Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::TetExp Class Reference

#include <TetExp.h>

Inheritance diagram for Nektar::LocalRegions::TetExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::TetExp:
Collaboration graph
[legend]

Public Member Functions

 TetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::TetGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 TetExp (const TetExp &T)
 Copy Constructor. More...
 
 ~TetExp ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdTetExp
 StdTetExp ()
 
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdTetExp (const StdTetExp &T)
 
 ~StdTetExp ()
 
LibUtilities::ShapeType DetShapeType () const
 
NekDouble PhysEvaluate3D (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 Single Point Evaluation. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int edge)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
virtual ~Expansion3D ()
 
void SetFaceExp (const int face, Expansion2DSharedPtr &f)
 
Expansion2DSharedPtr GetFaceExp (const int face)
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void ReOrientFacePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 Differentiate inarray in the three coordinate directions. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put into outarray: More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $. More...
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 Get the coordinates "coords" at the local coordinates "Lcoords". More...
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return Shape of region, using ShapeType enum list. More...
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual int v_GetCoordim ()
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type. More...
 
virtual void v_GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 Returns the physical values at the quadrature points of a face. More...
 
void v_ComputeFaceNormal (const int face)
 Compute the normal of a triangular face. More...
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
void SetUpInverseTransformationMatrix (const DNekMatSharedPtr &m_transformationmatrix, DNekMatSharedPtr m_inversetransformationmatrix, DNekMatSharedPtr m_inversetransposedtransformationmatrix)
 
void v_ComputeConditionNumberOfMatrix (const DNekScalMatSharedPtr &mat)
 
virtual void v_ComputeLaplacianMetric ()
 
- Protected Member Functions inherited from Nektar::StdRegions::StdTetExp
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual int v_GetNfaces () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetTotalEdgeIntNcoeffs () const
 
virtual int v_GetFaceNcoeffs (const int i) const
 
virtual int v_GetFaceIntNcoeffs (const int i) const
 
virtual int v_GetTotalFaceIntNcoeffs () const
 
virtual int v_GetFaceNumPoints (const int i) const
 
virtual LibUtilities::PointsKey v_GetFacePointsKey (const int i, const int j) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual const
LibUtilities::BasisKey 
v_DetFaceBasisKey (const int i, const int k) const
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual void v_GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1, int Q=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_NegateFaceNormal (const int face)
 
virtual bool v_FaceNormalNegated (const int face)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d)
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 Returns the physical values at the quadrature points of a face Wrapper function to v_GetFacePhysVals. More...
 
virtual void v_GetFacePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual Array< OneD, unsigned int > v_GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 Build inverse and inverse transposed transformation matrix: $\mathbf{R^{-1}}$ and $\mathbf{R^{-T}}$. More...
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ReOrientTriFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void ReOrientQuadFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 TetExp ()
 
void GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion3D
std::map< int, NormalVectorm_faceNormals
 
std::map< int, bool > m_negatedNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Defines a Tetrahedral local expansion.

Definition at line 51 of file TetExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::TetExp::TetExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::TetGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key for first coordinate.
BbBasis key for second coordinate.
BcBasis key for third coordinate.

Definition at line 60 of file TetExp.cpp.

64  :
65  StdExpansion (
67  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
68  3, Ba, Bb, Bc),
71  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
72  Ba, Bb, Bc),
73  StdRegions::StdTetExp(Ba,Bb,Bc),
74  Expansion (geom),
75  Expansion3D (geom),
77  boost::bind(&TetExp::CreateMatrix, this, _1),
78  std::string("TetExpMatrix")),
80  boost::bind(&TetExp::CreateStaticCondMatrix, this, _1),
81  std::string("TetExpStaticCondMatrix"))
82  {
83  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:207
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:186
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: TetExp.cpp:1364
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TetExp.h:208
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: TetExp.cpp:1055
StdExpansion()
Default Constructor.
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::TetExp::TetExp ( const TetExp T)

Copy Constructor.

Definition at line 89 of file TetExp.cpp.

89  :
90  StdExpansion(T),
91  StdExpansion3D(T),
92  StdRegions::StdTetExp(T),
93  Expansion(T),
94  Expansion3D(T),
95  m_matrixManager(T.m_matrixManager),
96  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
97  {
98  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:207
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TetExp.h:208
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
StdExpansion()
Default Constructor.
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::TetExp::~TetExp ( )

Destructor.

Definition at line 103 of file TetExp.cpp.

104  {
105  }
Nektar::LocalRegions::TetExp::TetExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::TetExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1055 of file TetExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildTransformationMatrix(), Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdTetExp::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian02, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eLaplacian12, Nektar::StdRegions::eLaplacian22, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::ePreconLinearSpaceMass, Nektar::StdRegions::ePreconR, Nektar::StdRegions::ePreconRMass, Nektar::StdRegions::ePreconRT, Nektar::StdRegions::ePreconRTMass, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

