Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
DisContField3D.cpp
Go to the documentation of this file.
1  //////////////////////////////////////////////////////////////////////////////
2  //
3  // File DisContField3D.cpp
4  //
5  // For more information, please see: http://www.nektar.info
6  //
7  // The MIT License
8  //
9  // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10  // Department of Aeronautics, Imperial College London (UK), and Scientific
11  // Computing and Imaging Institute, University of Utah (USA).
12  //
13  // License for the specific language governing rights and limitations under
14  // Permission is hereby granted, free of charge, to any person obtaining a
15  // copy of this software and associated documentation files (the "Software"),
16  // to deal in the Software without restriction, including without limitation
17  // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18  // and/or sell copies of the Software, and to permit persons to whom the
19  // Software is furnished to do so, subject to the following conditions:
20  //
21  // The above copyright notice and this permission notice shall be included
22  // in all copies or substantial portions of the Software.
23  //
24  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25  // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27  // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29  // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30  // DEALINGS IN THE SOFTWARE.
31  //
32  // Description: Field definition for 3D domain with boundary
33  // conditions using LDG flux
34  //
35  ///////////////////////////////////////////////////////////////////////////////
36 
41 #include <LocalRegions/HexExp.h>
42 #include <LocalRegions/TetExp.h>
43 #include <LocalRegions/PrismExp.h>
46 #include <boost/assign/std/vector.hpp>
47 #include <boost/tuple/tuple.hpp>
48 
49 using namespace std;
50 using namespace boost::assign;
51 
52  namespace Nektar
53  {
54  namespace MultiRegions
55  {
56  /**
57  * @class DisContField3D
58  * Abstraction of a global discontinuous three-dimensional spectral/hp
59  * element expansion which approximates the solution of a set of
60  * partial differential equations.
61  */
62 
63  /**
64  * @brief Default constructor.
65  */
66  DisContField3D::DisContField3D() :
67  ExpList3D (),
68  m_bndCondExpansions (),
69  m_bndConditions (),
70  m_trace(NullExpListSharedPtr)
71  {
72  }
73 
74  /**
75  * @brief Constructs a global discontinuous field based on an input
76  * mesh with boundary conditions.
77  */
81  const std::string &variable,
82  const bool SetUpJustDG)
83  : ExpList3D (pSession, graph3D, variable),
84  m_bndCondExpansions(),
85  m_bndConditions (),
86  m_trace(NullExpListSharedPtr)
87  {
88  // do not set up BCs if default variable
89  if (variable.compare("DefaultVar") != 0)
90  {
92 
93  GenerateBoundaryConditionExpansion(graph3D,bcs,variable);
94  EvaluateBoundaryConditions(0.0, variable);
95 
96  // Find periodic edges for this variable.
97  FindPeriodicFaces(bcs, variable);
98  }
99 
100  if(SetUpJustDG)
101  {
102  SetUpDG();
103  }
104  else
105  {
106  // Set element edges to point to Robin BC edges if required.
107  int i, cnt, f;
108  Array<OneD, int> ElmtID, FaceID;
109  GetBoundaryToElmtMap(ElmtID, FaceID);
110 
111  for(cnt = i = 0; i < m_bndCondExpansions.num_elements(); ++i)
112  {
114  locExpList = m_bndCondExpansions[i];
115 
116  for(f = 0; f < locExpList->GetExpSize(); ++f)
117  {
119  = (*m_exp)[ElmtID[cnt+f]]->
120  as<LocalRegions::Expansion3D>();
122  = locExpList->GetExp(f)->
123  as<LocalRegions::Expansion2D>();
124 
125  exp3d->SetFaceExp(FaceID[cnt+f],exp2d);
126  exp2d->SetAdjacentElementExp(FaceID[cnt+f],exp3d);
127  }
128  cnt += m_bndCondExpansions[i]->GetExpSize();
129  }
130  }
131  }
132 
133  /*
134  * @brief Copy type constructor which declares new boundary conditions
135  * and re-uses mapping info and trace space if possible
136  */
138  const DisContField3D &In,
139  const SpatialDomains::MeshGraphSharedPtr &graph3D,
140  const std::string &variable,
141  const bool SetUpJustDG)
142  : ExpList3D(In),
143  m_trace(NullExpListSharedPtr)
144  {
146 
147  GenerateBoundaryConditionExpansion(graph3D,bcs,variable);
148  EvaluateBoundaryConditions(0.0, variable);
149  ApplyGeomInfo();
150 
152  {
153  // Find periodic edges for this variable.
154  FindPeriodicFaces(bcs, variable);
155 
156  if (SetUpJustDG)
157  {
158  SetUpDG(variable);
159  }
160  else
161  {
162  int i,cnt,f;
163  Array<OneD, int> ElmtID,FaceID;
164  GetBoundaryToElmtMap(ElmtID,FaceID);
165 
166  for(cnt = i = 0; i < m_bndCondExpansions.num_elements(); ++i)
167  {
169  locExpList = m_bndCondExpansions[i];
170 
171  for(f = 0; f < locExpList->GetExpSize(); ++f)
172  {
174  = (*m_exp)[ElmtID[cnt+f]]->
175  as<LocalRegions::Expansion3D>();
177  = locExpList->GetExp(f)->
178  as<LocalRegions::Expansion2D>();
179 
180  exp3d->SetFaceExp(FaceID[cnt+f],exp2d);
181  exp2d->SetAdjacentElementExp(FaceID[cnt+f],exp3d);
182  }
183 
184  cnt += m_bndCondExpansions[i]->GetExpSize();
185  }
187  }
188 
189  }
190  //else if we have the same boundary condition
191  else
192  {
194  m_trace = In.m_trace;
195  m_traceMap = In.m_traceMap;
200 
201  if(SetUpJustDG)
202  {
203  }
204  else
205  {
206  int i,cnt,f;
207  Array<OneD, int> ElmtID,FaceID;
208  GetBoundaryToElmtMap(ElmtID,FaceID);
209 
210  for (cnt = i = 0;
211  i < m_bndCondExpansions.num_elements(); ++i)
212  {
214  locExpList = m_bndCondExpansions[i];
215 
216  for(f = 0; f < locExpList->GetExpSize(); ++f)
217  {
219  = (*m_exp)[ElmtID[cnt+f]]->
220  as<LocalRegions::Expansion3D>();
222  = locExpList->GetExp(f)->
223  as<LocalRegions::Expansion2D>();
224 
225  exp3d->SetFaceExp(FaceID[cnt+f], exp2d);
226  exp2d->SetAdjacentElementExp(FaceID[cnt+f], exp3d);
227  }
228 
229  cnt += m_bndCondExpansions[i]->GetExpSize();
230  }
231 
232  if (m_session->DefinesSolverInfo("PROJECTION"))
233  {
234  std::string ProjectStr =
235  m_session->GetSolverInfo("PROJECTION");
236  if (ProjectStr == "MixedCGDG" ||
237  ProjectStr == "Mixed_CG_Discontinuous")
238  {
239  SetUpDG(variable);
240  }
241  else
242  {
244  }
245  }
246  else
247  {
249  }
250  }
251  }
252  }
253 
254  /**
255  *
256  */
258  ExpList3D(In),
259  m_bndCondExpansions (In.m_bndCondExpansions),
260  m_bndConditions (In.m_bndConditions),
261  m_globalBndMat (In.m_globalBndMat),
262  m_trace (In.m_trace),
263  m_traceMap (In.m_traceMap),
264  m_locTraceToTraceMap (In.m_locTraceToTraceMap),
265  m_periodicFaces (In.m_periodicFaces),
266  m_periodicEdges (In.m_periodicEdges),
267  m_periodicVerts (In.m_periodicVerts)
268  {
269  }
270 
271  /**
272  * @brief Destructor.
273  */
275  {
276  }
277 
279  const GlobalLinSysKey &mkey)
280  {
282  "Routine currently only tested for HybridDGHelmholtz");
283  ASSERTL1(mkey.GetGlobalSysSolnType() ==
284  m_traceMap->GetGlobalSysSolnType(),
285  "The local to global map is not set up for the requested "
286  "solution type");
287 
288  GlobalLinSysSharedPtr glo_matrix;
289  GlobalLinSysMap::iterator matrixIter = m_globalBndMat->find(mkey);
290 
291  if (matrixIter == m_globalBndMat->end())
292  {
293  glo_matrix = GenGlobalBndLinSys(mkey, m_traceMap);
294  (*m_globalBndMat)[mkey] = glo_matrix;
295  }
296  else
297  {
298  glo_matrix = matrixIter->second;
299  }
300 
301  return glo_matrix;
302  }
303 
304  /**
305  * @brief Set up all DG member variables and maps.
306  */
307  void DisContField3D::SetUpDG(const std::string variable)
308  {
310  {
311  return;
312  }
313 
314  ExpList2DSharedPtr trace;
315 
317  boost::dynamic_pointer_cast<SpatialDomains::MeshGraph3D>(
318  m_graph);
319 
320  // Set up matrix map
323 
324  // Set up Trace space
325  bool UseGenSegExp = true;
328  *m_exp,graph3D, m_periodicFaces, UseGenSegExp);
329 
330  m_trace = trace;
331 
333  m_session,graph3D,trace,*this,m_bndCondExpansions,
334  m_bndConditions, m_periodicFaces,variable);
335 
336  if (m_session->DefinesCmdLineArgument("verbose"))
337  {
338  m_traceMap->PrintStats(std::cout, variable);
339  }
340 
342  &elmtToTrace = m_traceMap->GetElmtToTrace();
343 
344  // Scatter trace segments to 3D elements. For each element, we
345  // find the trace segment associated to each edge. The element
346  // then retains a pointer to the trace space segments, to ensure
347  // uniqueness of normals when retrieving from two adjoining
348  // elements which do not lie in a plane.
349  for (int i = 0; i < m_exp->size(); ++i)
350  {
351  for (int j = 0; j < (*m_exp)[i]->GetNfaces(); ++j)
352  {
354  (*m_exp)[i]->as<LocalRegions::Expansion3D>();
356  elmtToTrace[i][j]->as<LocalRegions::Expansion2D>();
357  exp3d->SetFaceExp (j, exp2d);
358  exp2d->SetAdjacentElementExp(j, exp3d);
359  }
360  }
361 
362  // Set up physical normals
364 
365  // Set up information for parallel jobs.
