Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::HexExp Class Reference

#include <HexExp.h>

Inheritance diagram for Nektar::LocalRegions::HexExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::HexExp:
Collaboration graph
[legend]

Public Member Functions

 HexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::HexGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition.
 HexExp (const HexExp &T)
 Copy Constructor.
 ~HexExp ()
 Destructor.
- Public Member Functions inherited from Nektar::StdRegions::StdHexExp
 StdHexExp ()
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 StdHexExp (const StdHexExp &T)
 ~StdHexExp ()
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 StdExpansion3D (const StdExpansion3D &T)
virtual ~StdExpansion3D ()
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor.
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor.
 StdExpansion (const StdExpansion &T)
 Copy Constructor.
virtual ~StdExpansion ()
 Destructor.
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion.
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis.
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction.
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion.
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element.
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction.
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction.
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions.
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction.
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction.
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction.
int GetNverts () const
 This function returns the number of vertices of the expansion domain.
int GetNedges () const
 This function returns the number of edges of the expansion domain.
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge.
int GetTotalEdgeIntNcoeffs () const
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge.
int DetCartesianDirOfEdge (const int edge)
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face.
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face.
int GetFaceIntNcoeffs (const int i) const
int GetTotalFaceIntNcoeffs () const
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
int NumBndryCoeffs (void) const
int NumDGBndryCoeffs (void) const
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge.
int GetNfaces () const
 This function returns the number of faces of the expansion domain.
int GetNtrace () const
 Returns the number of trace elements connected to this element.
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain.
int GetShapeDimension () const
bool IsBoundaryInteriorExpansion ()
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space.
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space.
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain.
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion.
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id.
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
virtual void SetUpPhysNormals (const int edge)
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
StdRegions::Orientation GetForient (int face)
StdRegions::Orientation GetEorient (int edge)
StdRegions::Orientation GetPorient (int point)
StdRegions::Orientation GetCartesianEorient (int edge)
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
int GetCoordim ()
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp.
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention).
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta.
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id.
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
virtual void v_SetUpPhysNormals (const int edge)
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
virtual StdRegions::Orientation v_GetEorient (int edge)
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
virtual StdRegions::Orientation v_GetPorient (int point)
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol.
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol.
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol.
const NormalVectorGetEdgeNormal (const int edge) const
void ComputeEdgeNormal (const int edge)
void NegateEdgeNormal (const int edge)
bool EdgeNormalNegated (const int edge)
void ComputeFaceNormal (const int face)
void NegateFaceNormal (const int face)
void ComputeVertexNormal (const int vertex)
const NormalVectorGetFaceNormal (const int face) const
const NormalVectorGetVertexNormal (const int vertex) const
const NormalVectorGetSurfaceNormal (const int id) const
const LibUtilities::PointsKeyVector GetPointsKeys () const
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values.
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced.
template<class T >
boost::shared_ptr< T > as ()
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
virtual ~Expansion3D ()
void SetFaceExp (const int face, Expansion2DSharedPtr &f)
Expansion2DSharedPtr GetFaceExp (const int face)
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation.
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation.
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 Expansion (const Expansion &pSrc)
virtual ~Expansion ()
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
SpatialDomains::GeometrySharedPtr GetGeom () const
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region.
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 Calculate the derivative of the physical points.
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a single direction.
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the elements basis.
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $.
void IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain.
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 Retrieves the physical coordinates of a given set of reference coordinates.
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return the region shape using the enum-list of ShapeType.
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type.
virtual bool v_GetFaceDGForwards (const int i) const
virtual void v_GetFacePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 Returns the physical values at the quadrature points of a face.
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
void v_ComputeFaceNormal (const int face)
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
virtual void v_ComputeLaplacianMetric ()
- Protected Member Functions inherited from Nektar::StdRegions::StdHexExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
virtual int v_GetNverts () const
virtual int v_GetNedges () const
virtual int v_GetNfaces () const
virtual int v_NumBndryCoeffs () const
virtual int v_NumDGBndryCoeffs () const
virtual int v_GetEdgeNcoeffs (const int i) const
virtual int v_GetTotalEdgeIntNcoeffs () const
virtual int v_GetFaceNcoeffs (const int i) const
virtual int v_GetFaceIntNcoeffs (const int i) const
virtual int v_GetTotalFaceIntNcoeffs () const
virtual int v_GetFaceNumPoints (const int i) const
virtual LibUtilities::PointsKey v_GetFacePointsKey (const int i, const int j) const
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
virtual const
LibUtilities::BasisKey 
v_DetFaceBasisKey (const int i, const int k) const
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
virtual bool v_IsBoundaryInteriorExpansion ()
virtual void v_GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
virtual void v_GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_NegateFaceNormal (const int face)
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition.
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc.
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d)
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated).
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
virtual StdRegions::Orientation v_GetForient (int face)
virtual Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
virtual Array< OneD, unsigned int > v_GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation)
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 Build inverse and inverse transposed transformation matrix: $\mathbf{R^{-1}}$ and $\mathbf{R^{-T}}$.
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
void ComputeQuadratureMetric ()
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)

Private Member Functions

 HexExp ()
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion3D
std::map< int, NormalVectorm_faceNormals
std::map< int, bool > m_negatedNormals
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
MetricMap m_metrics

Detailed Description

Defines a hexahedral local expansion.

Definition at line 64 of file HexExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::HexExp::HexExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::HexGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key for first coordinate.
BbBasis key for second coordinate.
BcBasis key for third coordinate.

Definition at line 59 of file HexExp.cpp.

:
StdExpansion (Ba.GetNumModes()*Bb.GetNumModes()*Bc.GetNumModes(),3,Ba,Bb,Bc),
StdExpansion3D(Ba.GetNumModes()*Bb.GetNumModes()*Bc.GetNumModes(),Ba,Bb,Bc),
StdRegions::StdHexExp(Ba,Bb,Bc),
Expansion (geom),
Expansion3D (geom),
boost::bind(&HexExp::CreateMatrix, this, _1),
std::string("HexExpMatrix")),
boost::bind(&HexExp::CreateStaticCondMatrix, this, _1),
std::string("HexExpStaticCondMatrix"))
{
}
Nektar::LocalRegions::HexExp::HexExp ( const HexExp T)

Copy Constructor.

Parameters
THexExp to copy.

Definition at line 83 of file HexExp.cpp.

:
m_matrixManager(T.m_matrixManager),
m_staticCondMatrixManager(T.m_staticCondMatrixManager)
{
}
Nektar::LocalRegions::HexExp::~HexExp ( )

Destructor.

Definition at line 97 of file HexExp.cpp.

{
}
Nektar::LocalRegions::HexExp::HexExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1632 of file HexExp.cpp.