1056  {
1057  DNekScalMatSharedPtr returnval;
1059 
1060  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1061 
1062  switch(mkey.GetMatrixType())
1063  {
1064  case StdRegions::eMass:
1065  {
1066  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1067  mkey.GetNVarCoeff())
1068  {
1069  NekDouble one = 1.0;
1070  DNekMatSharedPtr mat = GenMatrix(mkey);
1071  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1072  }
1073  else
1074  {
1075  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1076  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1077  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1078  }
1079  }
1080  break;
1081  case StdRegions::eInvMass:
1082  {
1083  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1084  {
1085  NekDouble one = 1.0;
1086  StdRegions::StdMatrixKey masskey(StdRegions::eMass,DetShapeType(),
1087  *this);
1088  DNekMatSharedPtr mat = GenMatrix(masskey);
1089  mat->Invert();
1090  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1091  }
1092  else
1093  {
1094  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1095  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1096  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
1097  }
1098  }
1099  break;
1103  {
1104  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1105  mkey.GetNVarCoeff())
1106  {
1107  NekDouble one = 1.0;
1108  DNekMatSharedPtr mat = GenMatrix(mkey);
1109 
1110  returnval = MemoryManager<DNekScalMat>
1111  ::AllocateSharedPtr(one,mat);
1112  }
1113  else
1114  {
1115  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1116  Array<TwoD, const NekDouble> df
1117  = m_metricinfo->GetDerivFactors(ptsKeys);
1118  int dir = 0;
1119 
1120  switch(mkey.GetMatrixType())
1121  {
1123  dir = 0;
1124  break;
1126  dir = 1;
1127  break;
1129  dir = 2;
1130  break;
1131  default:
1132  break;
1133  }
1134 
1135  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1136  mkey.GetShapeType(), *this);
1137  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1138  mkey.GetShapeType(), *this);
1139  MatrixKey deriv2key(StdRegions::eWeakDeriv2,
1140  mkey.GetShapeType(), *this);
1141 
1142  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1143  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1144  DNekMat &deriv2 = *GetStdMatrix(deriv2key);
1145 
1146  int rows = deriv0.GetRows();
1147  int cols = deriv1.GetColumns();
1148 
1150  ::AllocateSharedPtr(rows,cols);
1151  (*WeakDeriv) = df[3*dir][0]*deriv0
1152  + df[3*dir+1][0]*deriv1
1153  + df[3*dir+2][0]*deriv2;
1154 
1155  returnval = MemoryManager<DNekScalMat>
1156  ::AllocateSharedPtr(jac,WeakDeriv);
1157  }
1158  }
1159  break;
1161  {
1162  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1163  (mkey.GetNVarCoeff() > 0)||(mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio)))
1164  {
1165  NekDouble one = 1.0;
1166  DNekMatSharedPtr mat = GenMatrix(mkey);
1167 
1168  returnval = MemoryManager<DNekScalMat>
1169  ::AllocateSharedPtr(one,mat);
1170  }
1171  else
1172  {
1173  MatrixKey lap00key(StdRegions::eLaplacian00,
1174  mkey.GetShapeType(), *this);
1175  MatrixKey lap01key(StdRegions::eLaplacian01,
1176  mkey.GetShapeType(), *this);
1177  MatrixKey lap02key(StdRegions::eLaplacian02,
1178  mkey.GetShapeType(), *this);
1179  MatrixKey lap11key(StdRegions::eLaplacian11,
1180  mkey.GetShapeType(), *this);
1181  MatrixKey lap12key(StdRegions::eLaplacian12,
1182  mkey.GetShapeType(), *this);
1183  MatrixKey lap22key(StdRegions::eLaplacian22,
1184  mkey.GetShapeType(), *this);
1185 
1186  DNekMat &lap00 = *GetStdMatrix(lap00key);
1187  DNekMat &lap01 = *GetStdMatrix(lap01key);
1188  DNekMat &lap02 = *GetStdMatrix(lap02key);
1189  DNekMat &lap11 = *GetStdMatrix(lap11key);
1190  DNekMat &lap12 = *GetStdMatrix(lap12key);
1191  DNekMat &lap22 = *GetStdMatrix(lap22key);
1192 
1193  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1194  Array<TwoD, const NekDouble> gmat
1195  = m_metricinfo->GetGmat(ptsKeys);
1196 
1197  int rows = lap00.GetRows();
1198  int cols = lap00.GetColumns();
1199 
1201  ::AllocateSharedPtr(rows,cols);
1202 
1203  (*lap) = gmat[0][0]*lap00
1204  + gmat[4][0]*lap11
1205  + gmat[8][0]*lap22
1206  + gmat[3][0]*(lap01 + Transpose(lap01))
1207  + gmat[6][0]*(lap02 + Transpose(lap02))
1208  + gmat[7][0]*(lap12 + Transpose(lap12));
1209 
1210  returnval = MemoryManager<DNekScalMat>
1211  ::AllocateSharedPtr(jac,lap);
1212  }
1213  }
1214  break;
1216  {
1217  NekDouble factor = mkey.GetConstFactor(StdRegions::eFactorLambda);
1218  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1219  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1220  MatrixKey lapkey(StdRegions::eLaplacian, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1221  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1222 
1223  int rows = LapMat.GetRows();
1224  int cols = LapMat.GetColumns();
1225 
1227 
1228  NekDouble one = 1.0;
1229  (*helm) = LapMat + factor*MassMat;
1230 
1231  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one, helm);
1232  }
1233  break;
1235  {
1236  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1237  {
1238  NekDouble one = 1.0;
1239  DNekMatSharedPtr mat = GenMatrix(mkey);
1240  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1241  }
1242  else
1243  {
1244  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1245  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1246  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1247  }
1248  }
1249  break;
1257  {
1258  NekDouble one = 1.0;
1259 
1260  DNekMatSharedPtr mat = GenMatrix(mkey);
1261  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1262  }
1263  break;
1265  {
1266  NekDouble one = 1.0;
1267 
1268  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1269  DNekMatSharedPtr mat = GenMatrix(hkey);
1270 
1271  mat->Invert();
1272  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1273  }
1274  break;
1276  {
1277  NekDouble one = 1.0;
1278  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1279  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1280  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1282 
1284  }
1285  break;
1287  {
1288  NekDouble one = 1.0;
1289  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1290  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1291  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1293 
1295  }
1296  break;
1297  case StdRegions::ePreconR:
1298  {
1299  NekDouble one = 1.0;
1300  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1301  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1302  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1303 
1304  DNekScalMatSharedPtr Atmp;
1305  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1306 
1308  }
1309  break;
1310  case StdRegions::ePreconRT:
1311  {
1312  NekDouble one = 1.0;
1313  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1314  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1315  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1316 
1317  DNekScalMatSharedPtr Atmp;
1318  DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
1319 
1321  }
1322  break;
1324  {
1325  NekDouble one = 1.0;
1326  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1327  DNekScalBlkMatSharedPtr StatCond = GetLocStaticCondMatrix(masskey);
1328  DNekScalMatSharedPtr A =StatCond->GetBlock(0,0);
1329 
1330  DNekScalMatSharedPtr Atmp;
1331  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1332 
1334  }
1335  break;
1337  {
1338  NekDouble one = 1.0;
1339  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1340  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1341  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1342 
1343  DNekScalMatSharedPtr Atmp;
1344  DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
1345 
1347  }
1348  break;
1349  default:
1350  {
1351  //ASSERTL0(false, "Missing definition for " + (*StdRegions::MatrixTypeMap[mkey.GetMatrixType()]));
1352  NekDouble one = 1.0;
1353  DNekMatSharedPtr mat = GenMatrix(mkey);
1354 
1355  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1356  }
1357  break;
1358  }
1359 
1360  return returnval;
1361  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
DNekMatSharedPtr BuildTransformationMatrix(const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
Definition: Expansion.cpp:90
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:207
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:98
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:747
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:70
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:52
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
DNekScalBlkMatSharedPtr Nektar::LocalRegions::TetExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected

Definition at line 1364 of file TetExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::eFULL, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1366  {
1367  DNekScalBlkMatSharedPtr returnval;
1368 
1369  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1370 
1371  // set up block matrix system
1372  unsigned int nbdry = NumBndryCoeffs();
1373  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1374  unsigned int exp_size[] = {nbdry, nint};
1375  unsigned int nblks = 2;
1376  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks, nblks, exp_size, exp_size);
1377 
1378  NekDouble factor = 1.0;
1379  MatrixStorage AMatStorage = eFULL;
1380 
1381  switch(mkey.GetMatrixType())
1382  {
1384  case StdRegions::eHelmholtz: // special case since Helmholtz not defined in StdRegions
1385  // use Deformed case for both regular and deformed geometries
1386  factor = 1.0;
1387  goto UseLocRegionsMatrix;
1388  break;
1389  default:
1390  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1391  mkey.GetNVarCoeff())
1392  {
1393  factor = 1.0;
1394  goto UseLocRegionsMatrix;
1395  }
1396  else
1397  {
1398  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1399  factor = mat->Scale();
1400  goto UseStdRegionsMatrix;
1401  }
1402  break;
1403  UseStdRegionsMatrix:
1404  {
1405  NekDouble invfactor = 1.0/factor;
1406  NekDouble one = 1.0;
1408  DNekScalMatSharedPtr Atmp;
1409  DNekMatSharedPtr Asubmat;
1410 
1411  //TODO: check below
1412  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1413  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1414  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1415  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1416  }
1417  break;
1418  UseLocRegionsMatrix:
1419  {
1420  int i,j;
1421  NekDouble invfactor = 1.0/factor;
1422  NekDouble one = 1.0;
1423  DNekScalMat &mat = *GetLocMatrix(mkey);
1424  DNekMatSharedPtr A = MemoryManager<DNekMat>::AllocateSharedPtr(nbdry,nbdry,AMatStorage);
1428 
1429  Array<OneD,unsigned int> bmap(nbdry);
1430  Array<OneD,unsigned int> imap(nint);
1431  GetBoundaryMap(bmap);
1432  GetInteriorMap(imap);
1433 
1434  for(i = 0; i < nbdry; ++i)
1435  {
1436  for(j = 0; j < nbdry; ++j)
1437  {
1438  (*A)(i,j) = mat(bmap[i],bmap[j]);
1439  }
1440 
1441  for(j = 0; j < nint; ++j)
1442  {
1443  (*B)(i,j) = mat(bmap[i],imap[j]);
1444  }
1445  }
1446 
1447  for(i = 0; i < nint; ++i)
1448  {
1449  for(j = 0; j < nbdry; ++j)
1450  {
1451  (*C)(i,j) = mat(imap[i],bmap[j]);
1452  }
1453 
1454  for(j = 0; j < nint; ++j)
1455  {
1456  (*D)(i,j) = mat(imap[i],imap[j]);
1457  }
1458  }
1459 
1460  // Calculate static condensed system
1461  if(nint)
1462  {
1463  D->Invert();
1464  (*B) = (*B)*(*D);
1465  (*A) = (*A) - (*B)*(*C);
1466  }
1467 
1468  DNekScalMatSharedPtr Atmp;
1469 
1470  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1471  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1472  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1473  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1474 
1475  }
1476  break;
1477  }
1478  return returnval;
1479  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:705
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:816
void Nektar::LocalRegions::TetExp::GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
private

Definition at line 1508 of file TetExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

1512  {
1513  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1514 
1515  if(inarray.get() == outarray.get())
1516  {
1517  Array<OneD,NekDouble> tmp(m_ncoeffs);
1518  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1519 
1520  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1521  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1522  }
1523  else
1524  {
1525  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1526  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1527  }
1528  }
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TetExp::SetUpInverseTransformationMatrix ( const DNekMatSharedPtr m_transformationmatrix,
DNekMatSharedPtr  m_inversetransformationmatrix,
DNekMatSharedPtr  m_inversetransposedtransformationmatrix 
)
protected
void Nektar::LocalRegions::TetExp::v_ComputeConditionNumberOfMatrix ( const DNekScalMatSharedPtr mat)
protected
void Nektar::LocalRegions::TetExp::v_ComputeFaceNormal ( const int  face)
protectedvirtual

Compute the normal of a triangular face.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 720 of file TetExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::DetFaceBasisKey(), Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp2D(), Nektar::StdRegions::StdExpansion3D::m_faceNormals, Vmath::Sdiv(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

721  {
722  int i;
723  const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
724  GetGeom()->GetMetricInfo();
726  SpatialDomains::GeomType type = geomFactors->GetGtype();
727  const Array<TwoD, const NekDouble> &df = geomFactors->GetDerivFactors(ptsKeys);
728  const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
729 
730  LibUtilities::BasisKey tobasis0 = DetFaceBasisKey(face,0);
731  LibUtilities::BasisKey tobasis1 = DetFaceBasisKey(face,1);
732 
733  // number of face quadrature points
734  int nq_face = tobasis0.GetNumPoints()*tobasis1.GetNumPoints();
735 
736  int vCoordDim = GetCoordim();
737 
738  m_faceNormals[face] = Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
739  Array<OneD, Array<OneD, NekDouble> > &normal = m_faceNormals[face];
740  for (i = 0; i < vCoordDim; ++i)
741  {
742  normal[i] = Array<OneD, NekDouble>(nq_face);
743  }
744 
745  // Regular geometry case
746  if (type == SpatialDomains::eRegular ||
748  {
749  NekDouble fac;
750 
751  // Set up normals
752  switch (face)
753  {
754  case 0:
755  {
756  for (i = 0; i < vCoordDim; ++i)
757  {
758  normal[i][0] = -df[3*i+2][0];
759  }
760 
761  break;
762  }
763  case 1:
764  {
765  for (i = 0; i < vCoordDim; ++i)
766  {
767  normal[i][0] = -df[3*i+1][0];
768  }
769 
770  break;
771  }
772  case 2:
773  {
774  for (i = 0; i < vCoordDim; ++i)
775  {
776  normal[i][0] = df[3*i][0]+df[3*i+1][0]+
777  df[3*i+2][0];
778  }
779 
780  break;
781  }
782  case 3:
783  {
784  for(i = 0; i < vCoordDim; ++i)
785  {
786  normal[i][0] = -df[3*i][0];
787  }
788  break;
789  }
790  default:
791  ASSERTL0(false,"face is out of range (edge < 3)");
792  }
793 
794  // normalise
795  fac = 0.0;
796  for (i = 0; i < vCoordDim; ++i)
797  {
798  fac += normal[i][0]*normal[i][0];
799  }
800  fac = 1.0/sqrt(fac);
801 
802  for (i = 0; i < vCoordDim; ++i)
803  {
804  Vmath::Fill(nq_face,fac*normal[i][0],normal[i],1);
805  }
806  }
807  else
808  {
809  // Set up deformed normals
810  int j, k;
811 
812  int nq0 = ptsKeys[0].GetNumPoints();
813  int nq1 = ptsKeys[1].GetNumPoints();
814  int nq2 = ptsKeys[2].GetNumPoints();
815  int nqtot;
816  int nq01 =nq0*nq1;
817 
818  // number of elemental quad points
819  if (face == 0)
820  {
821  nqtot = nq01;
822  }
823  else if (face == 1)
824  {
825  nqtot = nq0*nq2;
826  }
827  else
828  {
829  nqtot = nq1*nq2;
830  }
831 
832  LibUtilities::PointsKey points0;
833  LibUtilities::PointsKey points1;
834 
835  Array<OneD, NekDouble> faceJac(nqtot);
836  Array<OneD,NekDouble> normals(vCoordDim*nqtot, 0.0);
837 
838  // Extract Jacobian along face and recover local derivates
839  // (dx/dr) for polynomial interpolation by multiplying m_gmat by
840  // jacobian
841  switch (face)
842  {
843  case 0:
844  {
845  for(j = 0; j < nq01; ++j)
846  {
847  normals[j] = -df[2][j]*jac[j];
848  normals[nqtot+j] = -df[5][j]*jac[j];
849  normals[2*nqtot+j] = -df[8][j]*jac[j];
850  faceJac[j] = jac[j];
851  }
852 
853  points0 = ptsKeys[0];
854  points1 = ptsKeys[1];
855  break;
856  }
857 
858  case 1:
859  {
860  for (j = 0; j < nq0; ++j)
861  {
862  for(k = 0; k < nq2; ++k)
863  {
864  int tmp = j+nq01*k;
865  normals[j+k*nq0] =
866  -df[1][tmp]*jac[tmp];
867  normals[nqtot+j+k*nq0] =
868  -df[4][tmp]*jac[tmp];
869  normals[2*nqtot+j+k*nq0] =
870  -df[7][tmp]*jac[tmp];
871  faceJac[j+k*nq0] = jac[tmp];
872  }
873  }
874 
875  points0 = ptsKeys[0];
876  points1 = ptsKeys[2];
877  break;
878  }
879 
880  case 2:
881  {
882  for (j = 0; j < nq1; ++j)
883  {
884  for(k = 0; k < nq2; ++k)
885  {
886  int tmp = nq0-1+nq0*j+nq01*k;
887  normals[j+k*nq1] =
888  (df[0][tmp]+df[1][tmp]+df[2][tmp])*
889  jac[tmp];
890  normals[nqtot+j+k*nq1] =
891  (df[3][tmp]+df[4][tmp]+df[5][tmp])*
892  jac[tmp];
893  normals[2*nqtot+j+k*nq1] =
894  (df[6][tmp]+df[7][tmp]+df[8][tmp])*
895  jac[tmp];
896  faceJac[j+k*nq1] = jac[tmp];
897  }
898  }
899 
900  points0 = ptsKeys[1];
901  points1 = ptsKeys[2];
902  break;
903  }
904 
905  case 3:
906  {
907  for (j = 0; j < nq1; ++j)
908  {
909  for(k = 0; k < nq2; ++k)
910  {
911  int tmp = j*nq0+nq01*k;
912  normals[j+k*nq1] =
913  -df[0][tmp]*jac[tmp];
914  normals[nqtot+j+k*nq1] =
915  -df[3][tmp]*jac[tmp];
916  normals[2*nqtot+j+k*nq1] =
917  -df[6][tmp]*jac[tmp];
918  faceJac[j+k*nq1] = jac[tmp];
919  }
920  }
921 
922  points0 = ptsKeys[1];
923  points1 = ptsKeys[2];
924  break;
925  }
926 
927  default:
928  ASSERTL0(false,"face is out of range (face < 3)");
929  }
930 
931  Array<OneD,NekDouble> work (nq_face, 0.0);
932  // Interpolate Jacobian and invert
933  LibUtilities::Interp2D(points0, points1, faceJac,
934  tobasis0.GetPointsKey(),
935  tobasis1.GetPointsKey(),
936  work);
937  Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
938 
939  // Interpolate normal and multiply by inverse Jacobian.
940  for(i = 0; i < vCoordDim; ++i)
941  {
942  LibUtilities::Interp2D(points0, points1,
943  &normals[i*nqtot],
944  tobasis0.GetPointsKey(),
945  tobasis1.GetPointsKey(),
946  &normal[i][0]);
947  Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
948  }
949 
950  // Normalise to obtain unit normals.
951  Vmath::Zero(nq_face,work,1);
952  for(i = 0; i < GetCoordim(); ++i)
953  {
954  Vmath::Vvtvp(nq_face,normal[i],1,normal[i],1,work,1,work,1);
955  }
956 
957  Vmath::Vsqrt(nq_face,work,1,work,1);
958  Vmath::Sdiv (nq_face,1.0,work,1,work,1);
959 
960  for(i = 0; i < GetCoordim(); ++i)
961  {
962  Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
963  }
964  }
965  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:257
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
Definition: Interp.cpp:116
double NekDouble
std::map< int, NormalVector > m_faceNormals
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:150
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
const LibUtilities::BasisKey DetFaceBasisKey(const int i, const int k) const
Definition: StdExpansion.h:324
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TetExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1601 of file TetExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

