Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdTetExp Class Reference

#include <StdTetExp.h>

Inheritance diagram for Nektar::StdRegions::StdTetExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::StdRegions::StdTetExp:
Collaboration graph
[legend]

Public Member Functions

 StdTetExp ()
 
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdTetExp (const StdTetExp &T)
 
 ~StdTetExp ()
 
LibUtilities::ShapeType DetShapeType () const
 
NekDouble PhysEvaluate3D (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 Single Point Evaluation. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int edge)
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type. More...
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 

Protected Member Functions

virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz)
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_x, Array< OneD, NekDouble > &coords_y, Array< OneD, NekDouble > &coords_z)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual int v_GetNfaces () const
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetTotalEdgeIntNcoeffs () const
 
virtual int v_GetFaceNcoeffs (const int i) const
 
virtual int v_GetFaceIntNcoeffs (const int i) const
 
virtual int v_GetTotalFaceIntNcoeffs () const
 
virtual int v_GetFaceNumPoints (const int i) const
 
virtual LibUtilities::PointsKey v_GetFacePointsKey (const int i, const int j) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual const
LibUtilities::BasisKey 
v_DetFaceBasisKey (const int i, const int k) const
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual void v_GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1, int Q=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrates the specified function over the domain. More...
 
virtual void v_NegateFaceNormal (const int face)
 
virtual bool v_FaceNormalNegated (const int face)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 

Private Member Functions

int GetMode (const int i, const int j, const int k)
 Compute the mode number in the expansion for a particular tensorial combination. More...
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion3D
std::map< int, NormalVectorm_faceNormals
 
std::map< int, bool > m_negatedNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 

Detailed Description

Definition at line 51 of file StdTetExp.h.

Constructor & Destructor Documentation

Nektar::StdRegions::StdTetExp::StdTetExp ( )

Definition at line 47 of file StdTetExp.cpp.

48  {
49  }
Nektar::StdRegions::StdTetExp::StdTetExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 52 of file StdTetExp.cpp.

References ASSERTL0, and Nektar::LibUtilities::BasisKey::GetNumModes().

54  :
56  Ba.GetNumModes(),
57  Bb.GetNumModes(),
58  Bc.GetNumModes()),
59  3, Ba, Bb, Bc),
61  Ba.GetNumModes(),
62  Bb.GetNumModes(),
63  Bc.GetNumModes()),
64  Ba, Bb, Bc)
65  {
66  ASSERTL0(Ba.GetNumModes() <= Bb.GetNumModes(),
67  "order in 'a' direction is higher than order "
68  "in 'b' direction");
69  ASSERTL0(Ba.GetNumModes() <= Bc.GetNumModes(),
70  "order in 'a' direction is higher than order "
71  "in 'c' direction");
72  ASSERTL0(Bb.GetNumModes() <= Bc.GetNumModes(),
73  "order in 'b' direction is higher than order "
74  "in 'c' direction");
75  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:186
StdExpansion()
Default Constructor.
Nektar::StdRegions::StdTetExp::StdTetExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
NekDouble coeffs,
NekDouble phys 
)
Nektar::StdRegions::StdTetExp::StdTetExp ( const StdTetExp T)

Definition at line 77 of file StdTetExp.cpp.

77  :
78  StdExpansion(T),
80  {
81  }
StdExpansion()
Default Constructor.
Nektar::StdRegions::StdTetExp::~StdTetExp ( )

Definition at line 84 of file StdTetExp.cpp.

85  {
86  }

Member Function Documentation

LibUtilities::ShapeType Nektar::StdRegions::StdTetExp::DetShapeType ( ) const
inline
int Nektar::StdRegions::StdTetExp::GetMode ( const int  I,
const int  J,
const int  K 
)
private

Compute the mode number in the expansion for a particular tensorial combination.

Modes are numbered with the r index travelling fastest, followed by q and then p, and each q-r plane is of size (Q+1)*(Q+2)/2+max(0,R-Q-p)*Q. For example, when P=2, Q=3 and R=4 the indexing inside each q-r plane (with r increasing upwards and q to the right) is:

p = 0: p = 1: p = 2:

4 3 8 17 2 7 11 16 20 26 1 6 10 13 15 19 22 25 28 0 5 9 12 14 18 21 23 24 27 29

Note that in this element, we must have that $ P \leq Q \leq R$.

Definition at line 1886 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_GetBoundaryMap(), v_GetEdgeInteriorMap(), v_GetFaceInteriorMap(), v_GetFaceToElementMap(), v_GetInteriorMap(), and v_GetVertexMap().

1887  {
1888  const int Q = m_base[1]->GetNumModes();
1889  const int R = m_base[2]->GetNumModes();
1890 
1891  int i,j,q_hat,k_hat;
1892  int cnt = 0;
1893 
1894  // Traverse to q-r plane number I
1895  for (i = 0; i < I; ++i)
1896  {
1897  // Size of triangle part
1898  q_hat = min(Q,R-i);
1899  // Size of rectangle part
1900  k_hat = max(R-Q-i,0);
1901  cnt += q_hat*(q_hat+1)/2 + k_hat*Q;
1902  }
1903 
1904  // Traverse to q column J
1905  q_hat = R-I;
1906  for (j = 0; j < J; ++j)
1907  {
1908  cnt += q_hat;
1909  q_hat--;
1910  }
1911 
1912  // Traverse up stacks to K
1913  cnt += K;
1914 
1915  return cnt;
1916  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
NekDouble Nektar::StdRegions::StdTetExp::PhysEvaluate3D ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)

Single Point Evaluation.

void Nektar::StdRegions::StdTetExp::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual
Note
'r' (base[2]) runs fastest in this element

$ u^{\delta} (\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{m(pqr)} \hat u_{pqr} \phi_{pqr} (\xi_{1i}, \xi_{2j}, \xi_{3k})$

Backward transformation is three dimensional tensorial expansion $ u (\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{p=0}^{Q_x} \psi_p^a (\xi_{1i}) \lbrace { \sum_{q=0}^{Q_y} \psi_{pq}^b (\xi_{2j}) \lbrace { \sum_{r=0}^{Q_z} \hat u_{pqr} \psi_{pqr}^c (\xi_{3k}) \rbrace} \rbrace}. $ And sumfactorizing step of the form is as:\

$ f_{pq} (\xi_{3k}) = \sum_{r=0}^{Q_z} \hat u_{pqr} \psi_{pqr}^c (\xi_{3k}),\\ g_{p} (\xi_{2j}, \xi_{3k}) = \sum_{r=0}^{Q_y} \psi_{pq}^b (\xi_{2j}) f_{pq} (\xi_{3k}),\\ u(\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{p=0}^{Q_x} \psi_{p}^a (\xi_{1i}) g_{p} (\xi_{2j}, \xi_{3k}). $

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 295 of file StdTetExp.cpp.

References ASSERTL1, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::m_base, v_BwdTrans_SumFac(), and Vmath::Vcopy().

Referenced by v_FillMode().

298  {
301  "Basis[1] is not a general tensor type");
302 
305  "Basis[2] is not a general tensor type");
306 
307  if(m_base[0]->Collocation() && m_base[1]->Collocation()
308  && m_base[2]->Collocation())
309  {
311  * m_base[1]->GetNumPoints()
312  * m_base[2]->GetNumPoints(),
313  inarray, 1, outarray, 1);
314  }
315  else
316  {
317  StdTetExp::v_BwdTrans_SumFac(inarray,outarray);
318  }
319  }
Principle Modified Functions .
Definition: BasisType.h:51
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:229
Principle Orthogonal Functions .
Definition: BasisType.h:47
virtual void v_BwdTrans_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdTetExp.cpp:325
Principle Modified Functions .
Definition: BasisType.h:50
Principle Orthogonal Functions .
Definition: BasisType.h:48
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Sum-factorisation implementation of the BwdTrans operation.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 325 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_BwdTrans(), and Nektar::StdRegions::StdNodalTetExp::v_BwdTrans_SumFac().

328  {
329  int nquad1 = m_base[1]->GetNumPoints();
330  int nquad2 = m_base[2]->GetNumPoints();
331  int order0 = m_base[0]->GetNumModes();
332  int order1 = m_base[1]->GetNumModes();
333 
334  Array<OneD, NekDouble> wsp(nquad2*order0*(2*order1-order0+1)/2+
335  nquad2*nquad1*order0);
336 
337  BwdTrans_SumFacKernel(m_base[0]->GetBdata(),
338  m_base[1]->GetBdata(),
339  m_base[2]->GetBdata(),
340  inarray,outarray,wsp,
341  true,true,true);
342  }
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedvirtual
Parameters
base0x-dirn basis matrix
base1y-dirn basis matrix
base2z-dirn basis matrix
inarrayInput vector of modes.
outarrayOutput vector of physical space data.
wspWorkspace of size Q_x*P_z*(P_y+Q_y)
doCheckCollDir0Check for collocation of basis.
doCheckCollDir1Check for collocation of basis.
doCheckCollDir2Check for collocation of basis.
Todo:
Account for some directions being collocated. See StdQuadExp as an example.

Implements Nektar::StdRegions::StdExpansion3D.

Definition at line 358 of file StdTetExp.cpp.

References Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

368  {
369  int nquad0 = m_base[0]->GetNumPoints();
370  int nquad1 = m_base[1]->GetNumPoints();
371  int nquad2 = m_base[2]->GetNumPoints();
372 
373  int order0 = m_base[0]->GetNumModes();
374  int order1 = m_base[1]->GetNumModes();
375  int order2 = m_base[2]->GetNumModes();
376 
377  Array<OneD, NekDouble > tmp = wsp;
378  Array<OneD, NekDouble > tmp1 = tmp + nquad2*order0*(2*order1-order0+1)/2;
379 
380  int i, j, mode, mode1, cnt;
381 
382  // Perform summation over '2' direction
383  mode = mode1 = cnt = 0;
384  for(i = 0; i < order0; ++i)
385  {
386  for(j = 0; j < order1-i; ++j, ++cnt)
387  {
388  Blas::Dgemv('N', nquad2, order2-i-j,
389  1.0, base2.get()+mode*nquad2, nquad2,
390  inarray.get()+mode1, 1,
391  0.0, tmp.get()+cnt*nquad2, 1);
392  mode += order2-i-j;
393  mode1 += order2-i-j;
394  }
395  //increment mode in case order1!=order2
396  for(j = order1-i; j < order2-i; ++j)
397  {
398  mode += order2-i-j;
399  }
400  }
401 
402  // fix for modified basis by adding split of top singular
403  // vertex mode - currently (1+c)/2 x (1-b)/2 x (1-a)/2
404  // component is evaluated
406  {
407  // top singular vertex - (1+c)/2 x (1+b)/2 x (1-a)/2 component
408  Blas::Daxpy(nquad2,inarray[1],base2.get()+nquad2,1,
409  &tmp[0]+nquad2,1);
410 
411  // top singular vertex - (1+c)/2 x (1-b)/2 x (1+a)/2 component
412  Blas::Daxpy(nquad2,inarray[1],base2.get()+nquad2,1,
413  &tmp[0]+order1*nquad2,1);
414  }
415 
416  // Perform summation over '1' direction
417  mode = 0;
418  for(i = 0; i < order0; ++i)
419  {
420  Blas::Dgemm('N', 'T', nquad1, nquad2, order1-i,
421  1.0, base1.get()+mode*nquad1, nquad1,
422  tmp.get()+mode*nquad2, nquad2,
423  0.0, tmp1.get()+i*nquad1*nquad2, nquad1);
424  mode += order1-i;
425  }
426 
427  // fix for modified basis by adding additional split of
428  // top and base singular vertex modes as well as singular
429  // edge
431  {
432  // use tmp to sort out singular vertices and
433  // singular edge components with (1+b)/2 (1+a)/2 form
434  for(i = 0; i < nquad2; ++i)
435  {
436  Blas::Daxpy(nquad1,tmp[nquad2+i], base1.get()+nquad1,1,
437  &tmp1[nquad1*nquad2]+i*nquad1,1);
438  }
439  }
440 
441  // Perform summation over '0' direction
442  Blas::Dgemm('N', 'T', nquad0, nquad1*nquad2, order0,
443  1.0, base0.get(), nquad0,
444  tmp1.get(), nquad1*nquad2,
445  0.0, outarray.get(), nquad0);
446  }
Principle Modified Functions .
Definition: BasisType.h:49
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_CalcNumberOfCoefficients ( const std::vector< unsigned int > &  nummodes,
int &  modes_offset 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1105 of file StdTetExp.cpp.

References Nektar::LibUtilities::StdTetData::getNumberOfCoefficients().

1108  {
1110  nummodes[modes_offset],
1111  nummodes[modes_offset+1],
1112  nummodes[modes_offset+2]);
1113  modes_offset += 3;
1114 
1115  return nmodes;
1116  }
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:186
DNekMatSharedPtr Nektar::StdRegions::StdTetExp::v_CreateStdMatrix ( const StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, and Nektar::StdRegions::StdNodalTetExp.

Definition at line 1855 of file StdTetExp.cpp.

References v_GenMatrix().

1856  {
1857  return v_GenMatrix(mkey);
1858  }
virtual DNekMatSharedPtr v_GenMatrix(const StdMatrixKey &mkey)
Definition: StdTetExp.cpp:1767
const LibUtilities::BasisKey Nektar::StdRegions::StdTetExp::v_DetFaceBasisKey ( const int  i,
const int  k 
) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1118 of file StdTetExp.cpp.

References ASSERTL2, Nektar::StdRegions::EvaluateTriFaceBasisKey(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::NullBasisKey().

1120  {
1121  ASSERTL2(i >= 0 && i <= 4, "face id is out of range");
1122  ASSERTL2(k == 0 || k == 1, "face direction out of range");
1123 
1124  int dir = k;
1125  switch(i)
1126  {
1127  case 0:
1128  dir = k;
1129  break;
1130  case 1:
1131  dir = 2*k;
1132  break;
1133  case 2:
1134  case 3:
1135  dir = k+1;
1136  break;
1137  }
1138 
1139  return EvaluateTriFaceBasisKey(k,
1140  m_base[dir]->GetBasisType(),
1141  m_base[dir]->GetNumPoints(),
1142  m_base[dir]->GetNumModes());
1143 
1144  // Should not get here.
1146  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:229
LibUtilities::BasisKey EvaluateTriFaceBasisKey(const int facedir, const LibUtilities::BasisType faceDirBasisType, const int numpoints, const int nummodes)
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
static const BasisKey NullBasisKey(eNoBasisType, 0, NullPointsKey)
Defines a null basis with no type or points.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::ShapeType Nektar::StdRegions::StdTetExp::v_DetShapeType ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 929 of file StdTetExp.cpp.

References DetShapeType().

930  {
931  return DetShapeType();
932  }
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:70
void Nektar::StdRegions::StdTetExp::v_FillMode ( const int  mode,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 900 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::m_ncoeffs, and v_BwdTrans().

Referenced by Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

903  {
904  Array<OneD, NekDouble> tmp(m_ncoeffs,0.0);
905  tmp[mode] = 1.0;
906  StdTetExp::v_BwdTrans(tmp, outarray);
907  }
virtual void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdTetExp.cpp:295
void Nektar::StdRegions::StdTetExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual
Parameters
inarrayarray of physical quadrature points to be transformed.
outarrayupdated array of expansion coefficients.

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp, and Nektar::LocalRegions::TetExp.

Definition at line 454 of file StdTetExp.cpp.

References DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and v_IProductWRTBase().

456  {
457  v_IProductWRTBase(inarray,outarray);
458 
459  // get Mass matrix inverse
460  StdMatrixKey masskey(eInvMass,DetShapeType(),*this);
461  DNekMatSharedPtr matsys = GetStdMatrix(masskey);
462 
463  // copy inarray in case inarray == outarray
464  DNekVec in (m_ncoeffs, outarray);
465  DNekVec out(m_ncoeffs, outarray, eWrapper);
466 
467  out = (*matsys)*in;
468  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:70
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:49
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdTetExp.cpp:505
DNekMatSharedPtr Nektar::StdRegions::StdTetExp::v_GenMatrix ( const StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, and Nektar::StdRegions::StdNodalTetExp.

Definition at line 1767 of file StdTetExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::CreateGeneralMatrix(), Nektar::StdRegions::eFactorConst, Nektar::StdRegions::ePhysInterpToEquiSpaced, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::LibUtilities::StdTetData::getNumberOfCoefficients(), Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Smul(), and Vmath::Vcopy().

Referenced by v_CreateStdMatrix().

1768  {
1769 
1770  MatrixType mtype = mkey.GetMatrixType();
1771 
1772  DNekMatSharedPtr Mat;
1773 
1774  switch(mtype)
1775  {
1777  {
1778  int nq0 = m_base[0]->GetNumPoints();
1779  int nq1 = m_base[1]->GetNumPoints();
1780  int nq2 = m_base[2]->GetNumPoints();
1781  int nq;
1782 
1783  // take definition from key
1784  if(mkey.ConstFactorExists(eFactorConst))
1785  {
1786  nq = (int) mkey.GetConstFactor(eFactorConst);
1787  }
1788  else
1789  {
1790  nq = max(nq0,max(nq1,nq2));
1791  }
1792 
1793  int neq = LibUtilities::StdTetData::
1794  getNumberOfCoefficients(nq,nq,nq);
1795  Array<OneD, Array<OneD, NekDouble> > coords(neq);
1796  Array<OneD, NekDouble> coll(3);
1797  Array<OneD, DNekMatSharedPtr> I(3);
1798  Array<OneD, NekDouble> tmp(nq0);
1799 
1801  AllocateSharedPtr(neq, nq0 * nq1 * nq2);
1802  int cnt = 0;
1803 
1804  for(int i = 0; i < nq; ++i)
1805  {
1806  for(int j = 0; j < nq-i; ++j)
1807  {
1808  for(int k = 0; k < nq-i-j; ++k,++cnt)
1809  {
1810  coords[cnt] = Array<OneD, NekDouble>(3);
1811  coords[cnt][0] = -1.0 + 2*k/(NekDouble)(nq-1);
1812  coords[cnt][1] = -1.0 + 2*j/(NekDouble)(nq-1);
1813  coords[cnt][2] = -1.0 + 2*i/(NekDouble)(nq-1);
1814  }
1815  }
1816  }
1817 
1818  for(int i = 0; i < neq; ++i)
1819  {
1820  LocCoordToLocCollapsed(coords[i],coll);
1821 
1822  I[0] = m_base[0]->GetI(coll);
1823  I[1] = m_base[1]->GetI(coll+1);
1824  I[2] = m_base[2]->GetI(coll+2);
1825 
1826  // interpolate first coordinate direction
1827  NekDouble fac;
1828  for( int k = 0; k < nq2; ++k)
1829  {
1830  for (int j = 0; j < nq1; ++j)
1831  {
1832 
1833  fac = (I[1]->GetPtr())[j]*(I[2]->GetPtr())[k];
1834  Vmath::Smul(nq0,fac,I[0]->GetPtr(),1,tmp,1);
1835 
1836  Vmath::Vcopy(nq0, &tmp[0], 1,
1837  Mat->GetRawPtr()+
1838  k*nq0*nq1*neq+
1839  j*nq0*neq+i,neq);
1840  }
1841  }
1842  }
1843  }
1844  break;
1845  default:
1846  {
1848  }
1849  break;
1850  }
1851 
1852  return Mat;
1853  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:186
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
DNekMatSharedPtr CreateGeneralMatrix(const StdMatrixKey &mkey)
this function generates the mass matrix
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::StdRegions::StdTetExp::v_GetBoundaryMap ( Array< OneD, unsigned int > &  outarray)
protectedvirtual

List of all boundary modes in the the expansion.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 1708 of file StdTetExp.cpp.

