble Noise;
int phystot = m_fields[0]->GetTotPoints();
Array<OneD, NekDouble> noise(phystot);
m_session->LoadParameter("Noise", Noise,0.0);
int m_nConvectiveFields = m_fields.num_elements();
if(Noise > 0.0)
{
for(int i = 0; i < m_nConvectiveFields; i++)
{
Vmath::FillWhiteNoise(phystot,Noise,noise,1,m_comm->GetColumnComm()->GetRank()+1);
Vmath::Vadd(phystot,m_fields[i]->GetPhys(),1,noise,1,m_fields[i]->UpdatePhys(),1);
m_fields[i]->FwdTrans_IterPerExp(m_fields[i]->GetPhys(),m_fields[i]->UpdateCoeffs());
}
}
if (dumpInitialConditions)
{
// Dump initial conditions to file
}
}

Friends And Related Function Documentation

friend class MemoryManager< NavierStokesCFE >
friend

Definition at line 62 of file NavierStokesCFE.h.

Member Data Documentation

string Nektar::NavierStokesCFE::className
static
Initial value:
"NavierStokesCFE", NavierStokesCFE::create,
"NavierStokes equations in conservative variables.")

Name of class.

Definition at line 73 of file NavierStokesCFE.h.

ProblemType Nektar::NavierStokesCFE::m_problemType

Definition at line 78 of file NavierStokesCFE.h.

Referenced by v_GenerateSummary(), and v_InitObject().