References ASSERTL2, Nektar::LocalRegions::Expansion::BuildTransformationMatrix(), Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian02, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eLaplacian12, Nektar::StdRegions::eLaplacian22, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::ePreconLinearSpaceMass, Nektar::StdRegions::ePreconR, Nektar::StdRegions::ePreconRMass, Nektar::StdRegions::ePreconRT, Nektar::StdRegions::ePreconRTMass, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

{
"Geometric information is not set up");
switch(mkey.GetMatrixType())
{
{
mkey.GetNVarCoeff())
{
NekDouble one = 1.0;
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(one,mat);
}
else
{
NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
= GetStdMatrix(mkey);
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(jac,mat);
}
}
break;
{
{
NekDouble one = 1.0;
StdRegions::StdMatrixKey masskey(StdRegions::eMass,
DetShapeType(), *this);
DNekMatSharedPtr mat = GenMatrix(masskey);
mat->Invert();
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(one,mat);
}
else
{
NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
= GetStdMatrix(mkey);
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(fac,mat);
}
}
break;
{
mkey.GetNVarCoeff())
{
NekDouble one = 1.0;
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(one,mat);
}
else
{
NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
Array<TwoD, const NekDouble> df
= m_metricinfo->GetDerivFactors(ptsKeys);
int dir = 0;
switch(mkey.GetMatrixType())
{
dir = 0;
break;
dir = 1;
break;
dir = 2;
break;
default:
break;
}
MatrixKey deriv0key(StdRegions::eWeakDeriv0,
mkey.GetShapeType(), *this);
MatrixKey deriv1key(StdRegions::eWeakDeriv1,
mkey.GetShapeType(), *this);
MatrixKey deriv2key(StdRegions::eWeakDeriv2,
mkey.GetShapeType(), *this);
DNekMat &deriv0 = *GetStdMatrix(deriv0key);
DNekMat &deriv1 = *GetStdMatrix(deriv1key);
DNekMat &deriv2 = *GetStdMatrix(deriv2key);
int rows = deriv0.GetRows();
int cols = deriv1.GetColumns();
DNekMatSharedPtr WeakDeriv = MemoryManager<DNekMat>
::AllocateSharedPtr(rows,cols);
(*WeakDeriv) = df[3*dir ][0]*deriv0
+ df[3*dir+1][0]*deriv1
+ df[3*dir+2][0]*deriv2;
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(jac,WeakDeriv);
}
}
break;
{
mkey.GetNVarCoeff()||
mkey.ConstFactorExists(
{
NekDouble one = 1.0;
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(one,mat);
}
else
{
MatrixKey lap00key(StdRegions::eLaplacian00,
mkey.GetShapeType(), *this);
MatrixKey lap01key(StdRegions::eLaplacian01,
mkey.GetShapeType(), *this);
MatrixKey lap02key(StdRegions::eLaplacian02,
mkey.GetShapeType(), *this);
MatrixKey lap11key(StdRegions::eLaplacian11,
mkey.GetShapeType(), *this);
MatrixKey lap12key(StdRegions::eLaplacian12,
mkey.GetShapeType(), *this);
MatrixKey lap22key(StdRegions::eLaplacian22,
mkey.GetShapeType(), *this);
DNekMat &lap00 = *GetStdMatrix(lap00key);
DNekMat &lap01 = *GetStdMatrix(lap01key);
DNekMat &lap02 = *GetStdMatrix(lap02key);
DNekMat &lap11 = *GetStdMatrix(lap11key);
DNekMat &lap12 = *GetStdMatrix(lap12key);
DNekMat &lap22 = *GetStdMatrix(lap22key);
NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
Array<TwoD, const NekDouble> gmat
= m_metricinfo->GetGmat(ptsKeys);
int rows = lap00.GetRows();
int cols = lap00.GetColumns();
DNekMatSharedPtr lap = MemoryManager<DNekMat>
::AllocateSharedPtr(rows,cols);
(*lap) = gmat[0][0]*lap00
+ gmat[4][0]*lap11
+ gmat[8][0]*lap22
+ gmat[3][0]*(lap01 + Transpose(lap01))
+ gmat[6][0]*(lap02 + Transpose(lap02))
+ gmat[7][0]*(lap12 + Transpose(lap12));
returnval = MemoryManager<DNekScalMat>
::AllocateSharedPtr(jac,lap);
}
}
break;
{
NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
MatrixKey masskey(StdRegions::eMass,
mkey.GetShapeType(), *this);
DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
MatrixKey lapkey(StdRegions::eLaplacian,
mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
int rows = LapMat.GetRows();
int cols = LapMat.GetColumns();
DNekMatSharedPtr helm = MemoryManager<DNekMat>::AllocateSharedPtr(rows,cols);
NekDouble one = 1.0;
(*helm) = LapMat + lambda*MassMat;
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
}
break;
{
{
NekDouble one = 1.0;
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
}
else
{
NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
}
}
break;
{
NekDouble one = 1.0;
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
}
break;
{
NekDouble one = 1.0;
// StdRegions::StdMatrixKey hkey(StdRegions::eHybridDGHelmholtz,
// DetShapeType(),*this,
// mkey.GetConstant(0),
// mkey.GetConstant(1));
MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
mat->Invert();
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
}
break;
{
NekDouble one = 1.0;
MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,R);
}
break;
{
NekDouble one = 1.0;
MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,R);
}
break;
{
NekDouble one = 1.0;
MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,R);
}
break;
{
NekDouble one = 1.0;
MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,RT);
}
break;
{
NekDouble one = 1.0;
MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,R);
}
break;
{
NekDouble one = 1.0;
MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,RT);
}
break;
default:
{
NekDouble one = 1.0;
returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
}
break;
}
return returnval;
}
DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected

Definition at line 1957 of file HexExp.cpp.

References ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

{
ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
// set up block matrix system
unsigned int nbdry = NumBndryCoeffs();
unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
unsigned int exp_size[] = {nbdry,nint};
unsigned int nblks = 2;
returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks,nblks,exp_size,exp_size); //Really need a constructor which takes Arrays
NekDouble factor = 1.0;
switch(mkey.GetMatrixType())
{
case StdRegions::eHelmholtz: // special case since Helmholtz not defined in StdRegions
// use Deformed case for both regular and deformed geometries
factor = 1.0;
goto UseLocRegionsMatrix;
break;
default:
mkey.GetNVarCoeff())
{
factor = 1.0;
goto UseLocRegionsMatrix;
}
else
{
factor = mat->Scale();
goto UseStdRegionsMatrix;
}
break;
UseStdRegionsMatrix:
{
NekDouble invfactor = 1.0/factor;
NekDouble one = 1.0;
returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
}
break;
UseLocRegionsMatrix:
{
int i,j;
NekDouble invfactor = 1.0/factor;
NekDouble one = 1.0;
DNekScalMat &mat = *GetLocMatrix(mkey);
DNekMatSharedPtr A = MemoryManager<DNekMat>::AllocateSharedPtr(nbdry,nbdry);
DNekMatSharedPtr B = MemoryManager<DNekMat>::AllocateSharedPtr(nbdry,nint);
DNekMatSharedPtr C = MemoryManager<DNekMat>::AllocateSharedPtr(nint,nbdry);
DNekMatSharedPtr D = MemoryManager<DNekMat>::AllocateSharedPtr(nint,nint);
Array<OneD,unsigned int> bmap(nbdry);
Array<OneD,unsigned int> imap(nint);
for(i = 0; i < nbdry; ++i)
{
for(j = 0; j < nbdry; ++j)
{
(*A)(i,j) = mat(bmap[i],bmap[j]);
}
for(j = 0; j < nint; ++j)
{
(*B)(i,j) = mat(bmap[i],imap[j]);
}
}
for(i = 0; i < nint; ++i)
{
for(j = 0; j < nbdry; ++j)
{
(*C)(i,j) = mat(imap[i],bmap[j]);
}
for(j = 0; j < nint; ++j)
{
(*D)(i,j) = mat(imap[i],imap[j]);
}
}
// Calculate static condensed system
if(nint)
{
D->Invert();
(*B) = (*B)*(*D);
(*A) = (*A) - (*B)*(*C);
}
returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
}
}
return returnval;
}
void Nektar::LocalRegions::HexExp::IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protected