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), GetMode(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1709  {
1712  "BasisType is not a boundary interior form");
1715  "BasisType is not a boundary interior form");
1718  "BasisType is not a boundary interior form");
1719 
1720  int P = m_base[0]->GetNumModes();
1721  int Q = m_base[1]->GetNumModes();
1722  int R = m_base[2]->GetNumModes();
1723 
1724  int i,j,k;
1725  int idx = 0;
1726 
1727  int nBnd = NumBndryCoeffs();
1728 
1729  if (outarray.num_elements() != nBnd)
1730  {
1731  outarray = Array<OneD, unsigned int>(nBnd);
1732  }
1733 
1734  for (i = 0; i < P; ++i)
1735  {
1736  // First two Q-R planes are entirely boundary modes
1737  if (i < 2)
1738  {
1739  for (j = 0; j < Q-i; j++)
1740  {
1741  for (k = 0; k < R-i-j; ++k)
1742  {
1743  outarray[idx++] = GetMode(i,j,k);
1744  }
1745  }
1746  }
1747  // Remaining Q-R planes contain boundary modes on bottom and
1748  // left edge.
1749  else
1750  {
1751  for (k = 0; k < R-i; ++k)
1752  {
1753  outarray[idx++] = GetMode(i,0,k);
1754  }
1755  for (j = 1; j < Q-i; ++j)
1756  {
1757  outarray[idx++] = GetMode(i,j,0);
1758  }
1759  }
1760  }
1761  }
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1886
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Lagrange for SEM basis .
Definition: BasisType.h:53
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_x,
Array< OneD, NekDouble > &  coords_y,
Array< OneD, NekDouble > &  coords_z 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 1166 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints(), and Nektar::StdRegions::StdExpansion::m_base.

1170  {
1171  Array<OneD, const NekDouble> eta_x = m_base[0]->GetZ();
1172  Array<OneD, const NekDouble> eta_y = m_base[1]->GetZ();
1173  Array<OneD, const NekDouble> eta_z = m_base[2]->GetZ();
1174  int Qx = GetNumPoints(0);
1175  int Qy = GetNumPoints(1);
1176  int Qz = GetNumPoints(2);
1177 
1178  // Convert collapsed coordinates into cartesian coordinates: eta
1179  // --> xi
1180  for( int k = 0; k < Qz; ++k ) {
1181  for( int j = 0; j < Qy; ++j ) {
1182  for( int i = 0; i < Qx; ++i ) {
1183  int s = i + Qx*(j + Qy*k);
1184  xi_x[s] = (eta_x[i] + 1.0) * (1.0 - eta_y[j]) * (1.0 - eta_z[k]) / 4 - 1.0;
1185  xi_y[s] = (eta_y[j] + 1.0) * (1.0 - eta_z[k]) / 2 - 1.0;
1186  xi_z[s] = eta_z[k];
1187  }
1188  }
1189  }
1190  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:229
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::BasisType Nektar::StdRegions::StdTetExp::v_GetEdgeBasisType ( const int  i) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1148 of file StdTetExp.cpp.

References ASSERTL2, and Nektar::StdRegions::StdExpansion::GetBasisType().

1149  {
1150  ASSERTL2(i >= 0 && i <= 5, "edge id is out of range");
1151 
1152  if (i == 0)
1153  {
1154  return GetBasisType(0);
1155  }
1156  else if (i == 1 || i == 2)
1157  {
1158  return GetBasisType(1);
1159  }
1160  else
1161  {
1162  return GetBasisType(2);
1163  }
1164  }
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
void Nektar::StdRegions::StdTetExp::v_GetEdgeInteriorMap ( const int  eid,
const Orientation  edgeOrient,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray 
)
protectedvirtual

Maps interior modes of an edge to the elemental modes.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1458 of file StdTetExp.cpp.

References ASSERTL0, Nektar::StdRegions::eBackwards, GetMode(), Nektar::StdRegions::StdExpansion::m_base, and v_GetEdgeNcoeffs().

1463  {
1464  int i;
1465  const int P = m_base[0]->GetNumModes();
1466  const int Q = m_base[1]->GetNumModes();
1467  const int R = m_base[2]->GetNumModes();
1468 
1469  const int nEdgeIntCoeffs = v_GetEdgeNcoeffs(eid)-2;
1470 
1471  if(maparray.num_elements() != nEdgeIntCoeffs)
1472  {
1473  maparray = Array<OneD, unsigned int>(nEdgeIntCoeffs);
1474  }
1475  else
1476  {
1477  fill( maparray.get(), maparray.get() + nEdgeIntCoeffs, 0);
1478  }
1479 
1480  if(signarray.num_elements() != nEdgeIntCoeffs)
1481  {
1482  signarray = Array<OneD, int>(nEdgeIntCoeffs,1);
1483  }
1484  else
1485  {
1486  fill( signarray.get() , signarray.get()+nEdgeIntCoeffs, 1 );
1487  }
1488 
1489  switch (eid)
1490  {
1491  case 0:
1492  for (i = 0; i < P-2; ++i)
1493  {
1494  maparray[i] = GetMode(i+2, 0, 0);
1495  }
1496  if(edgeOrient==eBackwards)
1497  {
1498  for(i = 1; i < nEdgeIntCoeffs; i+=2)
1499  {
1500  signarray[i] = -1;
1501  }
1502  }
1503  break;
1504  case 1:
1505  for (i = 0; i < Q-2; ++i)
1506  {
1507  maparray[i] = GetMode(1, i+1, 0);
1508  }
1509  if(edgeOrient==eBackwards)
1510  {
1511  for(i = 1; i < nEdgeIntCoeffs; i+=2)
1512  {
1513  signarray[i] = -1;
1514  }
1515  }
1516  break;
1517  case 2:
1518  for (i = 0; i < Q-2; ++i)
1519  {
1520  maparray[i] = GetMode(0, i+2, 0);
1521  }
1522  if(edgeOrient==eBackwards)
1523  {
1524  for(i = 1; i < nEdgeIntCoeffs; i+=2)
1525  {
1526  signarray[i] = -1;
1527  }
1528  }
1529  break;
1530  case 3:
1531  for (i = 0; i < R-2; ++i)
1532  {
1533  maparray[i] = GetMode(0, 0, i+2);
1534  }
1535  if(edgeOrient==eBackwards)
1536  {
1537  for(i = 1; i < nEdgeIntCoeffs; i+=2)
1538  {
1539  signarray[i] = -1;
1540  }
1541  }
1542  break;
1543  case 4:
1544  for (i = 0; i < R - 2; ++i)
1545  {
1546  maparray[i] = GetMode(1, 0, i+1);
1547  }
1548  if(edgeOrient==eBackwards)
1549  {
1550  for(i = 1; i < nEdgeIntCoeffs; i+=2)
1551  {
1552  signarray[i] = -1;
1553  }
1554  }
1555  break;
1556  case 5:
1557  for (i = 0; i < R-2; ++i)
1558  {
1559  maparray[i] = GetMode(0, 1, i+1);
1560  }
1561  if(edgeOrient==eBackwards)
1562  {
1563  for(i = 1; i < nEdgeIntCoeffs; i+=2)
1564  {
1565  signarray[i] = -1;
1566  }
1567  }
1568  break;
1569  default:
1570  ASSERTL0(false, "Edge not defined.");
1571  break;
1572  }
1573  }
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1886
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
virtual int v_GetEdgeNcoeffs(const int i) const
Definition: StdTetExp.cpp:976
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetEdgeNcoeffs ( const int  i) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 976 of file StdTetExp.cpp.

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_GetEdgeInteriorMap().

977  {
978  ASSERTL2((i >= 0) && (i <= 5), "edge id is out of range");
979  int P = m_base[0]->GetNumModes();
980  int Q = m_base[1]->GetNumModes();
981  int R = m_base[2]->GetNumModes();
982 
983  if (i == 0)
984  {
985  return P;
986  }
987  else if (i == 1 || i == 2)
988  {
989  return Q;
990  }
991  else
992  {
993  return R;
994  }
995  }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_GetFaceInteriorMap ( const int  fid,
const Orientation  faceOrient,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1575 of file StdTetExp.cpp.

References ASSERTL0, GetMode(), Nektar::StdRegions::StdExpansion::m_base, and v_GetFaceIntNcoeffs().

1580  {
1581  int i, j, idx, k;
1582  const int P = m_base[0]->GetNumModes();
1583  const int Q = m_base[1]->GetNumModes();
1584  const int R = m_base[2]->GetNumModes();
1585 
1586  const int nFaceIntCoeffs = v_GetFaceIntNcoeffs(fid);
1587 
1588  if(maparray.num_elements() != nFaceIntCoeffs)
1589  {
1590  maparray = Array<OneD, unsigned int>(nFaceIntCoeffs);
1591  }
1592 
1593  if(signarray.num_elements() != nFaceIntCoeffs)
1594  {
1595  signarray = Array<OneD, int>(nFaceIntCoeffs,1);
1596  }
1597  else
1598  {
1599  fill( signarray.get() , signarray.get()+nFaceIntCoeffs, 1 );
1600  }
1601 
1602  switch (fid)
1603  {
1604  case 0:
1605  idx = 0;
1606  for (i = 2; i < P-1; ++i)
1607  {
1608  for (j = 1; j < Q-i; ++j)
1609  {
1610  if ((int)faceOrient == 7)
1611  {
1612  signarray[idx] = (i%2 ? -1 : 1);
1613  }
1614  maparray[idx++] = GetMode(i,j,0);
1615  }
1616  }
1617  break;
1618  case 1:
1619  idx = 0;
1620  for (i = 2; i < P; ++i)
1621  {
1622  for (k = 1; k < R-i; ++k)
1623  {
1624  if ((int)faceOrient == 7)
1625  {
1626  signarray[idx] = (i%2 ? -1: 1);
1627  }
1628  maparray[idx++] = GetMode(i,0,k);
1629  }
1630  }
1631  break;
1632  case 2:
1633  idx = 0;
1634  for (j = 1; j < Q-2; ++j)
1635  {
1636  for (k = 1; k < R-1-j; ++k)
1637  {
1638  if ((int)faceOrient == 7)
1639  {
1640  signarray[idx] = ((j+1)%2 ? -1: 1);
1641  }
1642  maparray[idx++] = GetMode(1,j,k);
1643  }
1644  }
1645  break;
1646  case 3:
1647  idx = 0;
1648  for (j = 2; j < Q-1; ++j)
1649  {
1650  for (k = 1; k < R-j; ++k)
1651  {
1652  if ((int)faceOrient == 7)
1653  {
1654  signarray[idx] = (j%2 ? -1: 1);
1655  }
1656  maparray[idx++] = GetMode(0,j,k);
1657  }
1658  }
1659  break;
1660  default:
1661  ASSERTL0(false, "Face interior map not available.");
1662  break;
1663  }
1664  }
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1886
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
virtual int v_GetFaceIntNcoeffs(const int i) const
Definition: StdTetExp.cpp:1032
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetFaceIntNcoeffs ( const int  i) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1032 of file StdTetExp.cpp.