366  for (int i = 0; i < m_trace->GetExpSize(); ++i)
367  {
369  m_trace->GetExp(i)->as<LocalRegions::Expansion2D>();
370 
371  int offset = m_trace->GetPhys_Offset(i);
372  int traceGeomId = traceEl->GetGeom2D()->GetGlobalID();
374  traceGeomId);
375 
376  if (pIt != m_periodicFaces.end() && !pIt->second[0].isLocal)
377  {
378  if (traceGeomId != min(pIt->second[0].id, traceGeomId))
379  {
380  traceEl->GetLeftAdjacentElementExp()->NegateFaceNormal(
381  traceEl->GetLeftAdjacentElementFace());
382  }
383  }
384  else if (m_traceMap->GetTraceToUniversalMapUnique(offset) < 0)
385  {
386  traceEl->GetLeftAdjacentElementExp()->NegateFaceNormal(
387  traceEl->GetLeftAdjacentElementFace());
388  }
389  }
390 
391  int cnt, n, e;
392 
393  // Identify boundary faces
394  for(cnt = 0, n = 0; n < m_bndCondExpansions.num_elements(); ++n)
395  {
396  if (m_bndConditions[n]->GetBoundaryConditionType() !=
398  {
399  for(e = 0; e < m_bndCondExpansions[n]->GetExpSize(); ++e)
400  {
401  m_boundaryFaces.insert(
402  m_traceMap->GetBndCondTraceToGlobalTraceMap(cnt+e));
403  }
404  }
405  cnt += m_bndCondExpansions[n]->GetExpSize();
406  }
407 
408  // Set up information for periodic boundary conditions.
409  boost::unordered_map<int,pair<int,int> > perFaceToExpMap;
410  boost::unordered_map<int,pair<int,int> >::iterator it2;
411  cnt = 0;
413  for (int n = 0; n < m_exp->size(); ++n)
414  {
415  exp3d = (*m_exp)[n]->as<LocalRegions::Expansion3D>();
416  for (int e = 0; e < exp3d->GetNfaces(); ++e, ++cnt)
417  {
419  exp3d->GetGeom3D()->GetFid(e));
420 
421  if (it != m_periodicFaces.end())
422  {
423  perFaceToExpMap[it->first] = make_pair(n, e);
424  }
425  }
426  }
427 
428  // Set up left-adjacent face list.
429  m_leftAdjacentFaces.resize(cnt);
430  cnt = 0;
431  for (int i = 0; i < m_exp->size(); ++i)
432  {
433  for (int j = 0; j < (*m_exp)[i]->GetNfaces(); ++j, ++cnt)
434  {
436  }
437  }
438 
439  // Set up mapping to copy Fwd of periodic bcs to Bwd of other edge.
440  cnt = 0;
441  for (int n = 0; n < m_exp->size(); ++n)
442  {
443  exp3d = (*m_exp)[n]->as<LocalRegions::Expansion3D>();
444  for (int e = 0; e < exp3d->GetNfaces(); ++e, ++cnt)
445  {
446  int faceGeomId = exp3d->GetGeom3D()->GetFid(e);
447  int offset = m_trace->GetPhys_Offset(
448  elmtToTrace[n][e]->GetElmtId());
449 
450  // Check to see if this face is periodic.
451  PeriodicMap::iterator it = m_periodicFaces.find(faceGeomId);
452 
453  if (it != m_periodicFaces.end())
454  {
455  const PeriodicEntity &ent = it->second[0];
456  it2 = perFaceToExpMap.find(ent.id);
457 
458  if (it2 == perFaceToExpMap.end())
459  {
460  if (m_session->GetComm()->GetSize() > 1 &&
461  !ent.isLocal)
462  {
463  continue;
464  }
465  else
466  {
467  ASSERTL1(false, "Periodic edge not found!");
468  }
469  }
470 
472  "Periodic face in non-forward space?");
473 
474  int offset2 = m_trace->GetPhys_Offset(
475  elmtToTrace[it2->second.first][it2->second.second]->
476  GetElmtId());
477 
478  // Calculate relative orientations between faces to
479  // calculate copying map.
480  int nquad1 = elmtToTrace[n][e]->GetNumPoints(0);
481  int nquad2 = elmtToTrace[n][e]->GetNumPoints(1);
482 
483  vector<int> tmpBwd(nquad1*nquad2);
484  vector<int> tmpFwd(nquad1*nquad2);
485 
490  {
491  for (int i = 0; i < nquad2; ++i)
492  {
493  for (int j = 0; j < nquad1; ++j)
494  {
495  tmpBwd[i*nquad1+j] = offset2 + i*nquad1+j;
496  tmpFwd[i*nquad1+j] = offset + j*nquad2+i;
497  }
498  }
499  }
500  else
501  {
502  for (int i = 0; i < nquad2; ++i)
503  {
504  for (int j = 0; j < nquad1; ++j)
505  {
506  tmpBwd[i*nquad1+j] = offset2 + i*nquad1+j;
507  tmpFwd[i*nquad1+j] = offset + i*nquad1+j;
508  }
509  }
510  }
511 
516  {
517  // Reverse x direction
518  for (int i = 0; i < nquad2; ++i)
519  {
520  for (int j = 0; j < nquad1/2; ++j)
521  {
522  swap(tmpFwd[i*nquad1 + j],
523  tmpFwd[i*nquad1 + nquad1-j-1]);
524  }
525  }
526  }
527 
532  {
533  // Reverse y direction
534  for (int j = 0; j < nquad1; ++j)
535  {
536  for (int i = 0; i < nquad2/2; ++i)
537  {
538  swap(tmpFwd[i*nquad1 + j],
539  tmpFwd[(nquad2-i-1)*nquad1 + j]);
540  }
541  }
542  }
543 
544  for (int i = 0; i < nquad1*nquad2; ++i)
545  {
546  m_periodicFwdCopy.push_back(tmpFwd[i]);
547  m_periodicBwdCopy.push_back(tmpBwd[i]);
548  }
549  }
550  }
551  }
552 
554  AllocateSharedPtr(*this, m_trace, elmtToTrace,
556 
557  }
558 
559  /**
560  * For each boundary region, checks that the types and number of
561  * boundary expansions in that region match.
562  *
563  * @param In ContField3D to compare with.
564  * @return true if boundary conditions match.
565  */
567  const DisContField3D &In)
568  {
569  int i;
570  bool returnval = true;
571 
572  for(i = 0; i < m_bndConditions.num_elements(); ++i)
573  {
574 
575  // check to see if boundary condition type is the same
576  // and there are the same number of boundary
577  // conditions in the boundary definition.
578  if((m_bndConditions[i]->GetBoundaryConditionType()
579  != In.m_bndConditions[i]->GetBoundaryConditionType())||
581  != In.m_bndCondExpansions[i]->GetExpSize()))
582  {
583  returnval = false;
584  break;
585  }
586  }
587 
588  // Compare with all other processes. Return true only if all
589  // processes report having the same boundary conditions.
590  int vSame = returnval ? 1 : 0;
591  m_comm->AllReduce(vSame, LibUtilities::ReduceMin);
592 
593  return (vSame == 1);
594  }
595 
596  /**
597  * According to their boundary region, the separate segmental boundary
598  * expansions are bundled together in an object of the class
599  * MultiRegions#ExpList2D.
600  *
601  * \param graph3D A mesh, containing information about the domain and
602  * the spectral/hp element expansion.
603  * \param bcs An entity containing information about the boundaries and
604  * boundary conditions.
605  * \param variable An optional parameter to indicate for which variable
606  * the boundary conditions should be discretised.
607  */
609  const SpatialDomains::MeshGraphSharedPtr &graph3D,
611  const std::string &variable)
612  {
613  int cnt = 0;
616 
618  bcs.GetBoundaryRegions();
619  const SpatialDomains::BoundaryConditionCollection &bconditions =
620  bcs.GetBoundaryConditions();
621  SpatialDomains::BoundaryRegionCollection::const_iterator it;
622 
623  // count the number of non-periodic boundary regions
624  for (it = bregions.begin(); it != bregions.end(); ++it)
625  {
626  SpatialDomains::BoundaryConditionShPtr boundaryCondition =
627  GetBoundaryCondition(bconditions, it->first, variable);
628  if (boundaryCondition->GetBoundaryConditionType() !=
630  {
631  cnt++;
632  }
633  }
634 
637 
638  cnt = 0;
639 
640  // list Dirichlet boundaries first
641  for (it = bregions.begin(); it != bregions.end(); ++it)
642  {
643  locBCond = GetBoundaryCondition(
644  bconditions, it->first, variable);
645 
646  if(locBCond->GetBoundaryConditionType()
648  {
650  ::AllocateSharedPtr(m_session, *(it->second),
651  graph3D, variable);
652 
653  // Set up normals on non-Dirichlet boundary conditions
654  if(locBCond->GetBoundaryConditionType() !=
656  {
658  }
659 
660  m_bndCondExpansions[cnt] = locExpList;
661  m_bndConditions[cnt++] = locBCond;
662  }
663  }
664  }
665 
666  /**
667  * @brief Determine the periodic faces, edges and vertices for the given
668  * graph.
669  *
670  * @param bcs Information about the boundary conditions.
671  * @param variable Specifies the field.
672  */
675  const std::string &variable)
676  {
678  = bcs.GetBoundaryRegions();
680  = bcs.GetBoundaryConditions();
682  = boost::dynamic_pointer_cast<
684  SpatialDomains::BoundaryRegionCollection::const_iterator it;
685 
687  m_session->GetComm()->GetRowComm();
689  m_session->GetCompositeOrdering();
690  LibUtilities::BndRegionOrdering bndRegOrder =
691  m_session->GetBndRegionOrdering();
693  m_graph->GetComposites();
694 
695  // perComps: Stores a unique collection of pairs of periodic
696  // composites (i.e. if composites 1 and 2 are periodic then this map
697  // will contain either the pair (1,2) or (2,1) but not both).
698  //
699  // The four maps allVerts, allCoord, allEdges and allOrient map a
700  // periodic face to a vector containing the vertex ids of the face;
701  // their coordinates; the edge ids of the face; and their
702  // orientation within that face respectively.
703  //
704  // Finally the three sets locVerts, locEdges and locFaces store any
705  // vertices, edges and faces that belong to a periodic composite and
706  // lie on this process.
707  map<int,int> perComps;
708  map<int,vector<int> > allVerts;
709  map<int,SpatialDomains::PointGeomVector> allCoord;
710  map<int,vector<int> > allEdges;
711  map<int,vector<StdRegions::Orientation> > allOrient;
712  set<int> locVerts;
713  set<int> locEdges;
714  set<int> locFaces;
715 
716  int region1ID, region2ID, i, j, k, cnt;
718 
719  // Set up a set of all local verts and edges.
720  for(i = 0; i < (*m_exp).size(); ++i)
721  {
722  for(j = 0; j < (*m_exp)[i]->GetNverts(); ++j)
723  {
724  int id = (*m_exp)[i]->GetGeom()->GetVid(j);
725  locVerts.insert(id);
726  }
727 
728  for(j = 0; j < (*m_exp)[i]->GetNedges(); ++j)
729  {
730  int id = (*m_exp)[i]->GetGeom()->GetEid(j);
731  locEdges.insert(id);
732  }
733  }
734 
735  // Begin by populating the perComps map. We loop over all periodic
736  // boundary conditions and determine the composite associated with
737  // it, then fill out the all* maps.