1602  {
1603  if (m_metrics.count(eMetricQuadrature) == 0)
1604  {
1606  }
1607 
1608  int i, j;
1609  const unsigned int nqtot = GetTotPoints();
1610  const unsigned int dim = 3;
1614  };
1615 
1616  for (unsigned int i = 0; i < dim; ++i)
1617  {
1618  for (unsigned int j = i; j < dim; ++j)
1619  {
1620  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1621  }
1622  }
1623 
1624  // Define shorthand synonyms for m_metrics storage
1625  Array<OneD,NekDouble> g0 (m_metrics[m[0][0]]);
1626  Array<OneD,NekDouble> g1 (m_metrics[m[1][1]]);
1627  Array<OneD,NekDouble> g2 (m_metrics[m[2][2]]);
1628  Array<OneD,NekDouble> g3 (m_metrics[m[0][1]]);
1629  Array<OneD,NekDouble> g4 (m_metrics[m[0][2]]);
1630  Array<OneD,NekDouble> g5 (m_metrics[m[1][2]]);
1631 
1632  // Allocate temporary storage
1633  Array<OneD,NekDouble> alloc(7*nqtot,0.0);
1634  Array<OneD,NekDouble> h0 (alloc); // h0
1635  Array<OneD,NekDouble> h1 (alloc+ 1*nqtot);// h1
1636  Array<OneD,NekDouble> h2 (alloc+ 2*nqtot);// h2
1637  Array<OneD,NekDouble> h3 (alloc+ 3*nqtot);// h3
1638  Array<OneD,NekDouble> wsp4 (alloc+ 4*nqtot);// wsp4
1639  Array<OneD,NekDouble> wsp5 (alloc+ 5*nqtot);// wsp5
1640  Array<OneD,NekDouble> wsp6 (alloc+ 6*nqtot);// wsp6
1641  // Reuse some of the storage as workspace
1642  Array<OneD,NekDouble> wsp7 (alloc); // wsp7
1643  Array<OneD,NekDouble> wsp8 (alloc+ 1*nqtot);// wsp8
1644  Array<OneD,NekDouble> wsp9 (alloc+ 2*nqtot);// wsp9
1645 
1646  const Array<TwoD, const NekDouble>& df =
1647  m_metricinfo->GetDerivFactors(GetPointsKeys());
1648  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
1649  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
1650  const Array<OneD, const NekDouble>& z2 = m_base[2]->GetZ();
1651  const unsigned int nquad0 = m_base[0]->GetNumPoints();
1652  const unsigned int nquad1 = m_base[1]->GetNumPoints();
1653  const unsigned int nquad2 = m_base[2]->GetNumPoints();
1654 
1655  for(j = 0; j < nquad2; ++j)
1656  {
1657  for(i = 0; i < nquad1; ++i)
1658  {
1659  Vmath::Fill(nquad0, 4.0/(1.0-z1[i])/(1.0-z2[j]), &h0[0]+i*nquad0 + j*nquad0*nquad1,1);
1660  Vmath::Fill(nquad0, 2.0/(1.0-z1[i])/(1.0-z2[j]), &h1[0]+i*nquad0 + j*nquad0*nquad1,1);
1661  Vmath::Fill(nquad0, 2.0/(1.0-z2[j]), &h2[0]+i*nquad0 + j*nquad0*nquad1,1);
1662  Vmath::Fill(nquad0, (1.0+z1[i])/(1.0-z2[j]), &h3[0]+i*nquad0 + j*nquad0*nquad1,1);
1663  }
1664  }
1665  for(i = 0; i < nquad0; i++)
1666  {
1667  Blas::Dscal(nquad1*nquad2, 1+z0[i], &h1[0]+i, nquad0);
1668  }
1669 
1670  // Step 3. Construct combined metric terms for physical space to
1671  // collapsed coordinate system.
1672  // Order of construction optimised to minimise temporary storage
1673  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1674  {
1675  // wsp4
1676  Vmath::Vadd(nqtot, &df[1][0], 1, &df[2][0], 1, &wsp4[0], 1);
1677  Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &wsp4[0], 1, &h1[0], 1, &wsp4[0], 1);
1678  // wsp5
1679  Vmath::Vadd(nqtot, &df[4][0], 1, &df[5][0], 1, &wsp5[0], 1);
1680  Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &wsp5[0], 1, &h1[0], 1, &wsp5[0], 1);
1681  // wsp6
1682  Vmath::Vadd(nqtot, &df[7][0], 1, &df[8][0], 1, &wsp6[0], 1);
1683  Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &wsp6[0], 1, &h1[0], 1, &wsp6[0], 1);
1684 
1685  // g0
1686  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1687  Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1688 
1689  // g4
1690  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0], 1, &g4[0], 1);
1691  Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1692 
1693  // overwrite h0, h1, h2
1694  // wsp7 (h2f1 + h3f2)
1695  Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h2[0], 1, &df[2][0], 1, &h3[0], 1, &wsp7[0], 1);
1696  // wsp8 (h2f4 + h3f5)
1697  Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h2[0], 1, &df[5][0], 1, &h3[0], 1, &wsp8[0], 1);
1698  // wsp9 (h2f7 + h3f8)
1699  Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h2[0], 1, &df[8][0], 1, &h3[0], 1, &wsp9[0], 1);
1700 
1701  // g3
1702  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0], 1, &g3[0], 1);
1703  Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1704 
1705  // overwrite wsp4, wsp5, wsp6
1706  // g1
1707  Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0], 1, &g1[0], 1);
1708  Vmath::Vvtvp (nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1709 
1710  // g5
1711  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp7[0], 1, &df[5][0], 1, &wsp8[0], 1, &g5[0], 1);
1712  Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1713 
1714  // g2
1715  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1, &df[5][0], 1, &g2[0], 1);
1716  Vmath::Vvtvp (nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1717  }
1718  else
1719  {
1720  // wsp4
1721  Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[1][0] + df[2][0], &h1[0], 1, &wsp4[0], 1);
1722  // wsp5
1723  Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[4][0] + df[5][0], &h1[0], 1, &wsp5[0], 1);
1724  // wsp6
1725  Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[7][0] + df[8][0], &h1[0], 1, &wsp6[0], 1);
1726 
1727  // g0
1728  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1729  Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1730 
1731  // g4
1732  Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1, &g4[0], 1);
1733  Vmath::Svtvp (nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1734 
1735  // overwrite h0, h1, h2
1736  // wsp7 (h2f1 + h3f2)
1737  Vmath::Svtsvtp(nqtot, df[1][0], &h2[0], 1, df[2][0], &h3[0], 1, &wsp7[0], 1);
1738  // wsp8 (h2f4 + h3f5)
1739  Vmath::Svtsvtp(nqtot, df[4][0], &h2[0], 1, df[5][0], &h3[0], 1, &wsp8[0], 1);
1740  // wsp9 (h2f7 + h3f8)
1741  Vmath::Svtsvtp(nqtot, df[7][0], &h2[0], 1, df[8][0], &h3[0], 1, &wsp9[0], 1);
1742 
1743  // g3
1744  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0], 1, &g3[0], 1);
1745  Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1746 
1747  // overwrite wsp4, wsp5, wsp6
1748  // g1
1749  Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0], 1, &g1[0], 1);
1750  Vmath::Vvtvp (nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1751 
1752  // g5
1753  Vmath::Svtsvtp(nqtot, df[2][0], &wsp7[0], 1, df[5][0], &wsp8[0], 1, &g5[0], 1);
1754  Vmath::Svtvp (nqtot, df[8][0], &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1755 
1756  // g2
1757  Vmath::Fill(nqtot, df[2][0]*df[2][0] + df[5][0]*df[5][0] + df[8][0]*df[8][0], &g2[0], 1);
1758  }
1759 
1760  for (unsigned int i = 0; i < dim; ++i)
1761  {
1762  for (unsigned int j = i; j < dim; ++j)
1763  {
1765  m_metrics[m[i][j]]);
1766 
1767  }
1768  }
1769 
1770 
1771  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:577
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
DNekMatSharedPtr Nektar::LocalRegions::TetExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 1482 of file TetExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1484  {
1485  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1486  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1487  LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1489 
1490  return tmp->GetStdMatrix(mkey);
1491  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< StdTetExp > StdTetExpSharedPtr
Definition: StdTetExp.h:268
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::ShapeType Nektar::LocalRegions::TetExp::v_DetShapeType ( ) const
protectedvirtual