Definition at line 478 of file HexExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

{
int nq = GetTotPoints();
switch(dir)
{
case 0:
{
}
break;
case 1:
{
}
break;
case 2:
{
}
break;
default:
{
ASSERTL1(false,"input dir is out of range");
}
break;
}
MatrixKey iprodmatkey(mtype,DetShapeType(),*this);
DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
}
void Nektar::LocalRegions::HexExp::IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protected

Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $.

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product $\phi_{pqr}(\xi_1,\xi_2,\xi_3) = \phi_1(\xi_1)\phi_2(\xi_2)\phi_3(\xi_3)$, in the hexahedral element, this is straightforward and yields the result

\[ I_{pqr} = \sum_{k=1}^3 \left(u, \frac{\partial u}{\partial \xi_k} \frac{\partial \xi_k}{\partial x_i}\right) \]

Parameters
dirDirection in which to take the derivative.
inarrayThe function $ u $.
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 416 of file HexExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase().

{
ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
const int nq0 = m_base[0]->GetNumPoints();
const int nq1 = m_base[1]->GetNumPoints();
const int nq2 = m_base[2]->GetNumPoints();
const int nq = nq0*nq1*nq2;
const int nm0 = m_base[0]->GetNumModes();
const int nm1 = m_base[1]->GetNumModes();
const Array<TwoD, const NekDouble>& df =
m_metricinfo->GetDerivFactors(GetPointsKeys());
Array<OneD, NekDouble> alloc(4*nq + m_ncoeffs + nm0*nq2*(nq1+nm1));
Array<OneD, NekDouble> tmp1 (alloc); // Quad metric
Array<OneD, NekDouble> tmp2 (alloc + nq); // Dir1 metric
Array<OneD, NekDouble> tmp3 (alloc + 2*nq); // Dir2 metric
Array<OneD, NekDouble> tmp4 (alloc + 3*nq); // Dir3 metric
Array<OneD, NekDouble> tmp5 (alloc + 4*nq); // iprod tmp
Array<OneD, NekDouble> wsp (tmp5 + m_ncoeffs); // Wsp
{
Vmath::Vmul(nq,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
Vmath::Vmul(nq,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
Vmath::Vmul(nq,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
}
else
{
Vmath::Smul(nq, df[3*dir][0], tmp1.get(),1,tmp2.get(), 1);
Vmath::Smul(nq, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
Vmath::Smul(nq, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
}
m_base[1]->GetBdata(),
m_base[2]->GetBdata(),
tmp2,outarray,wsp,
false,true,true);
m_base[1]->GetDbdata(),
m_base[2]->GetBdata(),
tmp3,tmp5,wsp,
true,false,true);
Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
m_base[1]->GetBdata(),
m_base[2]->GetDbdata(),
tmp4,tmp5,wsp,
true,true,false);
Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
}
void Nektar::LocalRegions::HexExp::v_ComputeFaceNormal ( const int  face)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1159 of file HexExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::DetFaceBasisKey(), Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp2D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion3D::m_faceNormals, Vmath::Sdiv(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