738  for (it = bregions.begin(); it != bregions.end(); ++it)
739  {
740  locBCond = GetBoundaryCondition(
741  bconditions, it->first, variable);
742 
743  if (locBCond->GetBoundaryConditionType()
745  {
746  continue;
747  }
748 
749  // Identify periodic boundary region IDs.
750  region1ID = it->first;
751  region2ID = boost::static_pointer_cast<
753  locBCond)->m_connectedBoundaryRegion;
754 
755  // Check the region only contains a single composite.
756  ASSERTL0(it->second->size() == 1,
757  "Boundary region "+boost::lexical_cast<string>(
758  region1ID)+" should only contain 1 composite.");
759 
760  // From this identify composites by looking at the original
761  // boundary region ordering. Note that in serial the mesh
762  // partitioner is not run, so this map will be empty and
763  // therefore needs to be populated by using the corresponding
764  // boundary region.
765  int cId1, cId2;
766  if (vComm->GetSize() == 1)
767  {
768  cId1 = it->second->begin()->first;
769  cId2 = bregions.find(region2ID)->second->begin()->first;
770  }
771  else
772  {
773  cId1 = bndRegOrder.find(region1ID)->second[0];
774  cId2 = bndRegOrder.find(region2ID)->second[0];
775  }
776 
777  SpatialDomains::Composite c = it->second->begin()->second;
778  vector<unsigned int> tmpOrder;
779 
780  // From the composite, we now construct the allVerts, allEdges
781  // and allCoord map so that they can be transferred across
782  // processors. We also populate the locFaces set to store a
783  // record of all faces local to this process.
784  for (i = 0; i < c->size(); ++i)
785  {
787  boost::dynamic_pointer_cast<
788  SpatialDomains::Geometry2D>((*c)[i]);
789  ASSERTL1(faceGeom, "Unable to cast to shared ptr");
790 
791  // Get geometry ID of this face and store in locFaces.
792  int faceId = (*c)[i]->GetGlobalID();
793  locFaces.insert(faceId);
794 
795  // In serial, mesh partitioning will not have occurred so
796  // need to fill composite ordering map manually.
797  if (vComm->GetSize() == 1)
798  {
799  tmpOrder.push_back((*c)[i]->GetGlobalID());
800  }
801 
802  // Loop over vertices and edges of the face to populate
803  // allVerts, allEdges and allCoord maps.
804  vector<int> vertList, edgeList;
806  vector<StdRegions::Orientation> orientVec;
807  for (j = 0; j < faceGeom->GetNumVerts(); ++j)
808  {
809  vertList .push_back(faceGeom->GetVid (j));
810  edgeList .push_back(faceGeom->GetEid (j));
811  coordVec .push_back(faceGeom->GetVertex(j));
812  orientVec.push_back(faceGeom->GetEorient(j));
813  }
814 
815  allVerts [faceId] = vertList;
816  allEdges [faceId] = edgeList;
817  allCoord [faceId] = coordVec;
818  allOrient[faceId] = orientVec;
819  }
820 
821  // In serial, record the composite ordering in compOrder for
822  // later in the routine.
823  if (vComm->GetSize() == 1)
824  {
825  compOrder[it->second->begin()->first] = tmpOrder;
826  }
827 
828  // See if we already have either region1 or region2 stored in
829  // perComps map already and do a sanity check to ensure regions
830  // are mutually periodic.
831  if (perComps.count(cId1) == 0)
832  {
833  if (perComps.count(cId2) == 0)
834  {
835  perComps[cId1] = cId2;
836  }
837  else
838  {
839  std::stringstream ss;
840  ss << "Boundary region " << cId2 << " should be "
841  << "periodic with " << perComps[cId2] << " but "
842  << "found " << cId1 << " instead!";
843  ASSERTL0(perComps[cId2] == cId1, ss.str());
844  }
845  }
846  else
847  {
848  std::stringstream ss;
849  ss << "Boundary region " << cId1 << " should be "
850  << "periodic with " << perComps[cId1] << " but "
851  << "found " << cId2 << " instead!";
852  ASSERTL0(perComps[cId1] == cId1, ss.str());
853  }
854  }
855 
856  // The next routines process local face lists to exchange vertices,
857  // edges and faces.
858  int n = vComm->GetSize();
859  int p = vComm->GetRank();
860  int totFaces;
861  Array<OneD, int> facecounts(n,0);
862  Array<OneD, int> vertcounts(n,0);
863  Array<OneD, int> faceoffset(n,0);
864  Array<OneD, int> vertoffset(n,0);
865 
866  // First exchange the number of faces on each process.
867  facecounts[p] = locFaces.size();
868  vComm->AllReduce(facecounts, LibUtilities::ReduceSum);
869 
870  // Set up an offset map to allow us to distribute face IDs to all
871  // processors.
872  faceoffset[0] = 0;
873  for (i = 1; i < n; ++i)
874  {
875  faceoffset[i] = faceoffset[i-1] + facecounts[i-1];
876  }
877 
878  // Calculate total number of faces.
879  totFaces = Vmath::Vsum(n, facecounts, 1);
880 
881  // faceIds holds face IDs for each periodic face. faceVerts holds
882  // the number of vertices in this face.
883  Array<OneD, int> faceIds (totFaces, 0);
884  Array<OneD, int> faceVerts(totFaces, 0);
885 
886  // Process p writes IDs of its faces into position faceoffset[p] of
887  // faceIds which allows us to perform an AllReduce to distribute
888  // information amongst processors.
889  set<int>::iterator sIt;
890  for (i = 0, sIt = locFaces.begin(); sIt != locFaces.end(); ++sIt)
891  {
892  faceIds [faceoffset[p] + i ] = *sIt;
893  faceVerts[faceoffset[p] + i++] = allVerts[*sIt].size();
894  }
895 
896  vComm->AllReduce(faceIds, LibUtilities::ReduceSum);
897  vComm->AllReduce(faceVerts, LibUtilities::ReduceSum);
898 
899  // procVerts holds number of vertices (and also edges since each
900  // face is 2D) on each process.
901  Array<OneD, int> procVerts(n,0);
902  int nTotVerts;
903 
904  // Note if there are no periodic faces at all calling Vsum will
905  // cause a segfault.
906  if (totFaces > 0)
907  {
908  // Calculate number of vertices on each processor.
909  nTotVerts = Vmath::Vsum(totFaces, faceVerts, 1);
910  }
911  else
912  {
913  nTotVerts = 0;
914  }
915 
916  for (i = 0; i < n; ++i)
917  {
918  if (facecounts[i] > 0)
919  {
920  procVerts[i] = Vmath::Vsum(
921  facecounts[i], faceVerts + faceoffset[i], 1);
922  }
923  else
924  {
925  procVerts[i] = 0;
926  }
927  }
928 
929  // vertoffset is defined in the same manner as edgeoffset
930  // beforehand.
931  vertoffset[0] = 0;
932  for (i = 1; i < n; ++i)
933  {
934  vertoffset[i] = vertoffset[i-1] + procVerts[i-1];
935  }
936 
937  // At this point we exchange all vertex IDs, edge IDs and vertex
938  // coordinates for each face. The coordinates are necessary because
939  // we need to calculate relative face orientations between periodic
940  // faces to determined edge and vertex connectivity.
941  Array<OneD, int> vertIds(nTotVerts, 0);
942  Array<OneD, int> edgeIds(nTotVerts, 0);
943  Array<OneD, int> edgeOrt(nTotVerts, 0);
944  Array<OneD, NekDouble> vertX (nTotVerts, 0.0);
945  Array<OneD, NekDouble> vertY (nTotVerts, 0.0);
946  Array<OneD, NekDouble> vertZ (nTotVerts, 0.0);
947 
948  for (cnt = 0, sIt = locFaces.begin();
949  sIt != locFaces.end(); ++sIt)
950  {
951  for (j = 0; j < allVerts[*sIt].size(); ++j)
952  {
953  int vertId = allVerts[*sIt][j];
954  vertIds[vertoffset[p] + cnt ] = vertId;
955  vertX [vertoffset[p] + cnt ] = (*allCoord[*sIt][j])(0);
956  vertY [vertoffset[p] + cnt ] = (*allCoord[*sIt][j])(1);
957  vertZ [vertoffset[p] + cnt ] = (*allCoord[*sIt][j])(2);
958  edgeIds[vertoffset[p] + cnt ] = allEdges [*sIt][j];
959  edgeOrt[vertoffset[p] + cnt++] = allOrient[*sIt][j];
960  }
961  }
962 
963  vComm->AllReduce(vertIds, LibUtilities::ReduceSum);
964  vComm->AllReduce(vertX, LibUtilities::ReduceSum);
965  vComm->AllReduce(vertY, LibUtilities::ReduceSum);
966  vComm->AllReduce(vertZ, LibUtilities::ReduceSum);
967  vComm->AllReduce(edgeIds, LibUtilities::ReduceSum);
968  vComm->AllReduce(edgeOrt, LibUtilities::ReduceSum);
969 
970  // Finally now we have all of this information, we construct maps
971  // which make accessing the information easier. These are
972  // conceptually the same as all* maps at the beginning of the
973  // routine, but now hold information for all periodic vertices.
974  map<int, vector<int> > vertMap;
975  map<int, vector<int> > edgeMap;
976  map<int, SpatialDomains::PointGeomVector> coordMap;
977 
978  // These final two maps are required for determining the relative
979  // orientation of periodic edges. vCoMap associates vertex IDs with
980  // their coordinates, and eIdMap maps an edge ID to the two vertices
981  // which construct it.
982  map<int, SpatialDomains::PointGeomSharedPtr> vCoMap;
983  map<int, pair<int, int> > eIdMap;
984 
985  for (cnt = i = 0; i < totFaces; ++i)
986  {
987  vector<int> edges(faceVerts[i]);
988  vector<int> verts(faceVerts[i]);
989  SpatialDomains::PointGeomVector coord(faceVerts[i]);
990 
991  // Keep track of cnt to enable correct edge vertices to be
992  // inserted into eIdMap.
993  int tmp = cnt;
994  for (j = 0; j < faceVerts[i]; ++j, ++cnt)
995  {
996  edges[j] = edgeIds[cnt];
997  verts[j] = vertIds[cnt];
1000  3, verts[j], vertX[cnt], vertY[cnt], vertZ[cnt]);
1001  vCoMap[vertIds[cnt]] = coord[j];
1002 
1003  // Try to insert edge into the eIdMap to avoid re-inserting.
1004  pair<map<int, pair<int, int> >::iterator, bool> testIns =
1005  eIdMap.insert(make_pair(
1006  edgeIds[cnt],
1007  make_pair(vertIds[tmp+j],
1008  vertIds[tmp+((j+1) % faceVerts[i])])));
1009 
1010  if (testIns.second == false)
1011  {
1012  continue;
1013  }
1014 
1015  // If the edge is reversed with respect to the face, then
1016  // swap the edges so that we have the original ordering of
1017  // the edge in the 3D element. This is necessary to properly
1018  // determine edge orientation.