Return Shape of region, using ShapeType enum list.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 548 of file TetExp.cpp.

References Nektar::LibUtilities::eTetrahedron.

void Nektar::LocalRegions::TetExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1503 of file TetExp.cpp.

References m_staticCondMatrixManager.

1504  {
1505  m_staticCondMatrixManager.DeleteObject(mkey);
1506  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TetExp.h:208
void Nektar::LocalRegions::TetExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  nmode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from the same expansion type.

See also
StdExpansion::ExtractDataToCoeffs

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 566 of file TetExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

571  {
572  int data_order0 = nummodes[mode_offset];
573  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
574  int data_order1 = nummodes[mode_offset+1];
575  int order1 = m_base[1]->GetNumModes();
576  int fillorder1 = min(order1,data_order1);
577  int data_order2 = nummodes[mode_offset+2];
578  int order2 = m_base[2]->GetNumModes();
579  int fillorder2 = min(order2,data_order2);
580 
581  switch(m_base[0]->GetBasisType())
582  {
584  {
585  int i,j;
586  int cnt = 0;
587  int cnt1 = 0;
588 
589  ASSERTL1(m_base[1]->GetBasisType() ==
591  "Extraction routine not set up for this basis");
592  ASSERTL1(m_base[2]->GetBasisType() ==
594  "Extraction routine not set up for this basis");
595 
596  Vmath::Zero(m_ncoeffs,coeffs,1);
597  for(j = 0; j < fillorder0; ++j)
598  {
599  for(i = 0; i < fillorder1-j; ++i)
600  {
601  Vmath::Vcopy(fillorder2-j-i, &data[cnt], 1,
602  &coeffs[cnt1], 1);
603  cnt += data_order2-j-i;
604  cnt1 += order2-j-i;
605  }
606 
607  // count out data for j iteration
608  for(i = fillorder1-j; i < data_order1-j; ++i)
609  {
610  cnt += data_order2-j-i;
611  }
612 
613  for(i = fillorder1-j; i < order1-j; ++i)
614  {
615  cnt1 += order2-j-i;
616  }
617 
618  }
619  }
620  break;
621  default:
622  ASSERTL0(false, "basis is either not set up or not "
623  "hierarchicial");
624  }
625  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TetExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.

Parameters
inarrayArray of physical quadrature points to be transformed.
outarrayArray of coefficients to update.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 241 of file TetExp.cpp.