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_GetFaceInteriorMap().

1033  {
1034  ASSERTL2((i >= 0) && (i <= 3), "face id is out of range");
1035  int Pi = m_base[0]->GetNumModes() - 2;
1036  int Qi = m_base[1]->GetNumModes() - 2;
1037  int Ri = m_base[2]->GetNumModes() - 2;
1038 
1039  if((i == 0))
1040  {
1041  return Pi * (2*Qi - Pi - 1) / 2;
1042  }
1043  else if((i == 1))
1044  {
1045  return Pi * (2*Ri - Pi - 1) / 2;
1046  }
1047  else
1048  {
1049  return Qi * (2*Ri - Qi - 1) / 2;
1050  }
1051  }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetFaceNcoeffs ( const int  i) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1006 of file StdTetExp.cpp.

References ASSERTL2, and Nektar::StdRegions::StdExpansion::GetBasisNumModes().

1007  {
1008  ASSERTL2((i >= 0) && (i <= 3), "face id is out of range");
1009  int nFaceCoeffs = 0;
1010  int nummodesA, nummodesB, P, Q;
1011  if (i == 0)
1012  {
1013  nummodesA = GetBasisNumModes(0);
1014  nummodesB = GetBasisNumModes(1);
1015  }
1016  else if ((i == 1) || (i == 2))
1017  {
1018  nummodesA = GetBasisNumModes(0);
1019  nummodesB = GetBasisNumModes(2);
1020  }
1021  else
1022  {
1023  nummodesA = GetBasisNumModes(1);
1024  nummodesB = GetBasisNumModes(2);
1025  }
1026  P = nummodesA - 1;
1027  Q = nummodesB - 1;
1028  nFaceCoeffs = Q+1 + (P*(1 + 2*Q - P))/2;
1029  return nFaceCoeffs;
1030  }
int GetBasisNumModes(const int dir) const
This function returns the number of expansion modes in the dir direction.
Definition: StdExpansion.h:178
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
int Nektar::StdRegions::StdTetExp::v_GetFaceNumPoints ( const int  i) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1064 of file StdTetExp.cpp.

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

1065  {
1066  ASSERTL2(i >= 0 && i <= 3, "face id is out of range");
1067 
1068  if (i == 0)
1069  {
1070  return m_base[0]->GetNumPoints()*
1071  m_base[1]->GetNumPoints();
1072  }
1073  else if (i == 1)
1074  {
1075  return m_base[0]->GetNumPoints()*
1076  m_base[2]->GetNumPoints();
1077  }
1078  else
1079  {
1080  return m_base[1]->GetNumPoints()*
1081  m_base[2]->GetNumPoints();
1082  }
1083  }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::PointsKey Nektar::StdRegions::StdTetExp::v_GetFacePointsKey ( const int  i,
const int  j 
) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1085 of file StdTetExp.cpp.

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

1087  {
1088  ASSERTL2(i >= 0 && i <= 3, "face id is out of range");
1089  ASSERTL2(j == 0 || j == 1, "face direction is out of range");
1090 
1091  if (i == 0)
1092  {
1093  return m_base[j]->GetPointsKey();
1094  }
1095  else if (i == 1)
1096  {
1097  return m_base[2*j]->GetPointsKey();
1098  }
1099  else
1100  {
1101  return m_base[j+1]->GetPointsKey();
1102  }
1103  }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_GetFaceToElementMap ( const int  fid,
const Orientation  faceOrient,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
int  P = -1,
int  Q = -1 
)
protectedvirtual

Maps Expansion2D modes of a 2D face to the corresponding expansion modes.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1208 of file StdTetExp.cpp.

References ASSERTL0, ASSERTL1, GetMode(), Nektar::StdRegions::StdExpansion::m_base, and v_IsBoundaryInteriorExpansion().

1215  {
1216  int nummodesA,nummodesB, i, j, k, idx;
1217 
1219  "Method only implemented for Modified_A BasisType (x "
1220  "direction), Modified_B BasisType (y direction), and "
1221  "Modified_C BasisType(z direction)");
1222 
1223  int nFaceCoeffs = 0;
1224 
1225  switch(fid)
1226  {
1227  case 0:
1228  nummodesA = m_base[0]->GetNumModes();
1229  nummodesB = m_base[1]->GetNumModes();
1230  break;
1231  case 1:
1232  nummodesA = m_base[0]->GetNumModes();
1233  nummodesB = m_base[2]->GetNumModes();
1234  break;
1235  case 2:
1236  case 3:
1237  nummodesA = m_base[1]->GetNumModes();
1238  nummodesB = m_base[2]->GetNumModes();
1239  break;
1240  }
1241 
1242  bool CheckForZeroedModes = false;
1243  if(P == -1)
1244  {
1245  P = nummodesA;
1246  Q = nummodesB;
1247  }
1248  else
1249  {
1250  CheckForZeroedModes = true;
1251  }
1252 
1253  nFaceCoeffs = P*(2*Q-P+1)/2;
1254 
1255  // Allocate the map array and sign array; set sign array to ones (+)
1256  if(maparray.num_elements() != nFaceCoeffs)
1257  {
1258  maparray = Array<OneD, unsigned int>(nFaceCoeffs,1);
1259  }
1260 
1261  if(signarray.num_elements() != nFaceCoeffs)
1262  {
1263  signarray = Array<OneD, int>(nFaceCoeffs,1);
1264  }
1265  else
1266  {
1267  fill(signarray.get(),signarray.get()+nFaceCoeffs, 1 );
1268  }
1269 
1270  switch (fid)
1271  {
1272  case 0:
1273  idx = 0;
1274  for (i = 0; i < P; ++i)
1275  {
1276  for (j = 0; j < Q-i; ++j)
1277  {
1278  if ((int)faceOrient == 7 && i > 1)
1279  {
1280  signarray[idx] = (i%2 ? -1 : 1);
1281  }
1282  maparray[idx++] = GetMode(i,j,0);
1283  }
1284  }
1285  break;
1286  case 1:
1287  idx = 0;
1288  for (i = 0; i < P; ++i)
1289  {
1290  for (k = 0; k < Q-i; ++k)
1291  {
1292  if ((int)faceOrient == 7 && i > 1)
1293  {
1294  signarray[idx] = (i%2 ? -1: 1);
1295  }
1296  maparray[idx++] = GetMode(i,0,k);
1297  }
1298  }
1299  break;
1300  case 2:
1301  idx = 0;
1302  for (j = 0; j < P-1; ++j)
1303  {
1304  for (k = 0; k < Q-1-j; ++k)
1305  {
1306  if ((int)faceOrient == 7 && j > 1)
1307  {
1308  signarray[idx] = ((j+1)%2 ? -1: 1);
1309  }
1310  maparray[idx++] = GetMode(1,j,k);
1311  // Incorporate modes from zeroth plane where needed.
1312  if (j == 0 && k == 0)
1313  {
1314  maparray[idx++] = GetMode(0,0,1);
1315  }
1316  if (j == 0 && k == Q-2)
1317  {
1318  for (int r = 0; r < Q-1; ++r)
1319  {
1320  maparray[idx++] = GetMode(0,1,r);
1321  }
1322  }
1323  }
1324  }
1325  break;
1326  case 3:
1327  idx = 0;
1328  for (j = 0; j < P; ++j)
1329  {
1330  for (k = 0; k < Q-j; ++k)
1331  {
1332  if ((int)faceOrient == 7 && j > 1)
1333  {
1334  signarray[idx] = (j%2 ? -1: 1);
1335  }
1336  maparray[idx++] = GetMode(0,j,k);
1337  }
1338  }
1339  break;
1340  default:
1341  ASSERTL0(false, "Element map not available.");
1342  }
1343 
1344  if ((int)faceOrient == 7)
1345  {
1346  swap(maparray[0], maparray[Q]);
1347 
1348  for (i = 1; i < Q-1; ++i)
1349  {
1350  swap(maparray[i+1], maparray[Q+i]);
1351  }
1352  }
1353 
1354  if(CheckForZeroedModes)
1355  {
1356  // zero signmap and set maparray to zero if elemental
1357  // modes are not as large as face modesl
1358  idx = 0;
1359  for (j = 0; j < nummodesA; ++j)
1360  {
1361  idx += nummodesB-j;
1362  for (k = nummodesB-j; k < Q-j; ++k)
1363  {
1364  signarray[idx] = 0.0;
1365  maparray[idx++] = maparray[0];
1366  }
1367  }
1368 
1369  for (j = nummodesA; j < P; ++j)
1370  {
1371  for (k = 0; k < Q-j; ++k)
1372  {
1373  signarray[idx] = 0.0;
1374  maparray[idx++] = maparray[0];
1375  }
1376  }
1377  }
1378  }
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1886
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
virtual bool v_IsBoundaryInteriorExpansion()
Definition: StdTetExp.cpp:1192
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_GetInteriorMap ( Array< OneD, unsigned int > &  outarray)
protectedvirtual

List of all interior modes in the expansion.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 1669 of file StdTetExp.cpp.

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), GetMode(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1670  {
1673  "BasisType is not a boundary interior form");
1676  "BasisType is not a boundary interior form");
1679  "BasisType is not a boundary interior form");
1680 
1681  int P = m_base[0]->GetNumModes();
1682  int Q = m_base[1]->GetNumModes();
1683  int R = m_base[2]->GetNumModes();
1684 
1685  int nIntCoeffs = m_ncoeffs - NumBndryCoeffs();
1686 
1687  if(outarray.num_elements() != nIntCoeffs)
1688  {
1689  outarray = Array<OneD, unsigned int>(nIntCoeffs);
1690  }
1691 
1692  int idx = 0;
1693  for (int i = 2; i < P-2; ++i)
1694  {
1695  for (int j = 1; j < Q-i-1; ++j)
1696  {
1697  for (int k = 1; k < R-i-j; ++k)
1698  {
1699  outarray[idx++] = GetMode(i,j,k);
1700  }
1701  }
1702  }
1703  }
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1886
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Lagrange for SEM basis .
Definition: BasisType.h:53
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetNedges ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 919 of file StdTetExp.cpp.