{
int i;
GetGeom()->GetMetricInfo();
SpatialDomains::GeomType type = geomFactors->GetGtype();
const Array<TwoD, const NekDouble> & df = geomFactors->GetDerivFactors(ptsKeys);
const Array<OneD, const NekDouble> & jac = geomFactors->GetJac(ptsKeys);
LibUtilities::BasisKey tobasis0 = DetFaceBasisKey(face,0);
LibUtilities::BasisKey tobasis1 = DetFaceBasisKey(face,1);
// Number of quadrature points in face expansion.
int nq_face = tobasis0.GetNumPoints()*tobasis1.GetNumPoints();
int vCoordDim = GetCoordim();
m_faceNormals[face] = Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
Array<OneD, Array<OneD, NekDouble> > &normal = m_faceNormals[face];
for (i = 0; i < vCoordDim; ++i)
{
normal[i] = Array<OneD, NekDouble>(nq_face);
}
// Regular geometry case
{
NekDouble fac;
// Set up normals
switch(face)
{
case 0:
for(i = 0; i < vCoordDim; ++i)
{
normal[i][0] = -df[3*i+2][0];
}
break;
case 1:
for(i = 0; i < vCoordDim; ++i)
{
normal[i][0] = -df[3*i+1][0];
}
break;
case 2:
for(i = 0; i < vCoordDim; ++i)
{
normal[i][0] = df[3*i][0];
}
break;
case 3:
for(i = 0; i < vCoordDim; ++i)
{
normal[i][0] = df[3*i+1][0];
}
break;
case 4:
for(i = 0; i < vCoordDim; ++i)
{
normal[i][0] = -df[3*i][0];
}
break;
case 5:
for(i = 0; i < vCoordDim; ++i)
{
normal[i][0] = df[3*i+2][0];
}
break;
default:
ASSERTL0(false,"face is out of range (edge < 5)");
}
// normalise
fac = 0.0;
for(i =0 ; i < vCoordDim; ++i)
{
fac += normal[i][0]*normal[i][0];
}
fac = 1.0/sqrt(fac);
for (i = 0; i < vCoordDim; ++i)
{
Vmath::Fill(nq_face,fac*normal[i][0],normal[i],1);
}
}
else // Set up deformed normals
{
int j, k;
int nqe0 = m_base[0]->GetNumPoints();
int nqe1 = m_base[1]->GetNumPoints();
int nqe2 = m_base[2]->GetNumPoints();
int nqe01 = nqe0*nqe1;
int nqe02 = nqe0*nqe2;
int nqe12 = nqe1*nqe2;
int nqe;
if (face == 0 || face == 5)
{
nqe = nqe01;
}
else if (face == 1 || face == 3)
{
nqe = nqe02;
}
else
{
nqe = nqe12;
}
LibUtilities::PointsKey points0;
LibUtilities::PointsKey points1;
Array<OneD, NekDouble> normals(vCoordDim*nqe,0.0);
// Extract Jacobian along face and recover local
// derivates (dx/dr) for polynomial interpolation by
// multiplying m_gmat by jacobian
switch(face)
{
case 0:
for(j = 0; j < nqe; ++j)
{
normals[j] = -df[2][j]*jac[j];
normals[nqe+j] = -df[5][j]*jac[j];
normals[2*nqe+j] = -df[8][j]*jac[j];
}
points0 = ptsKeys[0];
points1 = ptsKeys[1];
break;
case 1:
for (j = 0; j < nqe0; ++j)
{
for(k = 0; k < nqe2; ++k)
{
int idx = j + nqe01*k;
normals[j+k*nqe0] = -df[1][idx]*jac[idx];
normals[nqe+j+k*nqe0] = -df[4][idx]*jac[idx];
normals[2*nqe+j+k*nqe0] = -df[7][idx]*jac[idx];
}
}
points0 = ptsKeys[0];
points1 = ptsKeys[2];
break;
case 2:
for (j = 0; j < nqe1; ++j)
{
for(k = 0; k < nqe2; ++k)
{
int idx = nqe0-1+nqe0*j+nqe01*k;
normals[j+k*nqe0] = df[0][idx]*jac[idx];
normals[nqe+j+k*nqe0] = df[3][idx]*jac[idx];
normals[2*nqe+j+k*nqe0] = df[6][idx]*jac[idx];
}
}
points0 = ptsKeys[1];
points1 = ptsKeys[2];
break;
case 3:
for (j = 0; j < nqe0; ++j)
{
for(k = 0; k < nqe2; ++k)
{
int idx = nqe0*(nqe1-1)+j+nqe01*k;
normals[j+k*nqe0] = df[1][idx]*jac[idx];
normals[nqe+j+k*nqe0] = df[4][idx]*jac[idx];
normals[2*nqe+j+k*nqe0] = df[7][idx]*jac[idx];
}
}
points0 = ptsKeys[0];
points1 = ptsKeys[2];
break;
case 4:
for (j = 0; j < nqe0; ++j)
{
for(k = 0; k < nqe2; ++k)
{
int idx = j*nqe0+nqe01*k;
normals[j+k*nqe0] = -df[0][idx]*jac[idx];
normals[nqe+j+k*nqe0] = -df[3][idx]*jac[idx];
normals[2*nqe+j+k*nqe0] = -df[6][idx]*jac[idx];
}
}
points0 = ptsKeys[1];
points1 = ptsKeys[2];
break;
case 5:
for (j = 0; j < nqe01; ++j)
{
int idx = j+nqe01*(nqe2-1);
normals[j] = df[2][idx]*jac[idx];
normals[nqe+j] = df[5][idx]*jac[idx];
normals[2*nqe+j] = df[8][idx]*jac[idx];
}
points0 = ptsKeys[0];
points1 = ptsKeys[1];
break;
default:
ASSERTL0(false,"face is out of range (face < 5)");
}
Array<OneD, NekDouble> work (nq_face, 0.0);
// Interpolate Jacobian and invert
LibUtilities::Interp2D(points0, points1, jac,
tobasis0.GetPointsKey(),
tobasis1.GetPointsKey(),
work);
Vmath::Sdiv(nq_face,1.0,&work[0],1,&work[0],1);
// interpolate
for(i = 0; i < GetCoordim(); ++i)
{
LibUtilities::Interp2D(points0, points1,
&normals[i*nqe],
tobasis0.GetPointsKey(),
tobasis1.GetPointsKey(),
&normal[i][0]);
Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
}
//normalise normal vectors
Vmath::Zero(nq_face,work,1);
for(i = 0; i < GetCoordim(); ++i)
{
Vmath::Vvtvp(nq_face,normal[i],1, normal[i],1,work,1,work,1);
}
Vmath::Vsqrt(nq_face,work,1,work,1);
Vmath::Sdiv(nq_face,1.0,work,1,work,1);
for(i = 0; i < GetCoordim(); ++i)
{
Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
}
}
}
void Nektar::LocalRegions::HexExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 2152 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::LocalRegions::MetricLaplacian00, Nektar::LocalRegions::MetricLaplacian01, Nektar::LocalRegions::MetricLaplacian02, Nektar::LocalRegions::MetricLaplacian11, Nektar::LocalRegions::MetricLaplacian12, Nektar::LocalRegions::MetricLaplacian22, Nektar::LocalRegions::MetricQuadrature, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Vcopy().

{
if (m_metrics.count(MetricQuadrature) == 0)
{
}
const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
const unsigned int nqtot = GetTotPoints();
const unsigned int dim = 3;
};
for (unsigned int i = 0; i < dim; ++i)
{
for (unsigned int j = i; j < dim; ++j)
{
m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
const Array<TwoD, const NekDouble> &gmat =
{
Vmath::Vcopy(nqtot, &gmat[i*dim+j][0], 1,
&m_metrics[m[i][j]][0], 1);
}
else
{
Vmath::Fill(nqtot, gmat[i*dim+j][0],
&m_metrics[m[i][j]][0], 1);
}
m_metrics[m[i][j]]);
}
}
}
DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1618 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

{
LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
StdRegions::StdHexExpSharedPtr tmp = MemoryManager<StdHexExp>
::AllocateSharedPtr(bkey0,bkey1,bkey2);
return tmp->GetStdMatrix(mkey);
}
LibUtilities::ShapeType Nektar::LocalRegions::HexExp::v_DetShapeType ( ) const
protectedvirtual

Return the region shape using the enum-list of ShapeType.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 586 of file HexExp.cpp.

References Nektar::LibUtilities::eHexahedron.

void Nektar::LocalRegions::HexExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 2083 of file HexExp.cpp.

References Nektar::LibUtilities::NekManager< KeyType, ValueT, opLessCreator >::DeleteObject(), and m_staticCondMatrixManager.

void Nektar::LocalRegions::HexExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  nmode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from the same expansion type.

See Also
StdExpansion::ExtractDataToCoeffs

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 592 of file HexExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

{
int data_order0 = nummodes[mode_offset];
int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
int data_order1 = nummodes[mode_offset+1];
int order1 = m_base[1]->GetNumModes();
int fillorder1 = min(order1,data_order1);
int data_order2 = nummodes[mode_offset+2];
int order2 = m_base[2]->GetNumModes();
int fillorder2 = min(order2,data_order2);
switch(m_base[0]->GetBasisType())
{
{
int i,j;
int cnt = 0;
int cnt1 = 0;
"Extraction routine not set up for this basis");
"Extraction routine not set up for this basis");
for(j = 0; j < fillorder0; ++j)
{
for(i = 0; i < fillorder1; ++i)
{
Vmath::Vcopy(fillorder2, &data[cnt], 1,
&coeffs[cnt1], 1);
cnt += data_order2;
cnt1 += order2;
}
// count out data for j iteration
for(i = fillorder1; i < data_order1; ++i)
{
cnt += data_order2;
}
for(i = fillorder1; i < order1; ++i)
{
cnt1 += order2;
}
}
}
break;
default:
ASSERTL0(false, "basis is either not set up or not "
"hierarchicial");
}
}
void Nektar::LocalRegions::HexExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.