References Nektar::StdRegions::StdTetExp::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

244  {
245  if((m_base[0]->Collocation())&&(m_base[1]->Collocation())&&(m_base[2]->Collocation()))
246  {
247  Vmath::Vcopy(GetNcoeffs(),&inarray[0],1,&outarray[0],1);
248  }
249  else
250  {
251  IProductWRTBase(inarray,outarray);
252 
253  // get Mass matrix inverse
254  MatrixKey masskey(StdRegions::eInvMass,
255  DetShapeType(),*this);
256  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
257 
258  // copy inarray in case inarray == outarray
259  DNekVec in (m_ncoeffs,outarray);
260  DNekVec out(m_ncoeffs,outarray,eWrapper);
261 
262  out = (*matsys)*in;
263  }
264  }
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:207
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:70
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:49
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:131
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
DNekMatSharedPtr Nektar::LocalRegions::TetExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 1031 of file TetExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

1033  {
1034  DNekMatSharedPtr returnval;
1035 
1036  switch(mkey.GetMatrixType())
1037  {
1045  returnval = Expansion3D::v_GenMatrix(mkey);
1046  break;
1047  default:
1048  returnval = StdTetExp::v_GenMatrix(mkey);
1049  }
1050 
1051  return returnval;
1052  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::TetExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Get the coordinates "coords" at the local coordinates "Lcoords".

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 513 of file TetExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

516  {
517  int i;
518 
519  ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 &&
520  Lcoords[1] <= -1.0 && Lcoords[1] >= 1.0 &&
521  Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
522  "Local coordinates are not in region [-1,1]");
523 
524  // m_geom->FillGeom(); // TODO: implement FillGeom()
525 
526  for(i = 0; i < m_geom->GetCoordim(); ++i)
527  {
528  coords[i] = m_geom->GetCoord(i,Lcoords);
529  }
530  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
int Nektar::LocalRegions::TetExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 561 of file TetExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

562  {
563  return m_geom->GetCoordim();
564  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::TetExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 532 of file TetExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

536  {
537  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
538  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:213
void Nektar::LocalRegions::TetExp::v_GetFacePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
protectedvirtual

Returns the physical values at the quadrature points of a face.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 630 of file TetExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

632  {
633  int nquad0 = m_base[0]->GetNumPoints();
634  int nquad1 = m_base[1]->GetNumPoints();
635  int nquad2 = m_base[2]->GetNumPoints();
636 
637  int nq0 = 0;
638  int nq1 = 0;
639 
640  // get forward aligned faces.
641  switch(face)
642  {
643  case 0:
644  {
645  nq0 = nquad0;
646  nq1 = nquad1;
647  if(outarray.num_elements()!=nq0*nq1)
648  {
649  outarray = Array<OneD, int>(nq0*nq1);
650  }
651 
652  for (int i = 0; i < nquad0*nquad1; ++i)
653  {
654  outarray[i] = i;
655  }
656 
657  break;
658  }
659  case 1:
660  {
661  nq0 = nquad0;
662  nq1 = nquad2;
663  if(outarray.num_elements()!=nq0*nq1)
664  {
665  outarray = Array<OneD, int>(nq0*nq1);
666  }
667 
668  //Direction A and B positive
669  for (int k=0; k<nquad2; k++)
670  {
671  for(int i = 0; i < nquad0; ++i)
672  {
673  outarray[k*nquad0+i] = (nquad0*nquad1*k)+i;
674  }
675  }
676  break;
677  }
678  case 2:
679  {
680  nq0 = nquad1;
681  nq1 = nquad2;
682  if(outarray.num_elements()!=nq0*nq1)
683  {
684  outarray = Array<OneD, int>(nq0*nq1);
685  }
686 
687  //Directions A and B positive
688  for(int j = 0; j < nquad1*nquad2; ++j)
689  {
690  outarray[j] = nquad0-1 + j*nquad0;
691  }
692  break;
693  }
694  case 3:
695  {
696  nq0 = nquad1;
697  nq1 = nquad2;
698  if(outarray.num_elements() != nq0*nq1)
699  {
700  outarray = Array<OneD, int>(nq0*nq1);
701  }
702 
703  //Directions A and B positive
704  for(int j = 0; j < nquad1*nquad2; ++j)
705  {
706  outarray[j] = j*nquad0;
707  }
708  }
709  break;
710  default:
711  ASSERTL0(false,"face value (> 3) is out of range");
712  break;
713  }
714  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Array< OneD, LibUtilities::BasisSharedPtr > m_base
DNekScalMatSharedPtr Nektar::LocalRegions::TetExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1493 of file TetExp.cpp.

References m_matrixManager.

1494  {
1495  return m_matrixManager[mkey];
1496  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:207
DNekScalBlkMatSharedPtr Nektar::LocalRegions::TetExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1498 of file TetExp.cpp.

References m_staticCondMatrixManager.

1499  {
1500  return m_staticCondMatrixManager[mkey];
1501  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TetExp.h:208
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TetExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 553 of file TetExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

554  {
556  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
557  m_base[1]->GetBasisKey(),
558  m_base[2]->GetBasisKey());
559  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 970 of file TetExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

974  {
975  TetExp::v_HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
976  }
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
NekDouble Nektar::LocalRegions::TetExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region.

Parameters
inarrayDefinition of function to be returned at quadrature point of expansion.
Returns
$\int^1_{-1}\int^1_{-1} \int^1_{-1} u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 $ where $inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) $ and $ J[i,j,k] $ is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 122 of file TetExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

124  {
125  int nquad0 = m_base[0]->GetNumPoints();
126  int nquad1 = m_base[1]->GetNumPoints();
127  int nquad2 = m_base[2]->GetNumPoints();
128  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
129  NekDouble retrunVal;
130  Array<OneD,NekDouble> tmp(nquad0*nquad1*nquad2);
131 
132  // multiply inarray with Jacobian
133  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
134  {
135  Vmath::Vmul(nquad0*nquad1*nquad2,&jac[0],1,
136  (NekDouble*)&inarray[0],1, &tmp[0],1);
137  }
138  else
139  {
140  Vmath::Smul(nquad0*nquad1*nquad2,(NekDouble) jac[0],
141  (NekDouble*)&inarray[0],1,&tmp[0],1);
142  }
143 
144  // call StdTetExp version;
145  retrunVal = StdTetExp::v_Integral(tmp);
146 
147  return retrunVal;
148  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TetExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put into outarray:

$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\eta_{1i}) \psi_{pq}^{b} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{pq}^b(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} $
where $ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\eta_1) \psi_{pq}^b (\eta_2) \psi_{pqr}^c (\eta_3) $ which can be implemented as
$f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} $
$ g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{pq}^b (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} $
$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} $

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 295 of file TetExp.cpp.

References v_IProductWRTBase_SumFac().

298  {
299  v_IProductWRTBase_SumFac(inarray, outarray);
300  }
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
Definition: TetExp.cpp:302
void Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 302 of file TetExp.cpp.

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

306  {
307  const int nquad0 = m_base[0]->GetNumPoints();
308  const int nquad1 = m_base[1]->GetNumPoints();
309  const int nquad2 = m_base[2]->GetNumPoints();
310  const int order0 = m_base[0]->GetNumModes();
311  const int order1 = m_base[1]->GetNumModes();
312  Array<OneD, NekDouble> wsp(nquad1*nquad2*order0 +
313  nquad2*order0*(order1+1)/2);
314 
315  if(multiplybyweights)
316  {
317  Array<OneD, NekDouble> tmp(nquad0*nquad1*nquad2);
318 
319  MultiplyByQuadratureMetric(inarray, tmp);
320  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
321  m_base[1]->GetBdata(),
322  m_base[2]->GetBdata(),
323  tmp,outarray,wsp,
324  true,true,true);
325  }
326  else
327  {
328  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
329  m_base[1]->GetBdata(),
330  m_base[2]->GetBdata(),
331  inarray,outarray,wsp,
332  true,true,true);
333  }
334  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $.