920  {
921  return 6;
922  }
int Nektar::StdRegions::StdTetExp::v_GetNfaces ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 924 of file StdTetExp.cpp.

925  {
926  return 4;
927  }
int Nektar::StdRegions::StdTetExp::v_GetNverts ( ) const
protectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 914 of file StdTetExp.cpp.

915  {
916  return 4;
917  }
void Nektar::StdRegions::StdTetExp::v_GetSimplexEquiSpacedConnectivity ( Array< OneD, int > &  conn,
bool  standard = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 2138 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

2141  {
2142  int np0 = m_base[0]->GetNumPoints();
2143  int np1 = m_base[1]->GetNumPoints();
2144  int np2 = m_base[2]->GetNumPoints();
2145  int np = max(np0,max(np1,np2));
2146 
2147 
2148  conn = Array<OneD, int>(4*(np-1)*(np-1)*(np-1));
2149 
2150  int row = 0;
2151  int rowp1 = 0;
2152  int plane = 0;
2153  int row1 = 0;
2154  int row1p1 = 0;
2155  int planep1= 0;
2156  int cnt = 0;
2157  for(int i = 0; i < np-1; ++i)
2158  {
2159  planep1 += (np-i)*(np-i+1)/2;
2160  row = 0; // current plane row offset
2161  rowp1 = 0; // current plane row plus one offset
2162  row1 = 0; // next plane row offset
2163  row1p1 = 0; // nex plane row plus one offset
2164  for(int j = 0; j < np-i-1; ++j)
2165  {
2166  rowp1 += np-i-j;
2167  row1p1 += np-i-j-1;
2168  for(int k = 0; k < np-i-j-2; ++k)
2169  {
2170  conn[cnt++] = plane + row +k+1;
2171  conn[cnt++] = plane + row +k;
2172  conn[cnt++] = plane + rowp1 +k;
2173  conn[cnt++] = planep1 + row1 +k;
2174 
2175  conn[cnt++] = plane + row +k+1;
2176  conn[cnt++] = plane + rowp1 +k+1;
2177  conn[cnt++] = planep1 + row1 +k+1;
2178  conn[cnt++] = planep1 + row1 +k;
2179 
2180  conn[cnt++] = plane + rowp1 +k+1;
2181  conn[cnt++] = plane + row +k+1;
2182  conn[cnt++] = plane + rowp1 +k;
2183  conn[cnt++] = planep1 + row1 +k;
2184 
2185  conn[cnt++] = planep1 + row1 +k;
2186  conn[cnt++] = planep1 + row1p1+k;
2187  conn[cnt++] = plane + rowp1 +k;
2188  conn[cnt++] = plane + rowp1 +k+1;
2189 
2190  conn[cnt++] = planep1 + row1 +k;
2191  conn[cnt++] = planep1 + row1p1+k;
2192  conn[cnt++] = planep1 + row1 +k+1;
2193  conn[cnt++] = plane + rowp1 +k+1;
2194 
2195  if(k < np-i-j-3)
2196  {
2197  conn[cnt++] = plane + rowp1 +k+1;
2198  conn[cnt++] = planep1 + row1p1 +k+1;
2199  conn[cnt++] = planep1 + row1 +k+1;
2200  conn[cnt++] = planep1 + row1p1 +k;
2201  }
2202  }
2203 
2204  conn[cnt++] = plane + row + np-i-j-1;
2205  conn[cnt++] = plane + row + np-i-j-2;
2206  conn[cnt++] = plane + rowp1 + np-i-j-2;
2207  conn[cnt++] = planep1 + row1 + np-i-j-2;
2208 
2209  row += np-i-j;
2210  row1 += np-i-j-1;
2211  }
2212  plane += (np-i)*(np-i+1)/2;
2213  }
2214  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetTotalEdgeIntNcoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 997 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

998  {
999  int P = m_base[0]->GetNumModes()-2;
1000  int Q = m_base[1]->GetNumModes()-2;
1001  int R = m_base[2]->GetNumModes()-2;
1002 
1003  return P+Q+4*R;
1004  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetTotalFaceIntNcoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1053 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

1054  {
1055  int Pi = m_base[0]->GetNumModes() - 2;
1056  int Qi = m_base[1]->GetNumModes() - 2;
1057  int Ri = m_base[2]->GetNumModes() - 2;
1058 
1059  return Pi * (2*Qi - Pi - 1) / 2 +
1060  Pi * (2*Ri - Pi - 1) / 2 +
1061  Qi * (2*Ri - Qi - 1);
1062  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int Nektar::StdRegions::StdTetExp::v_GetVertexMap ( int  localVertexId,
bool  useCoeffPacking = false 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 1380 of file StdTetExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetEdgeBasisType(), and GetMode().

1381  {
1383  (GetEdgeBasisType(localVertexId)==LibUtilities::eModified_B)||
1384  (GetEdgeBasisType(localVertexId)==LibUtilities::eModified_C),
1385  "Mapping not defined for this type of basis");
1386 
1387  int localDOF = 0;
1388  if(useCoeffPacking == true) // follow packing of coefficients i.e q,r,p
1389  {
1390  switch(localVertexId)
1391  {
1392  case 0:
1393  {
1394  localDOF = GetMode(0,0,0);
1395  break;
1396  }
1397  case 1:
1398  {
1399  localDOF = GetMode(0,0,1);
1400  break;
1401  }
1402  case 2:
1403  {
1404  localDOF = GetMode(0,1,0);
1405  break;
1406  }
1407  case 3:
1408  {
1409  localDOF = GetMode(1,0,0);
1410  break;
1411  }
1412  default:
1413  {
1414  ASSERTL0(false,"Vertex ID must be between 0 and 3");
1415  break;
1416  }
1417  }
1418  }
1419  else
1420  {
1421  switch(localVertexId)
1422  {
1423  case 0:
1424  {
1425  localDOF = GetMode(0,0,0);
1426  break;
1427  }
1428  case 1:
1429  {
1430  localDOF = GetMode(1,0,0);
1431  break;
1432  }
1433  case 2:
1434  {
1435  localDOF = GetMode(0,1,0);
1436  break;
1437  }
1438  case 3:
1439  {
1440  localDOF = GetMode(0,0,1);
1441  break;
1442  }
1443  default:
1444  {
1445  ASSERTL0(false,"Vertex ID must be between 0 and 3");
1446  break;
1447  }
1448  }
1449 
1450  }
1451 
1452  return localDOF;
1453  }
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1886
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
LibUtilities::BasisType GetEdgeBasisType(const int i) const
This function returns the type of expansion basis on the i-th edge.
Definition: StdExpansion.h:413
Principle Modified Functions .
Definition: BasisType.h:50
void Nektar::StdRegions::StdTetExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\eta_{1i}) \psi_{pq}^{b} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{pq}^b(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} $
where

$ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\eta_1) \psi_{pq}^b (\eta_2) \psi_{pqr}^c (\eta_3) $

which can be implemented as
$f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} $
$ g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{pq}^b (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} $
$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} $

Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp, and Nektar::LocalRegions::TetExp.

Definition at line 505 of file StdTetExp.cpp.

References ASSERTL1, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and v_IProductWRTBase_SumFac().

Referenced by v_FwdTrans().

508  {
511  "Basis[1] is not a general tensor type");
512 
515  "Basis[2] is not a general tensor type");
516 
517  if(m_base[0]->Collocation() && m_base[1]->Collocation())
518  {
519  MultiplyByQuadratureMetric(inarray,outarray);
520  }
521  else
522  {
523  StdTetExp::v_IProductWRTBase_SumFac(inarray,outarray);
524  }
525  }
Principle Modified Functions .
Definition: BasisType.h:51
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
Definition: StdTetExp.cpp:547
Principle Orthogonal Functions .
Definition: BasisType.h:47
Principle Modified Functions .
Definition: BasisType.h:50
Principle Orthogonal Functions .
Definition: BasisType.h:48
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_IProductWRTBase_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Definition at line 528 of file StdTetExp.cpp.

References DetShapeType(), Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::GetTotPoints(), and Nektar::StdRegions::StdExpansion::m_ncoeffs.

531  {
532  int nq = GetTotPoints();
533  StdMatrixKey iprodmatkey(eIProductWRTBase,DetShapeType(),*this);
534  DNekMatSharedPtr iprodmat = GetStdMatrix(iprodmatkey);
535 
536  Blas::Dgemv('N',m_ncoeffs,nq,1.0,iprodmat->GetPtr().get(),
537  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
538  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:70
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp, and Nektar::LocalRegions::TetExp.

Definition at line 547 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase(), and Nektar::StdRegions::StdNodalTetExp::v_IProductWRTBase_SumFac().

551  {
552  int nquad0 = m_base[0]->GetNumPoints();
553  int nquad1 = m_base[1]->GetNumPoints();
554  int nquad2 = m_base[2]->GetNumPoints();
555  int order0 = m_base[0]->GetNumModes();
556  int order1 = m_base[1]->GetNumModes();
557 
558  Array<OneD, NekDouble> wsp (nquad1*nquad2*order0 +
559  nquad2*order0*(2*order1-order0+1)/2);
560 
561  if(multiplybyweights)
562  {
563  Array<OneD, NekDouble> tmp (nquad0*nquad1*nquad2);
564  MultiplyByQuadratureMetric(inarray, tmp);
565 
567  m_base[0]->GetBdata(),
568  m_base[1]->GetBdata(),
569  m_base[2]->GetBdata(),
570  tmp, outarray, wsp, true, true, true);
571  }
572  else
573  {
575  m_base[0]->GetBdata(),
576  m_base[1]->GetBdata(),
577  m_base[2]->GetBdata(),
578  inarray, outarray, wsp, true, true, true);
579  }
580  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedvirtual

Implements Nektar::StdRegions::StdExpansion3D.

Definition at line 583 of file StdTetExp.cpp.