Parameters
inarrayInput array
outarrayOutput array

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 288 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

{
if( m_base[0]->Collocation() && m_base[1]->Collocation()
&& m_base[2]->Collocation())
{
Vmath::Vcopy(GetNcoeffs(),&inarray[0],1,&outarray[0],1);
}
else
{
IProductWRTBase(inarray,outarray);
// get Mass matrix inverse
MatrixKey masskey(StdRegions::eInvMass,
DetShapeType(),*this);
// copy inarray in case inarray == outarray
DNekVec in (m_ncoeffs,outarray);
DNekVec out(m_ncoeffs,outarray,eWrapper);
out = (*matsys)*in;
}
}
void Nektar::LocalRegions::HexExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1463 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

{
//int nConsts = mkey.GetNconstants();
// switch(nConsts)
// {
// case 0:
// {
// mat = GetLocMatrix(mkey.GetMatrixType());
// }
// break;
// case 1:
// {
// mat = GetLocMatrix(mkey.GetMatrixType(),mkey.GetConstant(0));
// }
// break;
// case 2:
// {
// mat = GetLocMatrix(mkey.GetMatrixType(),mkey.GetConstant(0),mkey.GetConstant(1));
// }
// break;
//
// default:
// {
// NEKERROR(ErrorUtil::efatal, "Unknown number of constants");
// }
// break;
// }
if(inarray.get() == outarray.get())
{
Array<OneD,NekDouble> tmp(m_ncoeffs);
Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
}
else
{
Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
}
}
DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1594 of file HexExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, and Nektar::StdRegions::StdMatrixKey::GetMatrixType().

void Nektar::LocalRegions::HexExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Retrieves the physical coordinates of a given set of reference coordinates.

Parameters
LcoordsLocal coordinates in reference space.
coordsCorresponding coordinates in physical space.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 554 of file HexExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

{
int i;
ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[0] <= 1.0 &&
Lcoords[1] >= -1.0 && Lcoords[1] <= 1.0 &&
Lcoords[2] >= -1.0 && Lcoords[2] <= 1.0,
"Local coordinates are not in region [-1,1]");
m_geom->FillGeom();
for(i = 0; i < m_geom->GetCoordim(); ++i)
{
coords[i] = m_geom->GetCoord(i,Lcoords);
}
}
void Nektar::LocalRegions::HexExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 573 of file HexExp.cpp.

{
Expansion::v_GetCoords(coords_0, coords_1, coords_2);
}
bool Nektar::LocalRegions::HexExp::v_GetFaceDGForwards ( const int  i) const
protectedvirtual

Definition at line 652 of file HexExp.cpp.

References Nektar::StdRegions::eDir1BwdDir1_Dir2BwdDir2, Nektar::StdRegions::eDir1BwdDir2_Dir2FwdDir1, Nektar::StdRegions::eDir1FwdDir1_Dir2FwdDir2, Nektar::StdRegions::eDir1FwdDir2_Dir2BwdDir1, and Nektar::LocalRegions::Expansion3D::GetGeom3D().

void Nektar::LocalRegions::HexExp::v_GetFacePhysVals ( const int  face,
const StdRegions::StdExpansionSharedPtr FaceExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
protectedvirtual

Returns the physical values at the quadrature points of a face.

Definition at line 675 of file HexExp.cpp.

References ASSERTL0, Nektar::StdRegions::eDir1BwdDir1_Dir2BwdDir2, Nektar::StdRegions::eDir1BwdDir1_Dir2FwdDir2, Nektar::StdRegions::eDir1BwdDir2_Dir2BwdDir1, Nektar::StdRegions::eDir1BwdDir2_Dir2FwdDir1, Nektar::StdRegions::eDir1FwdDir1_Dir2BwdDir2, Nektar::StdRegions::eDir1FwdDir1_Dir2FwdDir2, Nektar::StdRegions::eDir1FwdDir2_Dir2BwdDir1, Nektar::StdRegions::eDir1FwdDir2_Dir2FwdDir1, Nektar::StdRegions::eNoOrientation, Nektar::StdRegions::StdExpansion::GetFaceNumPoints(), Nektar::StdRegions::StdExpansion::GetForient(), Nektar::LibUtilities::Interp2D(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by v_GetTracePhysVals().