1019  if ((StdRegions::Orientation)edgeOrt[cnt]
1021  {
1022  swap(testIns.first->second.first,
1023  testIns.first->second.second);
1024  }
1025  }
1026 
1027  vertMap [faceIds[i]] = verts;
1028  edgeMap [faceIds[i]] = edges;
1029  coordMap[faceIds[i]] = coord;
1030  }
1031 
1032  // Go through list of composites and figure out which edges are
1033  // parallel from original ordering in session file. This includes
1034  // composites which are not necessarily on this process.
1035  map<int,int>::iterator cIt, pIt;
1036  map<int,int>::const_iterator oIt;
1037 
1038  // Store temporary map of periodic vertices which will hold all
1039  // periodic vertices on the entire mesh so that doubly periodic
1040  // vertices/edges can be counted properly across partitions. Local
1041  // vertices/edges are copied into m_periodicVerts and
1042  // m_periodicEdges at the end of the function.
1043  PeriodicMap periodicVerts;
1044  PeriodicMap periodicEdges;
1045 
1046  // Construct two maps which determine how vertices and edges of
1047  // faces connect given a specific face orientation. The key of the
1048  // map is the number of vertices in the face, used to determine
1049  // difference between tris and quads.
1050  map<int, map<StdRegions::Orientation, vector<int> > > vmap;
1051  map<int, map<StdRegions::Orientation, vector<int> > > emap;
1052 
1053  map<StdRegions::Orientation, vector<int> > quadVertMap;
1054  quadVertMap[StdRegions::eDir1FwdDir1_Dir2FwdDir2] += 0,1,2,3;
1055  quadVertMap[StdRegions::eDir1FwdDir1_Dir2BwdDir2] += 3,2,1,0;
1056  quadVertMap[StdRegions::eDir1BwdDir1_Dir2FwdDir2] += 1,0,3,2;
1057  quadVertMap[StdRegions::eDir1BwdDir1_Dir2BwdDir2] += 2,3,0,1;
1058  quadVertMap[StdRegions::eDir1FwdDir2_Dir2FwdDir1] += 0,3,2,1;
1059  quadVertMap[StdRegions::eDir1FwdDir2_Dir2BwdDir1] += 1,2,3,0;
1060  quadVertMap[StdRegions::eDir1BwdDir2_Dir2FwdDir1] += 3,0,1,2;
1061  quadVertMap[StdRegions::eDir1BwdDir2_Dir2BwdDir1] += 2,1,0,3;
1062 
1063  map<StdRegions::Orientation, vector<int> > quadEdgeMap;
1064  quadEdgeMap[StdRegions::eDir1FwdDir1_Dir2FwdDir2] += 0,1,2,3;
1065  quadEdgeMap[StdRegions::eDir1FwdDir1_Dir2BwdDir2] += 2,1,0,3;
1066  quadEdgeMap[StdRegions::eDir1BwdDir1_Dir2FwdDir2] += 0,3,2,1;
1067  quadEdgeMap[StdRegions::eDir1BwdDir1_Dir2BwdDir2] += 2,3,0,1;
1068  quadEdgeMap[StdRegions::eDir1FwdDir2_Dir2FwdDir1] += 3,2,1,0;
1069  quadEdgeMap[StdRegions::eDir1FwdDir2_Dir2BwdDir1] += 1,2,3,0;
1070  quadEdgeMap[StdRegions::eDir1BwdDir2_Dir2FwdDir1] += 3,0,1,2;
1071  quadEdgeMap[StdRegions::eDir1BwdDir2_Dir2BwdDir1] += 1,0,3,2;
1072 
1073  map<StdRegions::Orientation, vector<int> > triVertMap;
1074  triVertMap[StdRegions::eDir1FwdDir1_Dir2FwdDir2] += 0,1,2;
1075  triVertMap[StdRegions::eDir1BwdDir1_Dir2FwdDir2] += 1,0,2;
1076 
1077  map<StdRegions::Orientation, vector<int> > triEdgeMap;
1078  triEdgeMap[StdRegions::eDir1FwdDir1_Dir2FwdDir2] += 0,1,2;
1079  triEdgeMap[StdRegions::eDir1BwdDir1_Dir2FwdDir2] += 0,2,1;
1080 
1081  vmap[3] = triVertMap;
1082  vmap[4] = quadVertMap;
1083  emap[3] = triEdgeMap;
1084  emap[4] = quadEdgeMap;
1085 
1086  map<int,int> allCompPairs;
1087 
1088  // Finally we have enough information to populate the periodic
1089  // vertex, edge and face maps. Begin by looping over all pairs of
1090  // periodic composites to determine pairs of periodic faces.
1091  for (cIt = perComps.begin(); cIt != perComps.end(); ++cIt)
1092  {
1094  const int id1 = cIt->first;
1095  const int id2 = cIt->second;
1096  std::string id1s = boost::lexical_cast<string>(id1);
1097  std::string id2s = boost::lexical_cast<string>(id2);
1098 
1099  if (compMap.count(id1) > 0)
1100  {
1101  c[0] = compMap[id1];
1102  }
1103 
1104  if (compMap.count(id2) > 0)
1105  {
1106  c[1] = compMap[id2];
1107  }
1108 
1109  ASSERTL0(c[0] || c[1],
1110  "Neither composite not found on this process!");
1111 
1112  // Loop over composite ordering to construct list of all
1113  // periodic faces, regardless of whether they are on this
1114  // process.
1115  map<int,int> compPairs;
1116 
1117  ASSERTL0(compOrder.count(id1) > 0,
1118  "Unable to find composite "+id1s+" in order map.");
1119  ASSERTL0(compOrder.count(id2) > 0,
1120  "Unable to find composite "+id2s+" in order map.");
1121  ASSERTL0(compOrder[id1].size() == compOrder[id2].size(),
1122  "Periodic composites "+id1s+" and "+id2s+
1123  " should have the same number of elements.");
1124  ASSERTL0(compOrder[id1].size() > 0,
1125  "Periodic composites "+id1s+" and "+id2s+
1126  " are empty!");
1127 
1128  // Look up composite ordering to determine pairs.
1129  for (i = 0; i < compOrder[id1].size(); ++i)
1130  {
1131  int eId1 = compOrder[id1][i];
1132  int eId2 = compOrder[id2][i];
1133 
1134  ASSERTL0(compPairs.count(eId1) == 0,
1135  "Already paired.");
1136 
1137  // Sanity check that the faces are mutually periodic.
1138  if (compPairs.count(eId2) != 0)
1139  {
1140  ASSERTL0(compPairs[eId2] == eId1, "Pairing incorrect");
1141  }
1142  compPairs[eId1] = eId2;
1143  }
1144 
1145  // Now that we have all pairs of periodic faces, loop over the
1146  // ones local to this process and populate face/edge/vertex
1147  // maps.
1148  for (pIt = compPairs.begin(); pIt != compPairs.end(); ++pIt)
1149  {
1150  int ids [2] = {pIt->first, pIt->second};
1151  bool local[2] = {locFaces.count(pIt->first) > 0,
1152  locFaces.count(pIt->second) > 0};
1153 
1154  ASSERTL0(coordMap.count(ids[0]) > 0 &&
1155  coordMap.count(ids[1]) > 0,
1156  "Unable to find face in coordinate map");
1157 
1158  allCompPairs[pIt->first ] = pIt->second;
1159  allCompPairs[pIt->second] = pIt->first;
1160 
1161  // Loop up coordinates of the faces, check they have the
1162  // same number of vertices.
1164  = { coordMap[ids[0]], coordMap[ids[1]] };
1165 
1166  ASSERTL0(tmpVec[0].size() == tmpVec[1].size(),
1167  "Two periodic faces have different number "
1168  "of vertices!");
1169 
1170  // o will store relative orientation of faces. Note that in
1171  // some transpose cases (Dir1FwdDir2_Dir2BwdDir1 and
1172  // Dir1BwdDir1_Dir2FwdDir1) it seems orientation will be
1173  // different going from face1->face2 instead of face2->face1
1174  // (check this).
1176 
1177  // Record periodic faces.
1178  for (i = 0; i < 2; ++i)
1179  {
1180  if (!local[i])
1181  {
1182  continue;
1183  }
1184 
1185  // Reference to the other face.
1186  int other = (i+1) % 2;
1187 
1188  // Calculate relative face orientation.
1189  if (tmpVec[0].size() == 3)
1190  {
1192  tmpVec[i], tmpVec[other]);
1193  }
1194  else
1195  {
1197  tmpVec[i], tmpVec[other]);
1198  }
1199 
1200  // Record face ID, orientation and whether other face is
1201  // local.
1202  PeriodicEntity ent(ids [other], o,
1203  local[other]);
1204  m_periodicFaces[ids[i]].push_back(ent);
1205  }
1206 
1207  int nFaceVerts = vertMap[ids[0]].size();
1208 
1209  // Determine periodic vertices.
1210  for (i = 0; i < 2; ++i)
1211  {
1212  int other = (i+1) % 2;
1213 
1214  // Calculate relative face orientation.
1215  if (tmpVec[0].size() == 3)
1216  {
1218  tmpVec[i], tmpVec[other]);
1219  }
1220  else
1221  {
1223  tmpVec[i], tmpVec[other]);
1224  }
1225 
1226  if (nFaceVerts == 3)
1227  {
1228  ASSERTL0(
1231  "Unsupported face orientation for face "+
1232  boost::lexical_cast<string>(ids[i]));
1233  }
1234 
1235  // Look up vertices for this face.
1236  vector<int> per1 = vertMap[ids[i]];
1237  vector<int> per2 = vertMap[ids[other]];
1238 
1239  // tmpMap will hold the pairs of vertices which are
1240  // periodic.
1241  map<int, pair<int, bool> > tmpMap;
1242  map<int, pair<int, bool> >::iterator mIt;
1243 
1244  // Use vmap to determine which vertices connect given
1245  // the orientation o.
1246  for (j = 0; j < nFaceVerts; ++j)
1247  {
1248  int v = vmap[nFaceVerts][o][j];
1249  tmpMap[per1[j]] = make_pair(
1250  per2[v], locVerts.count(per2[v]) > 0);
1251  }
1252 
1253  // Now loop over tmpMap to associate periodic vertices.
1254  for (mIt = tmpMap.begin(); mIt != tmpMap.end(); ++mIt)
1255  {
1256  PeriodicEntity ent2(mIt->second.first,
1258  mIt->second.second);
1259 
1260  // See if this vertex has been recorded already.
1261  PeriodicMap::iterator perIt = periodicVerts.find(
1262  mIt->first);
1263 
1264  if (perIt == periodicVerts.end())
1265  {
1266  // Vertex is new - just record this entity as
1267  // usual.
1268  periodicVerts[mIt->first].push_back(ent2);
1269  perIt = periodicVerts.find(mIt->first);
1270  }
1271  else
1272  {
1273  // Vertex is known - loop over the vertices
1274  // inside the record and potentially add vertex
1275  // mIt->second to the list.