References Vmath::Ddot(), Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

593  {
594  int nquad0 = m_base[0]->GetNumPoints();
595  int nquad1 = m_base[1]->GetNumPoints();
596  int nquad2 = m_base[2]->GetNumPoints();
597 
598  int order0 = m_base[0]->GetNumModes();
599  int order1 = m_base[1]->GetNumModes();
600  int order2 = m_base[2]->GetNumModes();
601 
602  Array<OneD, NekDouble > tmp1 = wsp;
603  Array<OneD, NekDouble > tmp2 = wsp + nquad1*nquad2*order0;
604 
605  int i,j, mode,mode1, cnt;
606 
607  // Inner product with respect to the '0' direction
608  Blas::Dgemm('T', 'N', nquad1*nquad2, order0, nquad0,
609  1.0, inarray.get(), nquad0,
610  base0.get(), nquad0,
611  0.0, tmp1.get(), nquad1*nquad2);
612 
613  // Inner product with respect to the '1' direction
614  for(mode=i=0; i < order0; ++i)
615  {
616  Blas::Dgemm('T', 'N', nquad2, order1-i, nquad1,
617  1.0, tmp1.get()+i*nquad1*nquad2, nquad1,
618  base1.get()+mode*nquad1, nquad1,
619  0.0, tmp2.get()+mode*nquad2, nquad2);
620  mode += order1-i;
621  }
622 
623  // fix for modified basis for base singular vertex
625  {
626  //base singular vertex and singular edge (1+b)/2
627  //(1+a)/2 components (makes tmp[nquad2] entry into (1+b)/2)
628  Blas::Dgemv('T', nquad1, nquad2,
629  1.0, tmp1.get()+nquad1*nquad2, nquad1,
630  base1.get()+nquad1, 1,
631  1.0, tmp2.get()+nquad2, 1);
632  }
633 
634  // Inner product with respect to the '2' direction
635  mode = mode1 = cnt = 0;
636  for(i = 0; i < order0; ++i)
637  {
638  for(j = 0; j < order1-i; ++j, ++cnt)
639  {
640  Blas::Dgemv('T', nquad2, order2-i-j,
641  1.0, base2.get()+mode*nquad2, nquad2,
642  tmp2.get()+cnt*nquad2, 1,
643  0.0, outarray.get()+mode1, 1);
644  mode += order2-i-j;
645  mode1 += order2-i-j;
646  }
647  //increment mode in case order1!=order2
648  for(j = order1-i; j < order2-i; ++j)
649  {
650  mode += order2-i-j;
651  }
652  }
653 
654  // fix for modified basis for top singular vertex component
655  // Already have evaluated (1+c)/2 (1-b)/2 (1-a)/2
657  {
658  // add in (1+c)/2 (1+b)/2 component
659  outarray[1] += Blas::Ddot(nquad2,base2.get()+nquad2,1,
660  &tmp2[nquad2],1);
661 
662  // add in (1+c)/2 (1-b)/2 (1+a)/2 component
663  outarray[1] += Blas::Ddot(nquad2,base2.get()+nquad2,1,
664  &tmp2[nquad2*order1],1);
665  }
666  }
Principle Modified Functions .
Definition: BasisType.h:49
T Ddot(int n, const Array< OneD, const T > &w, const int incw, const Array< OneD, const T > &x, const int incx, const Array< OneD, const int > &y, const int incy)
Definition: VmathArray.hpp:434
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp, and Nektar::LocalRegions::TetExp.

Definition at line 669 of file StdTetExp.cpp.

References v_IProductWRTDerivBase_SumFac().

673  {
674  StdTetExp::v_IProductWRTDerivBase_SumFac(dir,inarray,outarray);
675  }
virtual void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdTetExp.cpp:715
void Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Definition at line 678 of file StdTetExp.cpp.

References ASSERTL0, DetShapeType(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::GetTotPoints(), and Nektar::StdRegions::StdExpansion::m_ncoeffs.

682  {
683  ASSERTL0((dir==0)||(dir==1)||(dir==2),"input dir is out of range");
684 
685  int nq = GetTotPoints();
686  MatrixType mtype;
687 
688  switch (dir)
689  {
690  case 0:
691  mtype = eIProductWRTDerivBase0;
692  break;
693  case 1:
694  mtype = eIProductWRTDerivBase1;
695  break;
696  case 2:
697  mtype = eIProductWRTDerivBase2;
698  break;
699  }
700 
701  StdMatrixKey iprodmatkey(mtype,DetShapeType(),*this);
702  DNekMatSharedPtr iprodmat = GetStdMatrix(iprodmatkey);
703 
704  Blas::Dgemv('N',m_ncoeffs,nq,1.0,iprodmat->GetPtr().get(),
705  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
706  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:70
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTetExp.

Definition at line 715 of file StdTetExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase(), and Nektar::StdRegions::StdNodalTetExp::v_IProductWRTDerivBase_SumFac().

719  {
720  int i;
721  int nquad0 = m_base[0]->GetNumPoints();
722  int nquad1 = m_base[1]->GetNumPoints();
723  int nquad2 = m_base[2]->GetNumPoints();
724  int nqtot = nquad0*nquad1*nquad2;
725  int nmodes0 = m_base[0]->GetNumModes();
726  int nmodes1 = m_base[1]->GetNumModes();
727  int wspsize = nquad0 + nquad1 + nquad2 + max(nqtot,m_ncoeffs)
728  + nquad1*nquad2*nmodes0 + nquad2*nmodes0*(2*nmodes1-nmodes0+1)/2;
729 
730  Array<OneD, NekDouble> gfac0(wspsize);
731  Array<OneD, NekDouble> gfac1(gfac0 + nquad0);
732  Array<OneD, NekDouble> gfac2(gfac1 + nquad1);
733  Array<OneD, NekDouble> tmp0 (gfac2 + nquad2);
734  Array<OneD, NekDouble> wsp(tmp0 + max(nqtot,m_ncoeffs));
735 
736  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
737  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
738  const Array<OneD, const NekDouble>& z2 = m_base[2]->GetZ();
739 
740  // set up geometric factor: (1+z0)/2
741  for(i = 0; i < nquad0; ++i)
742  {
743  gfac0[i] = 0.5*(1+z0[i]);
744  }
745 
746  // set up geometric factor: 2/(1-z1)
747  for(i = 0; i < nquad1; ++i)
748  {
749  gfac1[i] = 2.0/(1-z1[i]);
750  }
751 
752  // Set up geometric factor: 2/(1-z2)
753  for(i = 0; i < nquad2; ++i)
754  {
755  gfac2[i] = 2.0/(1-z2[i]);
756  }
757 
758  // Derivative in first direction is always scaled as follows
759  for(i = 0; i < nquad1*nquad2; ++i)
760  {
761  Vmath::Smul(nquad0,gfac1[i%nquad1],&inarray[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
762  }
763  for(i = 0; i < nquad2; ++i)
764  {
765  Vmath::Smul(nquad0*nquad1,gfac2[i],&tmp0[0]+i*nquad0*nquad1,1,&tmp0[0]+i*nquad0*nquad1,1);
766  }
767 
768  MultiplyByQuadratureMetric(tmp0,tmp0);
769 
770  switch(dir)
771  {
772  case 0:
773  {
774  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
775  m_base[1]->GetBdata(),
776  m_base[2]->GetBdata(),
777  tmp0,outarray,wsp,
778  false, true, true);
779  }
780  break;
781  case 1:
782  {
783  Array<OneD, NekDouble> tmp3(m_ncoeffs);
784 
785  for(i = 0; i < nquad1*nquad2; ++i)
786  {
787  Vmath::Vmul(nquad0,&gfac0[0],1,&tmp0[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
788  }
789 
790  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
791  m_base[1]->GetBdata(),
792  m_base[2]->GetBdata(),
793  tmp0,tmp3,wsp,
794  false, true, true);
795 
796  for(i = 0; i < nquad2; ++i)
797  {
798  Vmath::Smul(nquad0*nquad1,gfac2[i],&inarray[0]+i*nquad0*nquad1,1,&tmp0[0]+i*nquad0*nquad1,1);
799  }
800  MultiplyByQuadratureMetric(tmp0,tmp0);
801  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
802  m_base[1]->GetDbdata(),
803  m_base[2]->GetBdata(),
804  tmp0,outarray,wsp,
805  true, false, true);
806  Vmath::Vadd(m_ncoeffs,&tmp3[0],1,&outarray[0],1,&outarray[0],1);
807  }
808  break;
809  case 2:
810  {
811  Array<OneD, NekDouble> tmp3(m_ncoeffs);
812  Array<OneD, NekDouble> tmp4(m_ncoeffs);
813  for(i = 0; i < nquad1; ++i)
814  {
815  gfac1[i] = (1+z1[i])/2;
816  }
817 
818  for(i = 0; i < nquad1*nquad2; ++i)
819  {
820  Vmath::Vmul(nquad0,&gfac0[0],1,&tmp0[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
821  }
822  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
823  m_base[1]->GetBdata(),
824  m_base[2]->GetBdata(),
825  tmp0,tmp3,wsp,
826  false, true, true);
827 
828  for(i = 0; i < nquad2; ++i)
829  {
830  Vmath::Smul(nquad0*nquad1,gfac2[i],&inarray[0]+i*nquad0*nquad1,1,&tmp0[0]+i*nquad0*nquad1,1);
831  }
832  for(i = 0; i < nquad1*nquad2; ++i)
833  {
834  Vmath::Smul(nquad0,gfac1[i%nquad1],&tmp0[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
835  }
836  MultiplyByQuadratureMetric(tmp0,tmp0);
837  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
838  m_base[1]->GetDbdata(),
839  m_base[2]->GetBdata(),
840  tmp0,tmp4,wsp,
841  true, false, true);
842 
843  MultiplyByQuadratureMetric(inarray,tmp0);
844  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
845  m_base[1]->GetBdata(),
846  m_base[2]->GetDbdata(),
847  tmp0,outarray,wsp,
848  true, true, false);
849 
850  Vmath::Vadd(m_ncoeffs,&tmp3[0],1,&outarray[0],1,&outarray[0],1);
851  Vmath::Vadd(m_ncoeffs,&tmp4[0],1,&outarray[0],1,&outarray[0],1);
852  }
853  break;
854  default:
855  {
856  ASSERTL1(false, "input dir is out of range");
857  }
858  break;
859  }
860  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
bool Nektar::StdRegions::StdTetExp::v_IsBoundaryInteriorExpansion ( )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1192 of file StdTetExp.cpp.

References Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_GetFaceToElementMap().