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product $\phi_{pqr}(\eta_1,\eta_2,\eta_3) = \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)$, this yields the result

\[ I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j} \frac{\partial \eta_j}{\partial x_i}\right) \]

In the prismatic element, we must also incorporate a second set of geometric factors which incorporate the collapsed co-ordinate system, so that

\[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3 \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial x_i} \]

These derivatives can be found on p152 of Sherwin & Karniadakis.

Parameters
dirDirection in which to take the derivative.
inarrayThe function $ u $.
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 366 of file TetExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

370  {
371  const int nquad0 = m_base[0]->GetNumPoints();
372  const int nquad1 = m_base[1]->GetNumPoints();
373  const int nquad2 = m_base[2]->GetNumPoints();
374  const int order0 = m_base[0]->GetNumModes ();
375  const int order1 = m_base[1]->GetNumModes ();
376  const int nqtot = nquad0*nquad1*nquad2;
377  int i, j;
378 
379  const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
380  const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
381  const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
382 
383  Array<OneD, NekDouble> h0 (nqtot);
384  Array<OneD, NekDouble> h1 (nqtot);
385  Array<OneD, NekDouble> h2 (nqtot);
386  Array<OneD, NekDouble> h3 (nqtot);
387  Array<OneD, NekDouble> tmp1 (nqtot);
388  Array<OneD, NekDouble> tmp2 (nqtot);
389  Array<OneD, NekDouble> tmp3 (nqtot);
390  Array<OneD, NekDouble> tmp4 (nqtot);
391  Array<OneD, NekDouble> tmp5 (nqtot);
392  Array<OneD, NekDouble> tmp6 (m_ncoeffs);
393  Array<OneD, NekDouble> wsp (nquad1*nquad2*order0 +
394  nquad2*order0*(order1+1)/2);
395 
396  const Array<TwoD, const NekDouble>& df =
397  m_metricinfo->GetDerivFactors(GetPointsKeys());
398 
399  MultiplyByQuadratureMetric(inarray,tmp1);
400 
401  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
402  {
403  Vmath::Vmul(nqtot,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
404  Vmath::Vmul(nqtot,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
405  Vmath::Vmul(nqtot,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
406  }
407  else
408  {
409  Vmath::Smul(nqtot, df[3*dir ][0],tmp1.get(),1,tmp2.get(), 1);
410  Vmath::Smul(nqtot, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
411  Vmath::Smul(nqtot, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
412  }
413 
414  const int nq01 = nquad0*nquad1;
415  const int nq12 = nquad1*nquad2;
416 
417  for(j = 0; j < nquad2; ++j)
418  {
419  for(i = 0; i < nquad1; ++i)
420  {
421  Vmath::Fill(nquad0, 4.0/(1.0-z1[i])/(1.0-z2[j]),
422  &h0[0]+i*nquad0 + j*nq01,1);
423  Vmath::Fill(nquad0, 2.0/(1.0-z1[i])/(1.0-z2[j]),
424  &h1[0]+i*nquad0 + j*nq01,1);
425  Vmath::Fill(nquad0, 2.0/(1.0-z2[j]),
426  &h2[0]+i*nquad0 + j*nq01,1);
427  Vmath::Fill(nquad0, (1.0+z1[i])/(1.0-z2[j]),
428  &h3[0]+i*nquad0 + j*nq01,1);
429  }
430  }
431 
432  for(i = 0; i < nquad0; i++)
433  {
434  Blas::Dscal(nq12, 1+z0[i], &h1[0]+i, nquad0);
435  }
436 
437  // Assemble terms for first IP.
438  Vmath::Vvtvvtp(nqtot, &tmp2[0], 1, &h0[0], 1,
439  &tmp3[0], 1, &h1[0], 1,
440  &tmp5[0], 1);
441  Vmath::Vvtvp (nqtot, &tmp4[0], 1, &h1[0], 1,
442  &tmp5[0], 1, &tmp5[0], 1);
443 
444  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
445  m_base[1]->GetBdata (),
446  m_base[2]->GetBdata (),
447  tmp5,outarray,wsp,
448  true,true,true);
449 
450  // Assemble terms for second IP.
451  Vmath::Vvtvvtp(nqtot, &tmp3[0], 1, &h2[0], 1,
452  &tmp4[0], 1, &h3[0], 1,
453  &tmp5[0], 1);
454 
455  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata (),
456  m_base[1]->GetDbdata(),
457  m_base[2]->GetBdata (),
458  tmp5,tmp6,wsp,
459  true,true,true);
460  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
461 
462  // Do third IP.
463  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata (),
464  m_base[1]->GetBdata (),
465  m_base[2]->GetDbdata(),
466  tmp4,tmp6,wsp,
467  true,true,true);
468 
469  // Sum contributions.
470  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
471  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 979 of file TetExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree().

983  {
984  TetExp::v_LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
985  }
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 987 of file TetExp.cpp.

993  {
994  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,
995  mkey);
996  }
void Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
privatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1531 of file TetExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

1535  {
1536  // This implementation is only valid when there are no
1537  // coefficients associated to the Laplacian operator
1538  if (m_metrics.count(eMetricLaplacian00) == 0)
1539  {
1541  }
1542 
1543  int nquad0 = m_base[0]->GetNumPoints();
1544  int nquad1 = m_base[1]->GetNumPoints();
1545  int nquad2 = m_base[2]->GetNumPoints();
1546  int nqtot = nquad0*nquad1*nquad2;
1547 
1548  ASSERTL1(wsp.num_elements() >= 6*nqtot,
1549  "Insufficient workspace size.");
1550  ASSERTL1(m_ncoeffs <= nqtot,
1551  "Workspace not set up for ncoeffs > nqtot");
1552 
1553  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1554  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1555  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
1556  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1557  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1558  const Array<OneD, const NekDouble>& dbase2 = m_base[2]->GetDbdata();
1559  const Array<OneD, const NekDouble>& metric00 = m_metrics[eMetricLaplacian00];
1560  const Array<OneD, const NekDouble>& metric01 = m_metrics[eMetricLaplacian01];
1561  const Array<OneD, const NekDouble>& metric02 = m_metrics[eMetricLaplacian02];
1562  const Array<OneD, const NekDouble>& metric11 = m_metrics[eMetricLaplacian11];
1563  const Array<OneD, const NekDouble>& metric12 = m_metrics[eMetricLaplacian12];
1564  const Array<OneD, const NekDouble>& metric22 = m_metrics[eMetricLaplacian22];
1565 
1566  // Allocate temporary storage
1567  Array<OneD,NekDouble> wsp0 (2*nqtot, wsp);
1568  Array<OneD,NekDouble> wsp1 ( nqtot, wsp+1*nqtot);
1569  Array<OneD,NekDouble> wsp2 ( nqtot, wsp+2*nqtot);
1570  Array<OneD,NekDouble> wsp3 ( nqtot, wsp+3*nqtot);
1571  Array<OneD,NekDouble> wsp4 ( nqtot, wsp+4*nqtot);
1572  Array<OneD,NekDouble> wsp5 ( nqtot, wsp+5*nqtot);
1573 
1574  // LAPLACIAN MATRIX OPERATION
1575  // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1576  // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1577  // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1578  StdExpansion3D::PhysTensorDeriv(inarray,wsp0,wsp1,wsp2);
1579 
1580  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1581  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1582  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1583  // especially for this purpose
1584  Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp0[0],1,&metric01[0],1,&wsp1[0],1,&wsp3[0],1);
1585  Vmath::Vvtvp (nqtot,&metric02[0],1,&wsp2[0],1,&wsp3[0],1,&wsp3[0],1);
1586  Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp0[0],1,&metric11[0],1,&wsp1[0],1,&wsp4[0],1);
1587  Vmath::Vvtvp (nqtot,&metric12[0],1,&wsp2[0],1,&wsp4[0],1,&wsp4[0],1);
1588  Vmath::Vvtvvtp(nqtot,&metric02[0],1,&wsp0[0],1,&metric12[0],1,&wsp1[0],1,&wsp5[0],1);
1589  Vmath::Vvtvp (nqtot,&metric22[0],1,&wsp2[0],1,&wsp5[0],1,&wsp5[0],1);
1590 
1591  // outarray = m = (D_xi1 * B)^T * k
1592  // wsp1 = n = (D_xi2 * B)^T * l
1593  IProductWRTBase_SumFacKernel(dbase0,base1,base2,wsp3,outarray,wsp0,false,true,true);
1594  IProductWRTBase_SumFacKernel(base0,dbase1,base2,wsp4,wsp2, wsp0,true,false,true);
1595  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1596  IProductWRTBase_SumFacKernel(base0,base1,dbase2,wsp5,wsp2, wsp0,true,true,false);
1597  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1598  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Nektar::LocalRegions::TetExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
protectedvirtual