1276  for (k = 0; k < perIt->second.size(); ++k)
1277  {
1278  if (perIt->second[k].id == mIt->second.first)
1279  {
1280  break;
1281  }
1282  }
1283 
1284  if (k == perIt->second.size())
1285  {
1286  perIt->second.push_back(ent2);
1287  }
1288  }
1289  }
1290  }
1291 
1292  // Determine periodic edges. Logic is the same as above,
1293  // and perhaps should be condensed to avoid replication.
1294  for (i = 0; i < 2; ++i)
1295  {
1296  int other = (i+1) % 2;
1297 
1298  if (tmpVec[0].size() == 3)
1299  {
1301  tmpVec[i], tmpVec[other]);
1302  }
1303  else
1304  {
1306  tmpVec[i], tmpVec[other]);
1307  }
1308 
1309  vector<int> per1 = edgeMap[ids[i]];
1310  vector<int> per2 = edgeMap[ids[other]];
1311 
1312  map<int, pair<int, bool> > tmpMap;
1313  map<int, pair<int, bool> >::iterator mIt;
1314 
1315  for (j = 0; j < nFaceVerts; ++j)
1316  {
1317  int e = emap[nFaceVerts][o][j];
1318  tmpMap[per1[j]] = make_pair(
1319  per2[e], locEdges.count(per2[e]) > 0);
1320  }
1321 
1322  for (mIt = tmpMap.begin(); mIt != tmpMap.end(); ++mIt)
1323  {
1324  // Note we assume orientation of edges is forwards -
1325  // this may be reversed later.
1326  PeriodicEntity ent2(mIt->second.first,
1328  mIt->second.second);
1329  PeriodicMap::iterator perIt = periodicEdges.find(
1330  mIt->first);
1331 
1332  if (perIt == periodicEdges.end())
1333  {
1334  periodicEdges[mIt->first].push_back(ent2);
1335  perIt = periodicEdges.find(mIt->first);
1336  }
1337  else
1338  {
1339  for (k = 0; k < perIt->second.size(); ++k)
1340  {
1341  if (perIt->second[k].id == mIt->second.first)
1342  {
1343  break;
1344  }
1345  }
1346 
1347  if (k == perIt->second.size())
1348  {
1349  perIt->second.push_back(ent2);
1350  }
1351  }
1352  }
1353  }
1354  }
1355  }
1356 
1357  Array<OneD, int> pairSizes(n, 0);
1358  pairSizes[p] = allCompPairs.size();
1359  vComm->AllReduce(pairSizes, LibUtilities::ReduceSum);
1360 
1361  int totPairSizes = Vmath::Vsum(n, pairSizes, 1);
1362 
1363  Array<OneD, int> pairOffsets(n, 0);
1364  pairOffsets[0] = 0;
1365 
1366  for (i = 1; i < n; ++i)
1367  {
1368  pairOffsets[i] = pairOffsets[i-1] + pairSizes[i-1];
1369  }
1370 
1371  Array<OneD, int> first (totPairSizes, 0);
1372  Array<OneD, int> second(totPairSizes, 0);
1373 
1374  cnt = pairOffsets[p];
1375 
1376  for (pIt = allCompPairs.begin(); pIt != allCompPairs.end(); ++pIt)
1377  {
1378  first [cnt ] = pIt->first;
1379  second[cnt++] = pIt->second;
1380  }
1381 
1382  vComm->AllReduce(first, LibUtilities::ReduceSum);
1383  vComm->AllReduce(second, LibUtilities::ReduceSum);
1384 
1385  allCompPairs.clear();
1386 
1387  for(cnt = 0; cnt < totPairSizes; ++cnt)
1388  {
1389  allCompPairs[first[cnt]] = second[cnt];
1390  }
1391 
1392  // Search for periodic vertices and edges which are not
1393  // in a periodic composite but lie in this process. First,
1394  // loop over all information we have from other
1395  // processors.
1396  for (cnt = i = 0; i < totFaces; ++i)
1397  {
1398  int faceId = faceIds[i];
1399 
1400  ASSERTL0(allCompPairs.count(faceId) > 0,
1401  "Unable to find matching periodic face.");
1402 
1403  int perFaceId = allCompPairs[faceId];
1404 
1405  for (j = 0; j < faceVerts[i]; ++j, ++cnt)
1406  {
1407  int vId = vertIds[cnt];
1408 
1409  PeriodicMap::iterator perId = periodicVerts.find(vId);
1410 
1411  if (perId == periodicVerts.end())
1412  {
1413 
1414  // This vertex is not included in the map. Figure out which
1415  // vertex it is supposed to be periodic with. perFaceId is
1416  // the face ID which is periodic with faceId. The logic is
1417  // much the same as the loop above.
1419  = { coordMap[faceId], coordMap[perFaceId] };
1420 
1421  int nFaceVerts = tmpVec[0].size();
1422  StdRegions::Orientation o = nFaceVerts == 3 ?
1424  tmpVec[0], tmpVec[1]) :
1426  tmpVec[0], tmpVec[1]);
1427 
1428  // Use vmap to determine which vertex of the other face
1429  // should be periodic with this one.
1430  int perVertexId = vertMap[perFaceId][vmap[nFaceVerts][o][j]];
1431 
1432 
1433  PeriodicEntity ent(perVertexId,
1435  locVerts.count(perVertexId) > 0);
1436 
1437  periodicVerts[vId].push_back(ent);
1438  }
1439 
1440  int eId = edgeIds[cnt];
1441 
1442  perId = periodicEdges.find(eId);
1443 
1444  if (perId == periodicEdges.end())
1445  {
1446  // This edge is not included in the map. Figure
1447  // out which edge it is supposed to be periodic
1448  // with. perFaceId is the face ID which is
1449  // periodic with faceId. The logic is much the
1450  // same as the loop above.
1452  = { coordMap[faceId], coordMap[perFaceId] };
1453 
1454  int nFaceEdges = tmpVec[0].size();
1455  StdRegions::Orientation o = nFaceEdges == 3 ?
1457  tmpVec[0], tmpVec[1]) :
1459  tmpVec[0], tmpVec[1]);
1460 
1461  // Use emap to determine which edge of the other
1462  // face should be periodic with this one.
1463  int perEdgeId = edgeMap[perFaceId][emap[nFaceEdges][o][j]];
1464 
1465 
1466  PeriodicEntity ent(perEdgeId,
1468  locEdges.count(perEdgeId) > 0);
1469 
1470  periodicEdges[eId].push_back(ent);
1471  }
1472  }
1473  }
1474 
1475  // Finally, we must loop over the periodicVerts and periodicEdges
1476  // map to complete connectivity information.
1477  PeriodicMap::iterator perIt, perIt2;
1478  for (perIt = periodicVerts.begin();
1479  perIt != periodicVerts.end(); ++perIt)
1480  {
1481  // For each vertex that is periodic with this one...
1482  for (i = 0; i < perIt->second.size(); ++i)
1483  {
1484  // Find the vertex in the periodicVerts map...
1485  perIt2 = periodicVerts.find(perIt->second[i].id);
1486  ASSERTL0(perIt2 != periodicVerts.end(),
1487  "Couldn't find periodic vertex.");
1488 
1489  // Now search through this vertex's list and make sure that
1490  // we have a record of any vertices which aren't in the
1491  // original list.
1492  for (j = 0; j < perIt2->second.size(); ++j)
1493  {
1494  if (perIt2->second[j].id == perIt->first)
1495  {
1496  continue;
1497  }
1498 
1499  for (k = 0; k < perIt->second.size(); ++k)
1500  {
1501  if (perIt2->second[j].id == perIt->second[k].id)
1502  {
1503  break;
1504  }
1505  }
1506 
1507  if (k == perIt->second.size())
1508  {
1509  perIt->second.push_back(perIt2->second[j]);
1510  }
1511  }
1512  }
1513  }
1514 
1515  for (perIt = periodicEdges.begin();
1516  perIt != periodicEdges.end(); ++perIt)
1517  {
1518  for (i = 0; i < perIt->second.size(); ++i)
1519  {
1520  perIt2 = periodicEdges.find(perIt->second[i].id);
1521  ASSERTL0(perIt2 != periodicEdges.end(),
1522  "Couldn't find periodic edge.");
1523 
1524  for (j = 0; j < perIt2->second.size(); ++j)
1525  {
1526  if (perIt2->second[j].id == perIt->first)
1527  {
1528  continue;
1529  }
1530 
1531  for (k = 0; k < perIt->second.size(); ++k)
1532  {
1533  if (perIt2->second[j].id == perIt->second[k].id)
1534  {
1535  break;
1536  }
1537  }
1538 
1539  if (k == perIt->second.size())
1540  {
1541  perIt->second.push_back(perIt2->second[j]);
1542  }
1543  }
1544  }
1545  }
1546 
1547  // Loop over periodic edges to determine relative edge orientations.
1548  for (perIt = periodicEdges.begin();
1549  perIt != periodicEdges.end(); perIt++)
1550  {
1551  // Find edge coordinates
1552  map<int, pair<int, int> >::iterator eIt
1553  = eIdMap.find(perIt->first);
1554  SpatialDomains::PointGeom v[2] = {
1555  *vCoMap[eIt->second.first],
1556  *vCoMap[eIt->second.second]
1557  };
1558 
1559  // Loop over each edge, and construct a vector that takes us
1560  // from one vertex to another. Use this to figure out which
1561  // vertex maps to which.
1562  for (i = 0; i < perIt->second.size(); ++i)
1563  {
1564  eIt = eIdMap.find(perIt->second[i].id);
1565 
1566  SpatialDomains::PointGeom w[2] = {
1567  *vCoMap[eIt->second.first],
1568  *vCoMap[eIt->second.second]
1569  };
1570 
1571  NekDouble cx = 0.5*(w[0](0)-v[0](0)+w[1](0)-v[1](0));
1572  NekDouble cy = 0.5*(w[0](1)-v[0](1)+w[1](1)-v[1](1));
1573  NekDouble cz = 0.5*(w[0](2)-v[0](2)+w[1](2)-v[1](2));
1574 
1575  int vMap[2] = {-1,-1};
1576  for (j = 0; j < 2; ++j)
1577  {
1578  NekDouble x = v[j](0);
1579  NekDouble y = v[j](1);
1580  NekDouble z = v[j](2);
1581  for (k = 0; k < 2; ++k)
1582  {
1583  NekDouble x1 = w[k](0)-cx;
1584  NekDouble y1 = w[k](1)-cy;
1585  NekDouble z1 = w[k](2)-cz;
1586 
1587  if (sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y)+(z1-z)*(z1-z))
1588  < 1e-8)
1589  {
1590  vMap[k] = j;
1591  break;
1592  }
1593  }
1594  }
1595 
1596  // Sanity check the map.
1597  ASSERTL0(vMap[0] >= 0 && vMap[1] >= 0,
1598  "Unable to align periodic vertices.");
1599  ASSERTL0((vMap[0] == 0 || vMap[0] == 1) &&
1600  (vMap[1] == 0 || vMap[1] == 1) &&
1601  (vMap[0] != vMap[1]),
1602  "Unable to align periodic vertices.");
1603 
1604  // If 0 -> 0 then edges are aligned already; otherwise
1605  // reverse the orientation.