1193  {
1194  return (m_base[0]->GetBasisType() == LibUtilities::eModified_A) &&
1195  (m_base[1]->GetBasisType() == LibUtilities::eModified_B) &&
1197  }
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_LocCoordToLocCollapsed ( const Array< OneD, const NekDouble > &  xi,
Array< OneD, NekDouble > &  eta 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 868 of file StdTetExp.cpp.

References Nektar::NekConstants::kNekZeroTol.

871  {
872  if( fabs(xi[2]-1.0) < NekConstants::kNekZeroTol)
873  {
874  // Very top point of the tetrahedron
875  eta[0] = -1.0;
876  eta[1] = -1.0;
877  eta[2] = xi[2];
878  }
879  else
880  {
881  if( fabs(xi[1]-1.0) < NekConstants::kNekZeroTol )
882  {
883  // Distant diagonal edge shared by all eta_x
884  // coordinate planes: the xi_y == -xi_z line
885  eta[0] = -1.0;
886  }
887  else if (fabs(xi[1] + xi[2]) < NekConstants::kNekZeroTol)
888  {
889  eta[0] = -1.0;
890  }
891  else
892  {
893  eta[0] = 2.0*(1.0+xi[0])/(-xi[1]-xi[2]) - 1.0;
894  }
895  eta[1] = 2.0*(1.0+xi[1])/(1.0-xi[2]) - 1.0;
896  eta[2] = xi[2];
897  }
898  }
static const NekDouble kNekZeroTol
void Nektar::StdRegions::StdTetExp::v_MultiplyByStdQuadratureMetric ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1918 of file StdTetExp.cpp.

References Nektar::LibUtilities::eGaussRadauMAlpha1Beta0, Nektar::LibUtilities::eGaussRadauMAlpha2Beta0, Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vmul().

1921  {
1922  int i, j;
1923 
1924  int nquad0 = m_base[0]->GetNumPoints();
1925  int nquad1 = m_base[1]->GetNumPoints();
1926  int nquad2 = m_base[2]->GetNumPoints();
1927 
1928  const Array<OneD, const NekDouble>& w0 = m_base[0]->GetW();
1929  const Array<OneD, const NekDouble>& w1 = m_base[1]->GetW();
1930  const Array<OneD, const NekDouble>& w2 = m_base[2]->GetW();
1931 
1932  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
1933  const Array<OneD, const NekDouble>& z2 = m_base[2]->GetZ();
1934 
1935  // multiply by integration constants
1936  for(i = 0; i < nquad1*nquad2; ++i)
1937  {
1938  Vmath::Vmul(nquad0,(NekDouble*)&inarray[0]+i*nquad0,1,
1939  w0.get(),1, &outarray[0]+i*nquad0,1);
1940  }
1941 
1942  switch(m_base[1]->GetPointsType())
1943  {
1944  // (1,0) Jacobi Inner product.
1946  for(j = 0; j < nquad2; ++j)
1947  {
1948  for(i = 0; i < nquad1; ++i)
1949  {
1950  Blas::Dscal(nquad0,0.5*w1[i], &outarray[0]+i*nquad0+
1951  j*nquad0*nquad1,1);
1952  }
1953  }
1954  break;
1955 
1956  default:
1957  for(j = 0; j < nquad2; ++j)
1958  {
1959  for(i = 0; i < nquad1; ++i)
1960  {
1961  Blas::Dscal(nquad0,
1962  0.5*(1-z1[i])*w1[i],
1963  &outarray[0]+i*nquad0 + j*nquad0*nquad1,
1964  1 );
1965  }
1966  }
1967  break;
1968  }
1969 
1970  switch(m_base[2]->GetPointsType())
1971  {
1972  // (2,0) Jacobi inner product.
1974  for(i = 0; i < nquad2; ++i)
1975  {
1976  Blas::Dscal(nquad0*nquad1, 0.25*w2[i],
1977  &outarray[0]+i*nquad0*nquad1, 1);
1978  }
1979  break;
1980  // (1,0) Jacobi inner product.
1982  for(i = 0; i < nquad2; ++i)
1983  {
1984  Blas::Dscal(nquad0*nquad1, 0.25*(1-z2[i])*w2[i],
1985  &outarray[0]+i*nquad0*nquad1, 1);
1986  }
1987  break;
1988  default:
1989  for(i = 0; i < nquad2; ++i)
1990  {
1991  Blas::Dscal(nquad0*nquad1,0.25*(1-z2[i])*(1-z2[i])*w2[i],
1992  &outarray[0]+i*nquad0*nquad1,1);
1993  }
1994  break;
1995  }
1996  }
Gauss Radau pinned at x=-1, .
Definition: PointsType.h:57
double NekDouble
Gauss Radau pinned at x=-1, .
Definition: PointsType.h:58
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
int Nektar::StdRegions::StdTetExp::v_NumBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 934 of file StdTetExp.cpp.

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::StdTetData::getNumberOfBndCoefficients(), and Nektar::StdRegions::StdExpansion::m_base.

935  {
938  "BasisType is not a boundary interior form");
941  "BasisType is not a boundary interior form");
944  "BasisType is not a boundary interior form");
945 
946  int P = m_base[0]->GetNumModes();
947  int Q = m_base[1]->GetNumModes();
948  int R = m_base[2]->GetNumModes();
949 
952  }
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Lagrange for SEM basis .
Definition: BasisType.h:53
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
int getNumberOfBndCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:209
int Nektar::StdRegions::StdTetExp::v_NumDGBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 954 of file StdTetExp.cpp.

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

955  {
958  "BasisType is not a boundary interior form");
961  "BasisType is not a boundary interior form");
964  "BasisType is not a boundary interior form");
965 
966  int P = m_base[0]->GetNumModes()-1;
967  int Q = m_base[1]->GetNumModes()-1;
968  int R = m_base[2]->GetNumModes()-1;
969 
970 
971  return (Q+1) + P*(1 + 2*Q - P)/2 // base face
972  + (R+1) + P*(1 + 2*R - P)/2 // front face
973  + 2*(R+1) + Q*(1 + 2*R - Q); // back two faces
974  }
Principle Modified Functions .
Definition: BasisType.h:51
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Lagrange for SEM basis .
Definition: BasisType.h:53
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::StdRegions::StdTetExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_dxi0,
Array< OneD, NekDouble > &  out_dxi1,
Array< OneD, NekDouble > &  out_dxi2 
)
protectedvirtual

Calculate the derivative of the physical points.

The derivative is evaluated at the nodal physical points. Derivatives with respect to the local Cartesian coordinates

$\begin{Bmatrix} \frac {\partial} {\partial \xi_1} \\ \frac {\partial} {\partial \xi_2} \\ \frac {\partial} {\partial \xi_3} \end{Bmatrix} = \begin{Bmatrix} \frac 4 {(1-\eta_2)(1-\eta_3)} \frac \partial {\partial \eta_1} \ \ \frac {2(1+\eta_1)} {(1-\eta_2)(1-\eta_3)} \frac \partial {\partial \eta_1} + \frac 2 {1-\eta_3} \frac \partial {\partial \eta_3} \\ \frac {2(1 + \eta_1)} {2(1 - \eta_2)(1-\eta_3)} \frac \partial {\partial \eta_1} + \frac {1 + \eta_2} {1 - \eta_3} \frac \partial {\partial \eta_2} + \frac \partial {\partial \eta_3} \end{Bmatrix}$

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 108 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, Nektar::NullNekDouble1DArray, Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv(), Vmath::Sadd(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_PhysDeriv(), and v_StdPhysDeriv().

113  {
114  int Q0 = m_base[0]->GetNumPoints();
115  int Q1 = m_base[1]->GetNumPoints();
116  int Q2 = m_base[2]->GetNumPoints();
117  int Qtot = Q0*Q1*Q2;
118 
119  // Compute the physical derivative
120  Array<OneD, NekDouble> out_dEta0(3*Qtot,0.0);
121  Array<OneD, NekDouble> out_dEta1 = out_dEta0 + Qtot;
122  Array<OneD, NekDouble> out_dEta2 = out_dEta1 + Qtot;
123 
124  bool Do_2 = (out_dxi2.num_elements() > 0)? true:false;
125  bool Do_1 = (out_dxi1.num_elements() > 0)? true:false;
126 
127  if(Do_2) // Need all local derivatives
128  {
129  PhysTensorDeriv(inarray, out_dEta0, out_dEta1, out_dEta2);
130  }
131  else if (Do_1) // Need 0 and 1 derivatives
132  {
133  PhysTensorDeriv(inarray, out_dEta0, out_dEta1, NullNekDouble1DArray);
134  }
135  else // Only need Eta0 derivaitve
136  {
137  PhysTensorDeriv(inarray, out_dEta0, NullNekDouble1DArray,
139  }
140 
141  Array<OneD, const NekDouble> eta_0, eta_1, eta_2;
142  eta_0 = m_base[0]->GetZ();
143  eta_1 = m_base[1]->GetZ();
144  eta_2 = m_base[2]->GetZ();
145 
146  // calculate 2.0/((1-eta_1)(1-eta_2)) Out_dEta0
147 
148  NekDouble *dEta0 = &out_dEta0[0];
149  NekDouble fac;
150  for(int k=0; k< Q2; ++k)
151  {
152  for(int j=0; j<Q1; ++j,dEta0+=Q0)
153  {
154  Vmath::Smul(Q0,2.0/(1.0-eta_1[j]),dEta0,1,dEta0,1);
155  }
156  fac = 1.0/(1.0-eta_2[k]);
157  Vmath::Smul(Q0*Q1,fac,&out_dEta0[0]+k*Q0*Q1,1,&out_dEta0[0]+k*Q0*Q1,1);
158  }
159 
160  if (out_dxi0.num_elements() > 0)
161  {
162  // out_dxi0 = 4.0/((1-eta_1)(1-eta_2)) Out_dEta0
163  Vmath::Smul(Qtot,2.0,out_dEta0,1,out_dxi0,1);
164  }
165 
166  if (Do_1||Do_2)
167  {
168  Array<OneD, NekDouble> Fac0(Q0);
169  Vmath::Sadd(Q0,1.0,eta_0,1,Fac0,1);
170 
171 
172  // calculate 2.0*(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0
173  for(int k = 0; k < Q1*Q2; ++k)
174  {
175  Vmath::Vmul(Q0,&Fac0[0],1,&out_dEta0[0]+k*Q0,1,&out_dEta0[0]+k*Q0,1);
176  }
177  // calculate 2/(1.0-eta_2) out_dEta1
178  for(int k = 0; k < Q2; ++k)
179  {
180  Vmath::Smul(Q0*Q1,2.0/(1.0-eta_2[k]),&out_dEta1[0]+k*Q0*Q1,1,
181  &out_dEta1[0]+k*Q0*Q1,1);
182  }
183 
184  if(Do_1)
185  {
186  // calculate out_dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0
187  // + 2/(1.0-eta_2) out_dEta1
188  Vmath::Vadd(Qtot,out_dEta0,1,out_dEta1,1,out_dxi1,1);
189  }
190 
191 
192  if(Do_2)
193  {
194  // calculate (1 + eta_1)/(1 -eta_2)*out_dEta1
195  NekDouble *dEta1 = &out_dEta1[0];
196  for(int k=0; k< Q2; ++k)
197  {
198  for(int j=0; j<Q1; ++j,dEta1+=Q0)
199  {
200  Vmath::Smul(Q0,(1.0+eta_1[j])/2.0,dEta1,1,dEta1,1);
201  }
202  }
203 
204  // calculate out_dxi2 =
205  // 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0 +
206  // (1 + eta_1)/(1 -eta_2)*out_dEta1 + out_dEta2
207  Vmath::Vadd(Qtot,out_dEta0,1,out_dEta1,1,out_dxi2,1);
208  Vmath::Vadd(Qtot,out_dEta2,1,out_dxi2 ,1,out_dxi2,1);
209 
210  }
211  }
212  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points...
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:301
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::StdRegions::StdTetExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual
Parameters
dirDirection in which to compute derivative. Valid values are 0, 1, 2.
inarrayInput array.
outarrayOutput array.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 220 of file StdTetExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and v_PhysDeriv().

