52     NavierStokesAdvection::NavierStokesAdvection():
 
   76         pSession->MatchSolverInfo(
"ModeType",
"SingleMode",
m_SingleMode,
false);
 
   77         pSession->MatchSolverInfo(
"ModeType",
"HalfMode",
m_HalfMode,
false);
 
   84         const int nConvectiveFields,
 
   91         int nqtot            = fields[0]->GetTotPoints();
 
   92         ASSERTL1(nConvectiveFields == inarray.num_elements(),
"Number of convective fields and Inarray are not compatible");
 
   96         for(
int n = 0; n < nConvectiveFields; ++n)
 
   99             int ndim       = advVel.num_elements();
 
  104             int nPointsTot = fields[0]->GetNpoints();
 
  112                 nPointsTot = fields[0]->Get1DScaledTotPoints(OneDptscale);
 
  118             int nadv = advVel.num_elements();
 
  122                 for(
int i = 0; i < nadv; ++i)
 
  126                         AdvVel[i] = AdvVel[i-1]+nPointsTot;
 
  129                     fields[0]->PhysInterp1DScaled(OneDptscale,advVel[i],AdvVel[i]);
 
  132                 Outarray = AdvVel[nadv-1] + nPointsTot;
 
  136                 for(
int i = 0; i < nadv; ++i)
 
  138                     AdvVel[i] = advVel[i];
 
  141                 Outarray = outarray[n];
 
  151                 fields[0]->PhysDeriv(inarray[n],grad0);
 
  152                 Vmath::Vmul(nPointsTot,grad0,1,advVel[0],1,outarray[n],1);
 
  157                     fields[0]->PhysDeriv(inarray[n],grad0,grad1);
 
  161                         fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
 
  163                         fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
 
  167                     Vmath::Vmul (nPointsTot,grad0,1,AdvVel[0],1,Outarray,1);
 
  168                     Vmath::Vvtvp(nPointsTot,grad1,1,AdvVel[1],1,Outarray,1,Outarray,1);
 
  172                         fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,outarray[n]);
 
  185                     fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
 
  187                     fields[0]->DealiasedProd(advVel[0],grad0,grad0,
m_CoeffState);
 
  188                     fields[0]->DealiasedProd(advVel[1],grad1,grad1,
m_CoeffState);
 
  189                     fields[0]->DealiasedProd(advVel[2],grad2,grad2,
m_CoeffState);
 
  190                     Vmath::Vadd(nPointsTot,grad0,1,grad1,1,outarray[n],1);
 
  191                     Vmath::Vadd(nPointsTot,grad2,1,outarray[n],1,outarray[n],1);
 
  196                     fields[0]->PhysDeriv(advVel[n],grad0,grad1);
 
  201                     fields[0]->HomogeneousBwdTrans(outarray[n],grad2);
 
  205                         fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
 
  206                         Vmath::Vmul(nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
 
  210                         Vmath::Vmul(nPointsTot,grad0,1,AdvVel[0],1,Outarray,1);
 
  215                         fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
 
  227                         fields[0]->PhysInterp1DScaled(OneDptscale,grad2,wkSp);
 
  228                         Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[2],1,Outarray,1,Outarray,1);
 
  229                         fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,grad2);
 
  230                         fields[0]->HomogeneousFwdTrans(grad2,outarray[n]);
 
  234                         Vmath::Vvtvp(nPointsTot,grad2,1,AdvVel[2],1,Outarray,1,grad0,1);
 
  235                         fields[0]->HomogeneousFwdTrans(grad0,outarray[n]);
 
  241                     fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
 
  245                         fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
 
  246                         Vmath::Vmul(nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
 
  250                         Vmath::Vmul(nPointsTot,grad0,1,AdvVel[0],1,Outarray,1);
 
  256                         fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
 
  268                         fields[0]->PhysInterp1DScaled(OneDptscale,grad2,wkSp);
 
  269                         Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[2],1,Outarray,1,Outarray,1);
 
  270                         fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,outarray[n]);
 
  274                         Vmath::Vvtvp(nPointsTot,grad2,1,AdvVel[2],1,Outarray,1,outarray[n],1);
 
  281                     fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
 
  283                     fields[0]->HomogeneousBwdTrans(grad0, outarray[n]);
 
  284                     fields[0]->DealiasedProd(advVel[0], outarray[n], grad0,
 
  287                     fields[0]->HomogeneousBwdTrans(grad1,outarray[n]);
 
  288                     fields[0]->DealiasedProd(advVel[1], outarray[n], grad1,
 
  291                     fields[0]->HomogeneousBwdTrans(grad2,outarray[n]);
 
  292                     fields[0]->DealiasedProd(advVel[2], outarray[n], grad2,
 
  295                     Vmath::Vadd(nPointsTot, grad0, 1, grad1, 1, grad0, 1);
 
  296                     Vmath::Vadd(nPointsTot, grad0, 1, grad2, 1, grad0, 1);
 
  298                     fields[0]->HomogeneousFwdTrans(grad0,outarray[n]);
 
  302                     ASSERTL0(
false, 
"Advection term calculation not implented or " 
  303                                     "possible with the current problem set up");
 
  307                 ASSERTL0(
false,
"dimension unknown");
 
bool m_homogen_dealiasing
 
#define ASSERTL0(condition, msg)
 
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time)
Advects a vector field. 
 
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y 
 
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
 
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects. 
 
void Neg(int n, T *x, const int incx)
Negate x = -x. 
 
MultiRegions::CoeffState m_CoeffState
 
virtual ~NavierStokesAdvection()
 
MultiRegions::Direction const DirCartesianMap[]
 
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object. 
 
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
 
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
 
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object. 
 
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y. 
 
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y. 
 
Defines a callback function which evaluates the flux vector. 
 
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.