1606  if (vMap[0] != 0)
1607  {
1608  perIt->second[i].orient = StdRegions::eBackwards;
1609  }
1610  }
1611  }
1612 
1613  // Do one final loop over periodic vertices/edges to remove
1614  // non-local vertices/edges from map.
1615  for (perIt = periodicVerts.begin();
1616  perIt != periodicVerts.end(); ++perIt)
1617  {
1618  if (locVerts.count(perIt->first) > 0)
1619  {
1620  m_periodicVerts.insert(*perIt);
1621  }
1622  }
1623 
1624  for (perIt = periodicEdges.begin();
1625  perIt != periodicEdges.end(); ++perIt)
1626  {
1627  if (locEdges.count(perIt->first) > 0)
1628  {
1629  m_periodicEdges.insert(*perIt);
1630  }
1631  }
1632  }
1633 
1634  bool DisContField3D::IsLeftAdjacentFace(const int n, const int e)
1635  {
1636  set<int>::iterator it;
1638  m_traceMap->GetElmtToTrace()[n][e]->
1639  as<LocalRegions::Expansion2D>();
1640 
1641  int offset = m_trace->GetPhys_Offset(traceEl->GetElmtId());
1642 
1643  bool fwd = true;
1644  if (traceEl->GetLeftAdjacentElementFace () == -1 ||
1645  traceEl->GetRightAdjacentElementFace() == -1)
1646  {
1647  // Boundary edge (1 connected element). Do nothing in
1648  // serial.
1649  it = m_boundaryFaces.find(traceEl->GetElmtId());
1650 
1651  // If the edge does not have a boundary condition set on
1652  // it, then assume it is a partition edge.
1653  if (it == m_boundaryFaces.end())
1654  {
1655  int traceGeomId = traceEl->GetGeom2D()->GetGlobalID();
1657  traceGeomId);
1658 
1659  if (pIt != m_periodicFaces.end() && !pIt->second[0].isLocal)
1660  {
1661  fwd = traceGeomId == min(traceGeomId,pIt->second[0].id);
1662  }
1663  else
1664  {
1665  fwd = m_traceMap->
1666  GetTraceToUniversalMapUnique(offset) >= 0;
1667  }
1668  }
1669  }
1670  else if (traceEl->GetLeftAdjacentElementFace () != -1 &&
1671  traceEl->GetRightAdjacentElementFace() != -1)
1672  {
1673  // Non-boundary edge (2 connected elements).
1674  fwd = dynamic_cast<Nektar::StdRegions::StdExpansion*>
1675  (traceEl->GetLeftAdjacentElementExp().get()) ==
1676  (*m_exp)[n].get();
1677  }
1678  else
1679  {
1680  ASSERTL2(false, "Unconnected trace element!");
1681  }
1682 
1683  return fwd;
1684  }
1685 
1686  /**
1687  * \brief This method extracts the "forward" and "backward" trace
1688  * data from the array \a field and puts the data into output
1689  * vectors \a Fwd and \a Bwd.
1690  *
1691  * We first define the convention which defines "forwards" and
1692  * "backwards". First an association is made between the face of
1693  * each element and its corresponding face in the trace space
1694  * using the mapping #m_traceMap. The element can either be
1695  * left-adjacent or right-adjacent to this trace face (see
1696  * Expansion2D::GetLeftAdjacentElementExp). Boundary faces are
1697  * always left-adjacent since left-adjacency is populated first.
1698  *
1699  * If the element is left-adjacent we extract the face trace data
1700  * from \a field into the forward trace space \a Fwd; otherwise,
1701  * we place it in the backwards trace space \a Bwd. In this way,
1702  * we form a unique set of trace normals since these are always
1703  * extracted from left-adjacent elements.
1704  *
1705  * \param field is a NekDouble array which contains the 3D data
1706  * from which we wish to extract the backward and forward
1707  * orientated trace/face arrays.
1708  *
1709  * \return Updates a NekDouble array \a Fwd and \a Bwd
1710  */
1713  {
1714  v_GetFwdBwdTracePhys(m_phys, Fwd, Bwd);
1715  }
1716 
1718  const Array<OneD, const NekDouble> &field,
1721  {
1722  int n, cnt, npts, e;
1723 
1724  // Zero vectors.
1725  Vmath::Zero(Fwd.num_elements(), Fwd, 1);
1726  Vmath::Zero(Bwd.num_elements(), Bwd, 1);
1727 
1729  GetNLocTracePts());
1730  m_locTraceToTraceMap->LocTracesFromField(field,facevals);
1731  m_locTraceToTraceMap->InterpLocFacesToTrace(0, facevals, Fwd);
1732 
1733  Array<OneD, NekDouble> invals = facevals + m_locTraceToTraceMap->
1734  GetNFwdLocTracePts();
1735  m_locTraceToTraceMap->InterpLocFacesToTrace(1, invals, Bwd);
1736 
1737  // Fill boundary conditions into missing elements
1738  int id1, id2 = 0;
1739  cnt = 0;
1740 
1741  for(n = 0; n < m_bndCondExpansions.num_elements(); ++n)
1742  {
1743  if(m_bndConditions[n]->GetBoundaryConditionType() ==
1745  {
1746  for(e = 0; e < m_bndCondExpansions[n]->GetExpSize(); ++e)
1747  {
1748  npts = m_bndCondExpansions[n]->GetExp(e)->GetTotPoints();
1749  id1 = m_bndCondExpansions[n]->GetPhys_Offset(e);
1750  id2 = m_trace->GetPhys_Offset(
1751  m_traceMap->GetBndCondTraceToGlobalTraceMap(cnt+e));
1752  Vmath::Vcopy(npts,
1753  &(m_bndCondExpansions[n]->GetPhys())[id1], 1,
1754  &Bwd[id2], 1);
1755  }
1756 
1757  cnt += e;
1758  }
1759  else if (m_bndConditions[n]->GetBoundaryConditionType() ==
1761  m_bndConditions[n]->GetBoundaryConditionType() ==
1763  {
1764  for(e = 0; e < m_bndCondExpansions[n]->GetExpSize(); ++e)
1765  {
1766  npts = m_bndCondExpansions[n]->GetExp(e)->GetTotPoints();
1767  id1 = m_bndCondExpansions[n]->GetPhys_Offset(e);
1768  id2 = m_trace->GetPhys_Offset(
1769  m_traceMap->GetBndCondTraceToGlobalTraceMap(cnt+e));
1770 
1771  // Turning this off since we can have non-zero
1772  //Neumann in mixed CG-DG method
1773  //ASSERTL1((m_bndCondExpansions[n]->GetPhys())[id1]
1774  //== 0.0, "method not set up for non-zero
1775  //Neumann " "boundary condition");
1776 
1777  Vmath::Vcopy(npts,&Fwd[id2],1,&Bwd[id2],1);
1778  }
1779 
1780  cnt += e;
1781  }
1782  else
1783  {
1784  ASSERTL0(false, "Method only set up for Dirichlet, Neumann "
1785  "and Robin conditions.");
1786  }
1787  }
1788 
1789  // Copy any periodic boundary conditions.
1790  for (n = 0; n < m_periodicFwdCopy.size(); ++n)
1791  {
1792  Bwd[m_periodicBwdCopy[n]] = Fwd[m_periodicFwdCopy[n]];
1793  }
1794 
1795  // Do parallel exchange for forwards/backwards spaces.
1796  m_traceMap->UniversalTraceAssemble(Fwd);
1797  m_traceMap->UniversalTraceAssemble(Bwd);
1798  }
1799 
1800  const vector<bool> &DisContField3D::v_GetLeftAdjacentFaces(void) const
1801  {
1802  return m_leftAdjacentFaces;
1803  }
1804 
1806  Array<OneD, NekDouble> &outarray)
1807  {
1808  ASSERTL1(m_physState == true,
1809  "Field is not in physical space.");
1810 
1811  v_ExtractTracePhys(m_phys, outarray);
1812  }
1813 
1815  const Array<OneD, const NekDouble> &inarray,
1816  Array<OneD, NekDouble> &outarray)
1817  {
1818 
1819  Vmath::Zero(outarray.num_elements(), outarray, 1);
1820 
1821  Array<OneD, NekDouble> facevals(m_locTraceToTraceMap->GetNFwdLocTracePts());
1822  m_locTraceToTraceMap->FwdLocTracesFromField(inarray,facevals);
1823  m_locTraceToTraceMap->InterpLocFacesToTrace(0,facevals,outarray);
1824 
1825  // gather entries along parallel partitions which have
1826  // only filled in Fwd part on their own partition
1827  m_traceMap->UniversalTraceAssemble(outarray);
1828 
1829  }
1830 
1831  /**
1832  * @brief Add trace contributions into elemental coefficient spaces.
1833  *
1834  * Given some quantity \f$ \vec{Fn} \f$, which conatins this
1835  * routine calculates the integral
1836  *
1837  * \f[
1838  * \int_{\Omega^e} \vec{Fn}, \mathrm{d}S
1839  * \f]
1840  *
1841  * and adds this to the coefficient space provided by outarray.
1842  *
1843  * @see Expansion3D::AddFaceNormBoundaryInt
1844  *
1845  * @param Fn The trace quantities.
1846  * @param outarray Resulting 3D coefficient space.
1847  *
1848  */
1850  const Array<OneD, const NekDouble> &Fn,
1851  Array<OneD, NekDouble> &outarray)
1852  {
1853 
1854  Array<OneD, NekDouble> Fcoeffs(m_trace->GetNcoeffs());
1855  m_trace->IProductWRTBase(Fn, Fcoeffs);
1856 
1857  m_locTraceToTraceMap->AddTraceCoeffsToFieldCoeffs(Fcoeffs,
1858  outarray);
1859  }
1860  /**
1861  * @brief Add trace contributions into elemental coefficient spaces.
1862  *
1863  * Given some quantity \f$ \vec{Fn} \f$, which conatins this
1864  * routine calculates the integral
1865  *
1866  * \f[
1867  * \int_{\Omega^e} \vec{Fn}, \mathrm{d}S
1868  * \f]
1869  *
1870  * and adds this to the coefficient space provided by
1871  * outarray. The value of q is determined from the routine
1872  * IsLeftAdjacentFace() which if true we use Fwd else we use
1873  * Bwd
1874  *
1875  * @see Expansion3D::AddFaceNormBoundaryInt
1876  *
1877  * @param Fwd The trace quantities associated with left (fwd)
1878  * adjancent elmt.
1879  * @param Bwd The trace quantities associated with right (bwd)
1880  * adjacent elet.
1881  * @param outarray Resulting 3D coefficient space.