{
int nquad0 = m_base[0]->GetNumPoints();
int nquad1 = m_base[1]->GetNumPoints();
int nquad2 = m_base[2]->GetNumPoints();
Array<OneD, NekDouble> o_tmp(GetFaceNumPoints(face));
{
orient = GetForient(face);
}
switch(face)
{
case 0:
{
//Directions A and B positive
Vmath::Vcopy(nquad0*nquad1,&(inarray[0]),1,&(o_tmp[0]),1);
}
{
//Direction A negative and B positive
for (int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1)+j*nquad0,-1,&(o_tmp[0])+(j*nquad0),1);
}
}
{
//Direction A positive and B negative
for (int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+nquad0*(nquad1-1-j),1,&(o_tmp[0])+(j*nquad0),1);
}
}
{
//Direction A negative and B negative
for(int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1-1-j*nquad0),-1,&(o_tmp[0])+(j*nquad0),1);
}
}
{
//Transposed, Direction A and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+i,nquad0,&(o_tmp[0])+(i*nquad1),1);
}
}
{
//Transposed, Direction A negative and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+i+nquad0*(nquad1-1),-nquad0,&(o_tmp[0])+(i*nquad1),1);
}
}
{
//Transposed, Direction A positive and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0-1-i),nquad0,&(o_tmp[0])+(i*nquad1),1);
}
}
{
//Transposed, Direction A and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0*nquad1-1-i),-nquad0,&(o_tmp[0])+(i*nquad1),1);
}
}
//interpolate
LibUtilities::Interp2D(m_base[0]->GetPointsKey(),
m_base[1]->GetPointsKey(), o_tmp,
FaceExp->GetBasis(0)->GetPointsKey(),
FaceExp->GetBasis(1)->GetPointsKey(),
outarray);
break;
case 1:
{
//Direction A and B positive
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1*k),
1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A negative and B positive
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1)+(nquad0*nquad1*k),
-1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A positive and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1*(nquad2-1-k)),
1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A negative and B negative
for(int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1)+(nquad0*nquad1*(nquad2-1-k)),
-1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Transposed, Direction A and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+i,nquad0*nquad1,
&(o_tmp[0])+(i*nquad2),1);
}
}
{
//Transposed, Direction A negative and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+nquad0*nquad1*(nquad2-1)+i,
-nquad0*nquad1,&(o_tmp[0])+(i*nquad2),1);
}
}
{
//Transposed, Direction A positive and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0-1-i),nquad0*nquad1,
&(o_tmp[0])+(i*nquad2),1);
}
}
{
//Transposed, Direction A and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+nquad0*nquad1*nquad2+(nquad0-1-i),
-nquad0*nquad1,&(o_tmp[0])+(i*nquad2),1);
}
}
//interpolate
LibUtilities::Interp2D(m_base[0]->GetPointsKey(),
m_base[2]->GetPointsKey(), o_tmp,
FaceExp->GetBasis(0)->GetPointsKey(),
FaceExp->GetBasis(1)->GetPointsKey(),
outarray);
break;
case 2:
{
//Directions A and B positive
Vmath::Vcopy(nquad0*nquad1,&(inarray[0])+(nquad0-1),
nquad0,&(o_tmp[0]),1);
}
{
//Direction A negative and B positive
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1-1)+(k*nquad0*nquad1),
-nquad0,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A positive and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1)+(nquad0*nquad1*(nquad2-1-k)),
nquad0,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A negative and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1-1)+(nquad0*nquad1*(nquad2-1-k)),
-nquad0,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Transposed, Direction A and B positive
for (int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0-1)+(j*nquad0),
nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
{
//Transposed, Direction A negative and B positive
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+nquad0*nquad1*(nquad2-1)+nquad0+j*nquad0,
-nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
{
//Transposed, Direction A positive and B negative
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0*nquad1-1-j*nquad0),
nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
{
//Transposed, Direction A and B negative
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0*nquad1*nquad2-1-j*nquad0),
-nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
//interpolate
LibUtilities::Interp2D(m_base[1]->GetPointsKey(),
m_base[2]->GetPointsKey(), o_tmp,
FaceExp->GetBasis(0)->GetPointsKey(),
FaceExp->GetBasis(1)->GetPointsKey(),
outarray);
break;
case 3:
{
//Directions A and B positive
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*(nquad1-1))+(k*nquad0*nquad1),
1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A negative and B positive
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1-1)+(k*nquad0*nquad1),
-1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A positive and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*(nquad1-1))+(nquad0*nquad1*(nquad2-1-k)),
1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A negative and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1-1)+(nquad0*nquad1*(nquad2-1-k)),
-1,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Transposed, Direction A and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+nquad0*(nquad1-1)+i,nquad0*nquad1,
&(o_tmp[0])+(i*nquad2),1);
}
}
{
//Transposed, Direction A negative and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+nquad0*(nquad1*nquad2-1)+i,-nquad0*nquad1,
&(o_tmp[0])+(i*nquad2),1);
}
}
{
//Transposed, Direction A positive and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0*nquad1-1-i),nquad0*nquad1,
&(o_tmp[0])+(i*nquad2),1);
}
}
{
//Transposed, Direction A and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0*nquad1*nquad2-1-i),-nquad0*nquad1,
&(o_tmp[0])+(i*nquad2),1);
}
}
//interpolate
LibUtilities::Interp2D(m_base[0]->GetPointsKey(),
m_base[2]->GetPointsKey(), o_tmp,
FaceExp->GetBasis(0)->GetPointsKey(),
FaceExp->GetBasis(1)->GetPointsKey(),
outarray);
break;
case 4:
{
//Directions A and B positive
Vmath::Vcopy(nquad0*nquad1,&(inarray[0]),nquad0,&(o_tmp[0]),1);
}
{
//Direction A negative and B positive
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+nquad0*(nquad1-1)+(k*nquad0*nquad1),
-nquad0,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A positive and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1*(nquad2-1-k)),
nquad0,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Direction A negative and B negative
for (int k=0; k<nquad2; k++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+nquad0*(nquad1-1)+(nquad0*nquad1*(nquad2-1-k)),
-nquad0,&(o_tmp[0])+(k*nquad0),1);
}
}
{
//Transposed, Direction A and B positive
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+j*nquad0,nquad0*nquad1,
&(o_tmp[0])+(j*nquad2),1);
}
}
{
//Transposed, Direction A negative and B positive
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+nquad0*nquad1*(nquad2-1)+j*nquad0,
-nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
{
//Transposed, Direction A positive and B negative
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0*(nquad1-1)-j*nquad0),
nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
{
//Transposed, Direction A and B negative
for (int j=0; j<nquad0; j++)
{
Vmath::Vcopy(nquad2,&(inarray[0])+(nquad0*(nquad1*nquad2-1)-j*nquad0),
-nquad0*nquad1,&(o_tmp[0])+(j*nquad2),1);
}
}
//interpolate
LibUtilities::Interp2D(m_base[1]->GetPointsKey(),
m_base[2]->GetPointsKey(), o_tmp,
FaceExp->GetBasis(0)->GetPointsKey(),
FaceExp->GetBasis(1)->GetPointsKey(),
outarray);
break;
case 5:
{
//Directions A and B positive
Vmath::Vcopy(nquad0*nquad1,&(inarray[0])+nquad0*nquad1*(nquad2-1),1,&(o_tmp[0]),1);
}
{
//Direction A negative and B positive
for (int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+nquad0*nquad1*(nquad2-1)+(nquad0-1+j*nquad0),
-1,&(o_tmp[0])+(j*nquad0),1);
}
}
{
//Direction A positive and B negative
for (int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+((nquad0*nquad1*nquad2-1)-(nquad0-1)-j*nquad0),
1,&(o_tmp[0])+(j*nquad0),1);
}
}
{
//Direction A negative and B negative
for (int j=0; j<nquad1; j++)
{
Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0*nquad1*nquad2-1-j*nquad0),
-1,&(o_tmp[0])+(j*nquad0),1);
}
}
{
//Transposed, Direction A and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+nquad0*nquad1*(nquad2-1)+i,nquad0,
&(o_tmp[0])+(i*nquad1),1);
}
}
{
//Transposed, Direction A negative and B positive
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+nquad0*(nquad1*nquad2-1)+i,-nquad0,
&(o_tmp[0])+(i*nquad1),1);
}
}
{
//Transposed, Direction A positive and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+nquad0*nquad1*(nquad2-1)+(nquad0-1-i),
nquad0,&(o_tmp[0])+(i*nquad1),1);
}
}
{
//Transposed, Direction A and B negative
for (int i=0; i<nquad0; i++)
{
Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0*nquad1*nquad2-1-i),-nquad0,
&(o_tmp[0])+(i*nquad1),1);
}
}
//interpolate
LibUtilities::Interp2D(m_base[0]->GetPointsKey(),
m_base[1]->GetPointsKey(), o_tmp,
FaceExp->GetBasis(0)->GetPointsKey(),
FaceExp->GetBasis(1)->GetPointsKey(),
outarray);
break;
default:
ASSERTL0(false,"face value (> 5) is out of range");
break;
}
}
DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 2071 of file HexExp.cpp.

References m_matrixManager.

{
return m_matrixManager[mkey];
}
DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 2077 of file HexExp.cpp.

References m_staticCondMatrixManager.

{
}
void Nektar::LocalRegions::HexExp::v_GetTracePhysVals ( const int  face,
const StdRegions::StdExpansionSharedPtr FaceExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
protectedvirtual

Definition at line 663 of file HexExp.cpp.

References v_GetFacePhysVals().

{
v_GetFacePhysVals(face,FaceExp,inarray,outarray,orient);
}
void Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1454 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

{
HexExp::v_HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
}
NekDouble Nektar::LocalRegions::HexExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region.