224  {
225  switch(dir)
226  {
227  case 0:
228  {
229  v_PhysDeriv(inarray, outarray, NullNekDouble1DArray,
231  break;
232  }
233  case 1:
234  {
235  v_PhysDeriv(inarray, NullNekDouble1DArray, outarray,
237  break;
238  }
239  case 2:
240  {
242  NullNekDouble1DArray, outarray);
243  break;
244  }
245  default:
246  {
247  ASSERTL1(false, "input dir is out of range");
248  }
249  break;
250  }
251  }
static Array< OneD, NekDouble > NullNekDouble1DArray
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz)
Calculate the derivative of the physical points.
Definition: StdTetExp.cpp:108
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::StdRegions::StdTetExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 2073 of file StdTetExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

2077  {
2078  int nquad0 = m_base[0]->GetNumPoints();
2079  int nquad1 = m_base[1]->GetNumPoints();
2080  int nquad2 = m_base[2]->GetNumPoints();
2081  int nqtot = nquad0 * nquad1 * nquad2;
2082  int nmodes0 = m_base[0]->GetNumModes();
2083  int nmodes1 = m_base[1]->GetNumModes();
2084  int nmodes2 = m_base[2]->GetNumModes();
2085  int numMax = nmodes0;
2086 
2087  Array<OneD, NekDouble> coeff (m_ncoeffs);
2088  Array<OneD, NekDouble> coeff_tmp1(m_ncoeffs, 0.0);
2089  Array<OneD, NekDouble> coeff_tmp2(m_ncoeffs, 0.0);
2090  Array<OneD, NekDouble> phys_tmp (nqtot, 0.0);
2091  Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
2092 
2093  Vmath::Vcopy(m_ncoeffs,inarray,1,coeff_tmp2,1);
2094 
2095  const LibUtilities::PointsKey Pkey0 = m_base[0]->GetPointsKey();
2096  const LibUtilities::PointsKey Pkey1 = m_base[1]->GetPointsKey();
2097  const LibUtilities::PointsKey Pkey2 = m_base[2]->GetPointsKey();
2098 
2099  LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A,
2100  nmodes0, Pkey0);
2101  LibUtilities::BasisKey bortho1(LibUtilities::eOrtho_B,
2102  nmodes1, Pkey1);
2103  LibUtilities::BasisKey bortho2(LibUtilities::eOrtho_C,
2104  nmodes2, Pkey2);
2105 
2106  Vmath::Zero(m_ncoeffs, coeff_tmp2, 1);
2107 
2108  StdRegions::StdTetExpSharedPtr OrthoTetExp;
2110  ::AllocateSharedPtr(bortho0, bortho1, bortho2);
2111 
2112  BwdTrans(inarray,phys_tmp);
2113  OrthoTetExp->FwdTrans(phys_tmp, coeff);
2114 
2115  Vmath::Zero(m_ncoeffs,outarray,1);
2116 
2117  // filtering
2118  int cnt = 0;
2119  for (int u = 0; u < numMin; ++u)
2120  {
2121  for (int i = 0; i < numMin-u; ++i)
2122  {
2123  Vmath::Vcopy(numMin - u - i, tmp = coeff + cnt, 1,
2124  tmp2 = coeff_tmp1 + cnt, 1);
2125  cnt += numMax - u - i;
2126  }
2127  for (int i = numMin; i < numMax-u; ++i)
2128  {
2129  cnt += numMax - u - i;
2130  }
2131  }
2132 
2133  OrthoTetExp->BwdTrans(coeff_tmp1,phys_tmp);
2134  FwdTrans(phys_tmp, outarray);
2135  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Principle Orthogonal Functions .
Definition: BasisType.h:47
Principle Orthogonal Functions .
Definition: BasisType.h:48
Principle Orthogonal Functions .
Definition: BasisType.h:46
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space...
Definition: StdExpansion.h:525
boost::shared_ptr< StdTetExp > StdTetExpSharedPtr
Definition: StdTetExp.h:268
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space...
void Nektar::StdRegions::StdTetExp::v_StdPhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 253 of file StdTetExp.cpp.

References v_PhysDeriv().

258  {
259  StdTetExp::v_PhysDeriv(inarray, out_d0, out_d1, out_d2);
260  }
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz)
Calculate the derivative of the physical points.
Definition: StdTetExp.cpp:108
void Nektar::StdRegions::StdTetExp::v_StdPhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 262 of file StdTetExp.cpp.

References v_PhysDeriv().

266  {
267  StdTetExp::v_PhysDeriv(dir, inarray, outarray);
268  }
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz)
Calculate the derivative of the physical points.
Definition: StdTetExp.cpp:108
void Nektar::StdRegions::StdTetExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 1998 of file StdTetExp.cpp.

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetPointsType(), and Nektar::StdRegions::StdExpansion::m_base.

2000  {
2001  //To do : 1) add a test to ensure 0 \leq SvvCutoff \leq 1.
2002  // 2) check if the transfer function needs an analytical
2003  // Fourier transform.
2004  // 3) if it doesn't : find a transfer function that renders
2005  // the if( cutoff_a ...) useless to reduce computational
2006  // cost.
2007  // 4) add SVVDiffCoef to both models!!
2008 
2009  int qa = m_base[0]->GetNumPoints();
2010  int qb = m_base[1]->GetNumPoints();
2011  int qc = m_base[2]->GetNumPoints();
2012  int nmodes_a = m_base[0]->GetNumModes();
2013  int nmodes_b = m_base[1]->GetNumModes();
2014  int nmodes_c = m_base[2]->GetNumModes();
2015 
2016  // Declare orthogonal basis.
2017  LibUtilities::PointsKey pa(qa,m_base[0]->GetPointsType());
2018  LibUtilities::PointsKey pb(qb,m_base[1]->GetPointsType());
2019  LibUtilities::PointsKey pc(qc,m_base[2]->GetPointsType());
2020 
2021  LibUtilities::BasisKey Ba(LibUtilities::eOrtho_A,nmodes_a,pa);
2022  LibUtilities::BasisKey Bb(LibUtilities::eOrtho_B,nmodes_b,pb);
2023  LibUtilities::BasisKey Bc(LibUtilities::eOrtho_C,nmodes_c,pc);
2024 
2025  StdTetExp OrthoExp(Ba,Bb,Bc);
2026 
2027 
2028  Array<OneD, NekDouble> orthocoeffs(OrthoExp.GetNcoeffs());
2029  int i,j,k,cnt = 0;
2030 
2031  //SVV filter paramaters (how much added diffusion relative to physical one
2032  // and fraction of modes from which you start applying this added diffusion)
2033  //
2034  NekDouble SvvDiffCoeff = mkey.GetConstFactor(StdRegions::eFactorSVVDiffCoeff);
2035  NekDouble SVVCutOff = mkey.GetConstFactor(StdRegions::eFactorSVVCutoffRatio);
2036 
2037 
2038  //Defining the cut of mode
2039  int cutoff_a = (int) (SVVCutOff*nmodes_a);
2040  int cutoff_b = (int) (SVVCutOff*nmodes_b);
2041  int cutoff_c = (int) (SVVCutOff*nmodes_c);
2042  int nmodes = min(min(nmodes_a,nmodes_b),nmodes_c);
2043  NekDouble cutoff = min(min(cutoff_a,cutoff_b),cutoff_c);
2044  NekDouble epsilon = 1;
2045 
2046  // project onto physical space.
2047  OrthoExp.FwdTrans(array,orthocoeffs);
2048 
2049  //------"New" Version August 22nd '13--------------------
2050  for(i = 0; i < nmodes_a; ++i)
2051  {
2052  for(j = 0; j < nmodes_b-i; ++j)
2053  {
2054  for(k = 0; k < nmodes_c-i-j; ++k)
2055  {
2056  if(i + j + k >= cutoff)
2057  {
2058  orthocoeffs[cnt] *= ((SvvDiffCoeff)*exp(-(i+j+k-nmodes)*(i+j+k-nmodes)/((NekDouble)((i+j+k-cutoff+epsilon)*(i+j+k-cutoff+epsilon)))));
2059  }
2060  else
2061  {
2062  orthocoeffs[cnt] *= 0.0;
2063  }
2064  cnt++;
2065  }
2066  }
2067  }
2068  // backward transform to physical space
2069  OrthoExp.BwdTrans(orthocoeffs,array);
2070  }
Principle Orthogonal Functions .
Definition: BasisType.h:47
Principle Orthogonal Functions .
Definition: BasisType.h:48
Principle Orthogonal Functions .
Definition: BasisType.h:46
double NekDouble
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base