1882  */
1884  const Array<OneD, const NekDouble> &Fwd,
1885  const Array<OneD, const NekDouble> &Bwd,
1886  Array<OneD, NekDouble> &outarray)
1887  {
1888  Array<OneD, NekDouble> Coeffs(m_trace->GetNcoeffs());
1889 
1890  m_trace->IProductWRTBase(Fwd,Coeffs);
1891  m_locTraceToTraceMap->AddTraceCoeffsToFieldCoeffs(0,Coeffs,outarray);
1892  m_trace->IProductWRTBase(Bwd,Coeffs);
1893  m_locTraceToTraceMap->AddTraceCoeffsToFieldCoeffs(1,Coeffs,outarray);
1894  }
1895 
1896  /**
1897  * @brief Set up a list of elemeent IDs and edge IDs that link to the
1898  * boundary conditions.
1899  */
1901  Array<OneD, int> &ElmtID,
1902  Array<OneD, int> &FaceID)
1903  {
1904  if (m_BCtoElmMap.num_elements() == 0)
1905  {
1906  map<int,int> globalIdMap;
1907  int i, n;
1908  int cnt;
1909  int nbcs = 0;
1910 
1912  boost::dynamic_pointer_cast<SpatialDomains::MeshGraph3D>(
1913  m_graph);
1914 
1915  // Populate global ID map (takes global geometry ID to local
1916  // expansion list ID).
1918  for (i = 0; i < GetExpSize(); ++i)
1919  {
1920  exp3d = (*m_exp)[i]->as<LocalRegions::Expansion3D>();
1921  globalIdMap[exp3d->GetGeom3D()->GetGlobalID()] = i;
1922  }
1923 
1924  // Determine number of boundary condition expansions.
1925  for(i = 0; i < m_bndConditions.num_elements(); ++i)
1926  {
1927  nbcs += m_bndCondExpansions[i]->GetExpSize();
1928  }
1929 
1930  // Initialize arrays
1933 
1935  for(cnt = n = 0; n < m_bndCondExpansions.num_elements(); ++n)
1936  {
1937  for(i = 0; i < m_bndCondExpansions[n]->GetExpSize(); ++i, ++cnt)
1938  {
1939  exp2d = m_bndCondExpansions[n]->GetExp(i)->
1940  as<LocalRegions::Expansion2D>();
1941  // Use face to element map from MeshGraph3D.
1943  graph3D->GetElementsFromFace(exp2d->GetGeom2D());
1944 
1945  m_BCtoElmMap[cnt] = globalIdMap[(*tmp)[0]->
1946  m_Element->GetGlobalID()];
1947  m_BCtoFaceMap[cnt] = (*tmp)[0]->m_FaceIndx;
1948  }
1949  }
1950  }
1951  ElmtID = m_BCtoElmMap;
1952  FaceID = m_BCtoFaceMap;
1953  }
1954 
1956  boost::shared_ptr<ExpList> &result,
1957  const bool DeclareCoeffPhysArrays)
1958  {
1959  int n, cnt, nq;
1960  int offsetOld, offsetNew;
1961  std::vector<unsigned int> eIDs;
1962 
1963  Array<OneD, int> ElmtID,EdgeID;
1964  GetBoundaryToElmtMap(ElmtID,EdgeID);
1965 
1966  // Skip other boundary regions
1967  for (cnt = n = 0; n < i; ++n)
1968  {
1969  cnt += m_bndCondExpansions[n]->GetExpSize();
1970  }
1971 
1972  // Populate eIDs with information from BoundaryToElmtMap
1973  for (n = 0; n < m_bndCondExpansions[i]->GetExpSize(); ++n)
1974  {
1975  eIDs.push_back(ElmtID[cnt+n]);
1976  }
1977 
1978  // Create expansion list
1979  result =
1981  (*this, eIDs, DeclareCoeffPhysArrays);
1982 
1983  // Copy phys and coeffs to new explist
1984  if (DeclareCoeffPhysArrays)
1985  {
1986  Array<OneD, NekDouble> tmp1, tmp2;
1987  for (n = 0; n < result->GetExpSize(); ++n)
1988  {
1989  nq = GetExp(ElmtID[cnt+n])->GetTotPoints();
1990  offsetOld = GetPhys_Offset(ElmtID[cnt+n]);
1991  offsetNew = result->GetPhys_Offset(n);
1992  Vmath::Vcopy(nq, tmp1 = GetPhys()+ offsetOld, 1,
1993  tmp2 = result->UpdatePhys()+ offsetNew, 1);
1994 
1995  nq = GetExp(ElmtID[cnt+n])->GetNcoeffs();
1996  offsetOld = GetCoeff_Offset(ElmtID[cnt+n]);
1997  offsetNew = result->GetCoeff_Offset(n);
1998  Vmath::Vcopy(nq, tmp1 = GetCoeffs()+ offsetOld, 1,
1999  tmp2 = result->UpdateCoeffs()+ offsetNew, 1);
2000  }
2001  }
2002  }
2003 
2004  /**
2005  * @brief Reset this field, so that geometry information can be updated.
2006  */
2008  {
2009  ExpList::v_Reset();
2010 
2011  // Reset boundary condition expansions.
2012  for (int n = 0; n < m_bndCondExpansions.num_elements(); ++n)
2013  {
2014  m_bndCondExpansions[n]->Reset();
2015  }
2016  }
2017 
2018  /**
2019  * Solving Helmholtz Equation in 3D
2020  */
2022  const Array<OneD, const NekDouble> &inarray,
2023  Array<OneD, NekDouble> &outarray,
2024  const FlagList &flags,
2025  const StdRegions::ConstFactorMap &factors,
2026  const StdRegions::VarCoeffMap &varcoeff,
2027  const Array<OneD, const NekDouble> &dirForcing,
2028  const bool PhysSpaceForcing)
2029  {
2030  int i,j,n,cnt,cnt1,nbndry;
2031  int nexp = GetExpSize();
2033 
2035  DNekVec F(m_ncoeffs,f,eWrapper);
2036  Array<OneD,NekDouble> e_f, e_l;
2037 
2038  //----------------------------------
2039  // Setup RHS Inner product
2040  //----------------------------------
2041  if(PhysSpaceForcing)
2042  {
2043  IProductWRTBase(inarray,f);
2044  Vmath::Neg(m_ncoeffs,f,1);
2045  }
2046  else
2047  {
2048  Vmath::Smul(m_ncoeffs,-1.0,inarray,1,f,1);
2049  }
2050 
2051  //----------------------------------
2052  // Solve continuous flux System
2053  //----------------------------------
2054  int GloBndDofs = m_traceMap->GetNumGlobalBndCoeffs();
2055  int NumDirichlet = m_traceMap->GetNumLocalDirBndCoeffs();
2056  int e_ncoeffs,id;
2057 
2058  // Retrieve block matrix of U^e
2060  const DNekScalBlkMatSharedPtr &HDGLamToU = GetBlockMatrix(HDGLamToUKey);
2061 
2062  // Retrieve global trace space storage, \Lambda, from trace expansion
2063  Array<OneD,NekDouble> BndSol = m_trace->UpdateCoeffs();
2064 
2065  // Create trace space forcing, F
2066  Array<OneD,NekDouble> BndRhs(GloBndDofs,0.0);
2067 
2068  // Zero \Lambda
2069  Vmath::Zero(GloBndDofs,BndSol,1);
2070 
2071  // Retrieve number of local trace space coefficients N_{\lambda},
2072  // and set up local elemental trace solution \lambda^e.
2073  int LocBndCoeffs = m_traceMap->GetNumLocalBndCoeffs();
2074  Array<OneD, NekDouble> loc_lambda(LocBndCoeffs);
2075  DNekVec LocLambda(LocBndCoeffs,loc_lambda,eWrapper);
2076 
2077  //----------------------------------
2078  // Evaluate Trace Forcing vector F
2079  // Kirby et al, 2010, P23, Step 5.
2080  //----------------------------------
2081  // Loop over all expansions in the domain
2082  for(cnt = cnt1 = n = 0; n < nexp; ++n)
2083  {
2084  nbndry = (*m_exp)[m_offset_elmt_id[n]]->NumDGBndryCoeffs();
2085 
2086  e_ncoeffs = (*m_exp)[m_offset_elmt_id[n]]->GetNcoeffs();
2087  e_f = f + cnt;
2088  e_l = loc_lambda + cnt1;
2089 
2090  // Local trace space \lambda^e
2091  DNekVec Floc (nbndry, e_l, eWrapper);
2092  // Local forcing f^e
2093  DNekVec ElmtFce (e_ncoeffs, e_f, eWrapper);
2094  // Compute local (U^e)^{\top} f^e
2095  Floc = Transpose(*(HDGLamToU->GetBlock(n,n)))*ElmtFce;
2096 
2097  cnt += e_ncoeffs;
2098  cnt1 += nbndry;
2099  }
2100 
2101  // Assemble local \lambda_e into global \Lambda
2102  m_traceMap->AssembleBnd(loc_lambda,BndRhs);
2103 
2104  // Copy Dirichlet boundary conditions and weak forcing into trace
2105  // space
2106  cnt = 0;
2107  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
2108  {
2109  if(m_bndConditions[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
2110  {
2111  for(j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); ++j)
2112  {
2113  id = m_traceMap->GetBndCondCoeffsToGlobalCoeffsMap(cnt++);
2114  BndSol[id] = m_bndCondExpansions[i]->GetCoeffs()[j];
2115  }
2116  }
2117  else
2118  {
2119  //Add weak boundary condition to trace forcing
2120  for(j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); ++j)
2121  {
2122  id = m_traceMap->GetBndCondCoeffsToGlobalCoeffsMap(cnt++);
2123  BndRhs[id] += m_bndCondExpansions[i]->GetCoeffs()[j];
2124  }
2125  }
2126  }
2127 
2128  //----------------------------------
2129  // Solve trace problem: \Lambda = K^{-1} F
2130  // K is the HybridDGHelmBndLam matrix.
2131  //----------------------------------
2132  if(GloBndDofs - NumDirichlet > 0)
2133  {
2135  m_traceMap,factors,varcoeff);
2137  LinSys->Solve(BndRhs,BndSol,m_traceMap);
2138  }
2139 
2140  //----------------------------------
2141  // Internal element solves
2142  //----------------------------------
2144  const DNekScalBlkMatSharedPtr& InvHDGHelm = GetBlockMatrix(invHDGhelmkey);
2145  DNekVec out(m_ncoeffs,outarray,eWrapper);
2146  Vmath::Zero(m_ncoeffs,outarray,1);
2147 
2148  // get local trace solution from BndSol
2149  m_traceMap->GlobalToLocalBnd(BndSol,loc_lambda);
2150 
2151  // out = u_f + u_lam = (*InvHDGHelm)*f + (LamtoU)*Lam
2152  out = (*InvHDGHelm)*F + (*HDGLamToU)*LocLambda;
2153  }
2154 
2155  /**
2156  * @brief Calculates the result of the multiplication of a global matrix
2157  * of type specified by @a mkey with a vector given by @a inarray.