Differentiate inarray in the three coordinate directions.

Parameters
inarrayInput array of values at quadrature points to be differentiated.
out_d0Derivative in first coordinate direction.
out_d1Derivative in second coordinate direction.
out_d2Derivative in third coordinate direction.

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 163 of file TetExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

168  {
169  int TotPts = m_base[0]->GetNumPoints()*m_base[1]->GetNumPoints()*
170  m_base[2]->GetNumPoints();
171 
172  Array<TwoD, const NekDouble> df =
173  m_metricinfo->GetDerivFactors(GetPointsKeys());
174  Array<OneD,NekDouble> Diff0 = Array<OneD,NekDouble>(3*TotPts);
175  Array<OneD,NekDouble> Diff1 = Diff0 + TotPts;
176  Array<OneD,NekDouble> Diff2 = Diff1 + TotPts;
177 
178  StdTetExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
179 
180  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
181  {
182  if(out_d0.num_elements())
183  {
184  Vmath::Vmul (TotPts,&df[0][0],1,&Diff0[0],1, &out_d0[0], 1);
185  Vmath::Vvtvp (TotPts,&df[1][0],1,&Diff1[0],1, &out_d0[0], 1,&out_d0[0],1);
186  Vmath::Vvtvp (TotPts,&df[2][0],1,&Diff2[0],1, &out_d0[0], 1,&out_d0[0],1);
187  }
188 
189  if(out_d1.num_elements())
190  {
191  Vmath::Vmul (TotPts,&df[3][0],1,&Diff0[0],1, &out_d1[0], 1);
192  Vmath::Vvtvp (TotPts,&df[4][0],1,&Diff1[0],1, &out_d1[0], 1,&out_d1[0],1);
193  Vmath::Vvtvp (TotPts,&df[5][0],1,&Diff2[0],1, &out_d1[0], 1,&out_d1[0],1);
194  }
195 
196  if(out_d2.num_elements())
197  {
198  Vmath::Vmul (TotPts,&df[6][0],1,&Diff0[0],1, &out_d2[0], 1);
199  Vmath::Vvtvp (TotPts,&df[7][0],1,&Diff1[0],1, &out_d2[0], 1, &out_d2[0],1);
200  Vmath::Vvtvp (TotPts,&df[8][0],1,&Diff2[0],1, &out_d2[0], 1, &out_d2[0],1);
201  }
202  }
203  else // regular geometry
204  {
205  if(out_d0.num_elements())
206  {
207  Vmath::Smul (TotPts,df[0][0],&Diff0[0],1, &out_d0[0], 1);
208  Blas::Daxpy (TotPts,df[1][0],&Diff1[0],1, &out_d0[0], 1);
209  Blas::Daxpy (TotPts,df[2][0],&Diff2[0],1, &out_d0[0], 1);
210  }
211 
212  if(out_d1.num_elements())
213  {
214  Vmath::Smul (TotPts,df[3][0],&Diff0[0],1, &out_d1[0], 1);
215  Blas::Daxpy (TotPts,df[4][0],&Diff1[0],1, &out_d1[0], 1);
216  Blas::Daxpy (TotPts,df[5][0],&Diff2[0],1, &out_d1[0], 1);
217  }
218 
219  if(out_d2.num_elements())
220  {
221  Vmath::Smul (TotPts,df[6][0],&Diff0[0],1, &out_d2[0], 1);
222  Blas::Daxpy (TotPts,df[7][0],&Diff1[0],1, &out_d2[0], 1);
223  Blas::Daxpy (TotPts,df[8][0],&Diff2[0],1, &out_d2[0], 1);
224  }
225  }
226  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
NekDouble Nektar::LocalRegions::TetExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual
Parameters
coordPhysical space coordinate
Returns
Evaluation of expansion at given coordinate.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 495 of file TetExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

498  {
499  ASSERTL0(m_geom,"m_geom not defined");
500 
501  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(3);
502 
503  // Get the local (eta) coordinates of the point
504  m_geom->GetLocCoords(coord,Lcoord);
505 
506  // Evaluate point in local (eta) coordinates.
507  return StdTetExp::v_PhysEvaluate(Lcoord,physvals);
508  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
NekDouble Nektar::LocalRegions::TetExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 483 of file TetExp.cpp.

486  {
487  // Evaluate point in local (eta) coordinates.
488  return StdTetExp::v_PhysEvaluate(Lcoord,physvals);
489  }
void Nektar::LocalRegions::TetExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTetExp.

Definition at line 998 of file TetExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

1001  {
1002  int nq = GetTotPoints();
1003 
1004  // Calculate sqrt of the Jacobian
1005  Array<OneD, const NekDouble> jac =
1006  m_metricinfo->GetJac(GetPointsKeys());
1007  Array<OneD, NekDouble> sqrt_jac(nq);
1008  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1009  {
1010  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
1011  }
1012  else
1013  {
1014  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
1015  }
1016 
1017  // Multiply array by sqrt(Jac)
1018  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
1019 
1020  // Apply std region filter
1021  StdTetExp::v_SVVLaplacianFilter( array, mkey);
1022 
1023  // Divide by sqrt(Jac)
1024  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
1025  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::TetExp::m_matrixManager
private

Definition at line 207 of file TetExp.h.

Referenced by CreateMatrix(), v_FwdTrans(), and v_GetLocMatrix().

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::TetExp::m_staticCondMatrixManager
private

Definition at line 208 of file TetExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().