Parameters
inarraydefinition of function to be returned at quadrature points of expansion.
Returns
$\int^1_{-1}\int^1_{-1} \int^1_{-1} u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 $ where $inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) $ and $ J[i,j,k] $ is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 116 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

{
int nquad0 = m_base[0]->GetNumPoints();
int nquad1 = m_base[1]->GetNumPoints();
int nquad2 = m_base[2]->GetNumPoints();
Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
NekDouble returnVal;
Array<OneD,NekDouble> tmp(nquad0*nquad1*nquad2);
// multiply inarray with Jacobian
{
Vmath::Vmul(nquad0*nquad1*nquad2,&jac[0],1,
(NekDouble*)&inarray[0],1,&tmp[0],1);
}
else
{
Vmath::Smul(nquad0*nquad1*nquad2,(NekDouble) jac[0],
(NekDouble*)&inarray[0],1,&tmp[0],1);
}
// call StdHexExp version;
returnVal = StdHexExp::v_Integral(tmp);
return returnVal;
}
void Nektar::LocalRegions::HexExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the elements basis.

Parameters
inarrayInput array of physical space data.
outarrayOutput array of data.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 326 of file HexExp.cpp.

References v_IProductWRTBase_SumFac().

{
}
void Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.

$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\xi_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{r}^{a} (\xi_{3k}) w_i w_j w_k u(\xi_{1,i} \xi_{2,j} \xi_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\xi_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} \end{array} $
where $ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a ( \xi_1) \psi_{q}^a (\xi_2) \psi_{r}^a (\xi_3) $
which can be implemented as
$f_{r} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} = {\bf B_3 U} $
$ g_{q} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{r} (\xi_{3k}) = {\bf B_2 F} $
$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k}) = {\bf B_1 G} $

Parameters
base0Basis to integrate wrt in first dimension.
base1Basis to integrate wrt in second dimension.
base2Basis to integrate wrt in third dimension.
inarrayInput array.
outarrayOutput array.
coll_check(not used)

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 365 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

{
int nquad0 = m_base[0]->GetNumPoints();
int nquad1 = m_base[1]->GetNumPoints();
int nquad2 = m_base[2]->GetNumPoints();
int order0 = m_base[0]->GetNumModes();
int order1 = m_base[1]->GetNumModes();
Array<OneD, NekDouble> tmp(inarray.num_elements());
Array<OneD, NekDouble> wsp(nquad0*nquad1*(nquad2+order0) +
order0*order1*nquad2);
m_base[1]->GetBdata(),
m_base[2]->GetBdata(),
tmp,outarray,wsp,
true,true,true);
}
void Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 387 of file HexExp.cpp.

References IProductWRTDerivBase_SumFac().

{
HexExp::IProductWRTDerivBase_SumFac(dir,inarray,outarray);
}
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1408 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree().

{
HexExp::v_LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
}
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1416 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree().

{
mkey);
}
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
privatevirtual

Definition at line 2088 of file HexExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::LocalRegions::MetricLaplacian00, Nektar::LocalRegions::MetricLaplacian01, Nektar::LocalRegions::MetricLaplacian02, Nektar::LocalRegions::MetricLaplacian11, Nektar::LocalRegions::MetricLaplacian12, Nektar::LocalRegions::MetricLaplacian22, Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv(), Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

{
// This implementation is only valid when there are no
// coefficients associated to the Laplacian operator
if (m_metrics.count(MetricLaplacian00) == 0)
{
}
int nquad0 = m_base[0]->GetNumPoints();
int nquad1 = m_base[1]->GetNumPoints();
int nquad2 = m_base[2]->GetNumPoints();
int nqtot = nquad0*nquad1*nquad2;
ASSERTL1(wsp.num_elements() >= 6*nqtot,
"Insufficient workspace size.");
const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
const Array<OneD, const NekDouble>& dbase2 = m_base[2]->GetDbdata();
const Array<OneD, const NekDouble>& metric00 = m_metrics[MetricLaplacian00];
const Array<OneD, const NekDouble>& metric01 = m_metrics[MetricLaplacian01];
const Array<OneD, const NekDouble>& metric02 = m_metrics[MetricLaplacian02];
const Array<OneD, const NekDouble>& metric11 = m_metrics[MetricLaplacian11];
const Array<OneD, const NekDouble>& metric12 = m_metrics[MetricLaplacian12];
const Array<OneD, const NekDouble>& metric22 = m_metrics[MetricLaplacian22];
// Allocate temporary storage
Array<OneD,NekDouble> wsp0(wsp);
Array<OneD,NekDouble> wsp1(wsp+1*nqtot);
Array<OneD,NekDouble> wsp2(wsp+2*nqtot);
Array<OneD,NekDouble> wsp3(wsp+3*nqtot);
Array<OneD,NekDouble> wsp4(wsp+4*nqtot);
Array<OneD,NekDouble> wsp5(wsp+5*nqtot);
StdExpansion3D::PhysTensorDeriv(inarray,wsp0,wsp1,wsp2);
// wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
// wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
// where g0, g1 and g2 are the metric terms set up in the GeomFactors class
// especially for this purpose
Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp0[0],1,&metric01[0],1,&wsp1[0],1,&wsp3[0],1);
Vmath::Vvtvp (nqtot,&metric02[0],1,&wsp2[0],1,&wsp3[0],1,&wsp3[0],1);
Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp0[0],1,&metric11[0],1,&wsp1[0],1,&wsp4[0],1);
Vmath::Vvtvp (nqtot,&metric12[0],1,&wsp2[0],1,&wsp4[0],1,&wsp4[0],1);
Vmath::Vvtvvtp(nqtot,&metric02[0],1,&wsp0[0],1,&metric12[0],1,&wsp1[0],1,&wsp5[0],1);
Vmath::Vvtvp (nqtot,&metric22[0],1,&wsp2[0],1,&wsp5[0],1,&wsp5[0],1);
// outarray = m = (D_xi1 * B)^T * k
// wsp1 = n = (D_xi2 * B)^T * l
IProductWRTBase_SumFacKernel(dbase0,base1,base2,wsp3,outarray,wsp0,false,true,true);
IProductWRTBase_SumFacKernel(base0,dbase1,base2,wsp4,wsp2, wsp0,true,false,true);
Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
IProductWRTBase_SumFacKernel(base0,base1,dbase2,wsp5,wsp2, wsp0,true,true,false);
Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
}
void Nektar::LocalRegions::HexExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1445 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::MassLevelCurvatureMatrixOp_MatFree().

void Nektar::LocalRegions::HexExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1400 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::MassMatrixOp_MatFree().

{
StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
}
void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
protectedvirtual

Calculate the derivative of the physical points.

For Hexahedral region can use the Tensor_Deriv function defined under StdExpansion.

Parameters
inarrayInput array
out_d0Derivative of inarray in first direction.
out_d1Derivative of inarray in second direction.
out_d2Derivative of inarray in third direction.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 159 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

{
int nquad0 = m_base[0]->GetNumPoints();
int nquad1 = m_base[1]->GetNumPoints();
int nquad2 = m_base[2]->GetNumPoints();
int ntot = nquad0 * nquad1 * nquad2;
Array<TwoD, const NekDouble> df =
m_metricinfo->GetDerivFactors(GetPointsKeys());
Array<OneD,NekDouble> Diff0 = Array<OneD,NekDouble>(ntot);
Array<OneD,NekDouble> Diff1 = Array<OneD,NekDouble>(ntot);
Array<OneD,NekDouble> Diff2 = Array<OneD,NekDouble>(ntot);
StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
{
if(out_d0.num_elements())
{
Vmath::Vmul (ntot,&df[0][0],1,&Diff0[0],1, &out_d0[0], 1);
Vmath::Vvtvp(ntot,&df[1][0],1,&Diff1[0],1, &out_d0[0], 1,
&out_d0[0],1);
Vmath::Vvtvp(ntot,&df[2][0],1,&Diff2[0],1, &out_d0[0], 1,
&out_d0[0],1);
}
if(out_d1.num_elements())
{
Vmath::Vmul (ntot,&df[3][0],1,&Diff0[0],1, &out_d1[0], 1);
Vmath::Vvtvp(ntot,&df[4][0],1,&Diff1[0],1, &out_d1[0], 1,
&out_d1[0],1);
Vmath::Vvtvp(ntot,&df[5][0],1,&Diff2[0],1, &out_d1[0], 1,
&out_d1[0],1);
}
if(out_d2.num_elements())
{
Vmath::Vmul (ntot,&df[6][0],1,&Diff0[0],1, &out_d2[0], 1);
Vmath::Vvtvp(ntot,&df[7][0],1,&Diff1[0],1, &out_d2[0], 1,
&out_d2[0],1);
Vmath::Vvtvp(ntot,&df[8][0],1,&Diff2[0],1, &out_d2[0], 1,
&out_d2[0],1);
}
}
else // regular geometry
{
if(out_d0.num_elements())
{
Vmath::Smul (ntot,df[0][0],&Diff0[0],1, &out_d0[0], 1);
Blas::Daxpy (ntot,df[1][0],&Diff1[0],1, &out_d0[0], 1);
Blas::Daxpy (ntot,df[2][0],&Diff2[0],1, &out_d0[0], 1);
}
if(out_d1.num_elements())
{
Vmath::Smul (ntot,df[3][0],&Diff0[0],1, &out_d1[0], 1);
Blas::Daxpy (ntot,df[4][0],&Diff1[0],1, &out_d1[0], 1);
Blas::Daxpy (ntot,df[5][0],&Diff2[0],1, &out_d1[0], 1);
}
if(out_d2.num_elements())
{
Vmath::Smul (ntot,df[6][0],&Diff0[0],1, &out_d2[0], 1);
Blas::Daxpy (ntot,df[7][0],&Diff1[0],1, &out_d2[0], 1);
Blas::Daxpy (ntot,df[8][0],&Diff2[0],1, &out_d2[0], 1);
}
}
}
void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the derivative of the physical points in a single direction.

Parameters
dirDirection in which to compute derivative. Valid values are 0, 1, 2.
inarrayInput array.
outarrayOutput array.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 242 of file HexExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

{
switch(dir)
{
case 0:
{
PhysDeriv(inarray, outarray, NullNekDouble1DArray,
}
break;
case 1:
{
PhysDeriv(inarray, NullNekDouble1DArray, outarray,
}
break;
case 2:
{
}
break;
default:
{
ASSERTL1(false,"input dir is out of range");
}
break;
}
}
NekDouble Nektar::LocalRegions::HexExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates $ \mathbf{x_c}$ given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array $\mathbf{u}$ (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 536 of file HexExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

Referenced by v_StdPhysEvaluate().

{
Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(3);
ASSERTL0(m_geom,"m_geom not defined");
m_geom->GetLocCoords(coord,Lcoord);
return StdHexExp::v_PhysEvaluate(Lcoord, physvals);
}
void Nektar::LocalRegions::HexExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

This function is used to compute exactly the advective numerical flux on the interface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1522 of file HexExp.cpp.

References Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::InterpCoeff3D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Vcopy(), and Vmath::Zero().

{
int n_coeffs = inarray.num_elements();
int nmodes0 = m_base[0]->GetNumModes();
int nmodes1 = m_base[1]->GetNumModes();
int nmodes2 = m_base[2]->GetNumModes();
int numMax = nmodes0;
Array<OneD, NekDouble> coeff (n_coeffs);
Array<OneD, NekDouble> coeff_tmp1(nmodes0*nmodes1, 0.0);
Array<OneD, NekDouble> coeff_tmp2(n_coeffs, 0.0);
Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
Vmath::Vcopy(n_coeffs,inarray,1,coeff_tmp2,1);
const LibUtilities::PointsKey Pkey0(
const LibUtilities::PointsKey Pkey1(
const LibUtilities::PointsKey Pkey2(
LibUtilities::BasisKey b0(
m_base[0]->GetBasisType(), nmodes0, Pkey0);
LibUtilities::BasisKey b1(
m_base[1]->GetBasisType(), nmodes1, Pkey1);
LibUtilities::BasisKey b2(
m_base[2]->GetBasisType(), nmodes2, Pkey2);
LibUtilities::BasisKey bortho0(
LibUtilities::eOrtho_A, nmodes0, Pkey0);
LibUtilities::BasisKey bortho1(
LibUtilities::eOrtho_A, nmodes1, Pkey1);
LibUtilities::BasisKey bortho2(
LibUtilities::eOrtho_A, nmodes2, Pkey2);
b0, b1, b2, coeff_tmp2,
bortho0, bortho1, bortho2, coeff);
Vmath::Zero(n_coeffs, coeff_tmp2, 1);
int cnt = 0, cnt2 = 0;
for (int u = 0; u < numMin+1; ++u)
{
for (int i = 0; i < numMin; ++i)
{
Vmath::Vcopy(numMin,
tmp = coeff+cnt+cnt2,1,
tmp2 = coeff_tmp1+cnt,1);
cnt = i*numMax;
}
Vmath::Vcopy(nmodes0*nmodes1,
tmp3 = coeff_tmp1,1,
tmp4 = coeff_tmp2+cnt2,1);
cnt2 = u*nmodes0*nmodes1;
}
bortho0, bortho1, bortho2, coeff_tmp2,
b0, b1, b2, outarray);
}
NekDouble Nektar::LocalRegions::HexExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 528 of file HexExp.cpp.

References v_PhysEvaluate().

{
// Evaluate point in local coordinates.
return StdHexExp::v_PhysEvaluate(Lcoord,physvals);
}
void Nektar::LocalRegions::HexExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1427 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::WeakDerivMatrixOp_MatFree().

{
StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
}
void Nektar::LocalRegions::HexExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1436 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::WeakDirectionalDerivMatrixOp_MatFree().

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_matrixManager
private

Definition at line 263 of file HexExp.h.

Referenced by CreateMatrix(), IProductWRTDerivBase_MatOp(), v_FwdTrans(), and v_GetLocMatrix().

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_staticCondMatrixManager
private

Definition at line 264 of file HexExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().