2158  *
2159  * @param mkey Key representing desired matrix multiplication.
2160  * @param inarray Input vector.
2161  * @param outarray Resulting multiplication.
2162  */
2164  const GlobalMatrixKey &gkey,
2165  const Array<OneD,const NekDouble> &inarray,
2166  Array<OneD, NekDouble> &outarray,
2167  CoeffState coeffstate)
2168  {
2169  int LocBndCoeffs = m_traceMap->GetNumLocalBndCoeffs();
2170  Array<OneD, NekDouble> loc_lambda(LocBndCoeffs);
2171  DNekVec LocLambda(LocBndCoeffs,loc_lambda,eWrapper);
2172  const DNekScalBlkMatSharedPtr& HDGHelm = GetBlockMatrix(gkey);
2173 
2174  m_traceMap->GlobalToLocalBnd(inarray, loc_lambda);
2175  LocLambda = (*HDGHelm) * LocLambda;
2176  m_traceMap->AssembleBnd(loc_lambda,outarray);
2177  }
2178 
2179  /**
2180  * Search through the edge expansions and identify which ones have
2181  * Robin/Mixed type boundary conditions. If find a Robin boundary then
2182  * store the edge id of the boundary condition and the array of points
2183  * of the physical space boundary condition which are hold the boundary
2184  * condition primitive variable coefficient at the quatrature points
2185  *
2186  * \return std map containing the robin boundary condition
2187  * info using a key of the element id
2188  *
2189  * There is a next member to allow for more than one Robin
2190  * boundary condition per element
2191  */
2192  map<int, RobinBCInfoSharedPtr> DisContField3D::v_GetRobinBCInfo(void)
2193  {
2194  int i,cnt;
2195  map<int, RobinBCInfoSharedPtr> returnval;
2196  Array<OneD, int> ElmtID,FaceID;
2197  GetBoundaryToElmtMap(ElmtID,FaceID);
2198 
2199  for(cnt = i = 0; i < m_bndCondExpansions.num_elements(); ++i)
2200  {
2201  MultiRegions::ExpListSharedPtr locExpList;
2202 
2203  if(m_bndConditions[i]->GetBoundaryConditionType() == SpatialDomains::eRobin)
2204  {
2205  int e,elmtid;
2206  Array<OneD, NekDouble> Array_tmp;
2207 
2208  locExpList = m_bndCondExpansions[i];
2209 
2210  int npoints = locExpList->GetNpoints();
2211  Array<OneD, NekDouble> x0(npoints, 0.0);
2212  Array<OneD, NekDouble> x1(npoints, 0.0);
2213  Array<OneD, NekDouble> x2(npoints, 0.0);
2214  Array<OneD, NekDouble> coeffphys(npoints);
2215 
2216  locExpList->GetCoords(x0, x1, x2);
2217 
2218  LibUtilities::Equation coeffeqn =
2219  boost::static_pointer_cast<
2221  (m_bndConditions[i])->m_robinPrimitiveCoeff;
2222 
2223  // evalaute coefficient
2224  coeffeqn.Evaluate(x0, x1, x2, 0.0, coeffphys);
2225 
2226  for(e = 0; e < locExpList->GetExpSize(); ++e)
2227  {
2228  RobinBCInfoSharedPtr rInfo =
2230  ::AllocateSharedPtr(FaceID[cnt+e],
2231  Array_tmp = coeffphys +
2232  locExpList->GetPhys_Offset(e));
2233 
2234  elmtid = ElmtID[cnt+e];
2235  // make link list if necessary
2236  if(returnval.count(elmtid) != 0)
2237  {
2238  rInfo->next = returnval.find(elmtid)->second;
2239  }
2240  returnval[elmtid] = rInfo;
2241  }
2242  }
2243  cnt += m_bndCondExpansions[i]->GetExpSize();
2244  }
2245 
2246  return returnval;
2247  }
2248 
2249  /**
2250  * @brief Evaluate HDG post-processing to increase polynomial order of
2251  * solution.
2252  *
2253  * This function takes the solution (assumed to be one order lower) in
2254  * physical space, and postprocesses at the current polynomial order by
2255  * solving the system:
2256  *
2257  * \f[
2258  * \begin{aligned}
2259  * (\nabla w, \nabla u^*) &= (\nabla w, u), \\
2260  * \langle \nabla u^*, 1 \rangle &= \langle \nabla u, 1 \rangle
2261  * \end{aligned}
2262  * \f]
2263  *
2264  * where \f$ u \f$ corresponds with the current solution as stored
2265  * inside #m_coeffs.
2266  *
2267  * @param outarray The resulting field \f$ u^* \f$.
2268  */
2270  Array<OneD, NekDouble> &outarray)
2271  {
2272  int i,cnt,f,ncoeff_face;
2273  Array<OneD, NekDouble> force, out_tmp,qrhs,qrhs1;
2275  &elmtToTrace = m_traceMap->GetElmtToTrace();
2276 
2277  int eid,nq_elmt, nm_elmt;
2278  int LocBndCoeffs = m_traceMap->GetNumLocalBndCoeffs();
2279  Array<OneD, NekDouble> loc_lambda(LocBndCoeffs), face_lambda;
2280  Array<OneD, NekDouble> tmp_coeffs;
2281  m_traceMap->GlobalToLocalBnd(m_trace->GetCoeffs(),loc_lambda);
2282 
2283  face_lambda = loc_lambda;
2284 
2285  // Calculate Q using standard DG formulation.
2286  for(i = cnt = 0; i < GetExpSize(); ++i)
2287  {
2289  (*m_exp)[i]->as<LocalRegions::Expansion3D>();
2290 
2291  eid = m_offset_elmt_id[i];
2292  nq_elmt = (*m_exp)[eid]->GetTotPoints();
2293  nm_elmt = (*m_exp)[eid]->GetNcoeffs();
2294  qrhs = Array<OneD, NekDouble>(nq_elmt);
2295  qrhs1 = Array<OneD, NekDouble>(nq_elmt);
2296  force = Array<OneD, NekDouble>(2*nm_elmt);
2297  out_tmp = force + nm_elmt;
2299 
2300  int num_points0 = (*m_exp)[eid]->GetBasis(0)->GetNumPoints();
2301  int num_points1 = (*m_exp)[eid]->GetBasis(1)->GetNumPoints();
2302  int num_points2 = (*m_exp)[eid]->GetBasis(2)->GetNumPoints();
2303  int num_modes0 = (*m_exp)[eid]->GetBasis(0)->GetNumModes();
2304  int num_modes1 = (*m_exp)[eid]->GetBasis(1)->GetNumModes();
2305  int num_modes2 = (*m_exp)[eid]->GetBasis(2)->GetNumModes();
2306 
2307  // Probably a better way of setting up lambda than this. Note
2308  // cannot use PutCoeffsInToElmts since lambda space is mapped
2309  // during the solve.
2310  int nFaces = (*m_exp)[eid]->GetNfaces();
2311  Array<OneD, Array<OneD, NekDouble> > faceCoeffs(nFaces);
2312  for(f = 0; f < nFaces; ++f)
2313  {
2314  ncoeff_face = elmtToTrace[eid][f]->GetNcoeffs();
2315  faceCoeffs[f] = Array<OneD, NekDouble>(ncoeff_face);
2316  Vmath::Vcopy(ncoeff_face, face_lambda, 1, faceCoeffs[f], 1);
2317  exp->SetFaceToGeomOrientation(f, faceCoeffs[f]);
2318  face_lambda = face_lambda + ncoeff_face;
2319  }
2320 
2321  //creating orthogonal expansion (checking if we have quads or triangles)
2322  LibUtilities::ShapeType shape = (*m_exp)[eid]->DetShapeType();
2323  switch(shape)
2324  {
2326  {
2330  LibUtilities::BasisKey BkeyH1(LibUtilities::eOrtho_A, num_modes0, PkeyH1);
2331  LibUtilities::BasisKey BkeyH2(LibUtilities::eOrtho_A, num_modes1, PkeyH2);
2332  LibUtilities::BasisKey BkeyH3(LibUtilities::eOrtho_A, num_modes2, PkeyH3);
2333  SpatialDomains::HexGeomSharedPtr hGeom = boost::dynamic_pointer_cast<SpatialDomains::HexGeom>((*m_exp)[eid]->GetGeom());
2334  ppExp = MemoryManager<LocalRegions::HexExp>::AllocateSharedPtr(BkeyH1, BkeyH2, BkeyH3, hGeom);
2335  }
2336  break;
2338  {
2342  LibUtilities::BasisKey BkeyT1(LibUtilities::eOrtho_A, num_modes0, PkeyT1);
2343  LibUtilities::BasisKey BkeyT2(LibUtilities::eOrtho_B, num_modes1, PkeyT2);
2344  LibUtilities::BasisKey BkeyT3(LibUtilities::eOrtho_C, num_modes2, PkeyT3);
2345  SpatialDomains::TetGeomSharedPtr tGeom = boost::dynamic_pointer_cast<SpatialDomains::TetGeom>((*m_exp)[eid]->GetGeom());
2346  ppExp = MemoryManager<LocalRegions::TetExp>::AllocateSharedPtr(BkeyT1, BkeyT2, BkeyT3, tGeom);
2347  }
2348  break;
2349  case LibUtilities::ePrism:
2350  {
2354  LibUtilities::BasisKey BkeyP1(LibUtilities::eOrtho_A, num_modes0, PkeyP1);
2355  LibUtilities::BasisKey BkeyP2(LibUtilities::eOrtho_A, num_modes1, PkeyP2);
2356  LibUtilities::BasisKey BkeyP3(LibUtilities::eOrtho_B, num_modes2, PkeyP3);
2357  SpatialDomains::PrismGeomSharedPtr pGeom = boost::dynamic_pointer_cast<SpatialDomains::PrismGeom>((*m_exp)[eid]->GetGeom());
2358  ppExp = MemoryManager<LocalRegions::PrismExp>::AllocateSharedPtr(BkeyP1, BkeyP2, BkeyP3, pGeom);
2359  }
2360  break;
2361  default:
2362  ASSERTL0(false, "Wrong shape type, HDG postprocessing is not implemented");
2363  };
2364 
2365 
2366  //DGDeriv
2367  // (d/dx w, q_0)
2368  (*m_exp)[eid]->DGDeriv(
2369  0,tmp_coeffs = m_coeffs + m_coeff_offset[eid],
2370  elmtToTrace[eid], faceCoeffs, out_tmp);
2371  (*m_exp)[eid]->BwdTrans(out_tmp,qrhs);
2372  ppExp->IProductWRTDerivBase(0,qrhs,force);
2373 
2374 
2375  // + (d/dy w, q_1)
2376  (*m_exp)[eid]->DGDeriv(
2377  1,tmp_coeffs = m_coeffs + m_coeff_offset[eid],
2378  elmtToTrace[eid], faceCoeffs, out_tmp);
2379  (*m_exp)[eid]->BwdTrans(out_tmp,qrhs);
2380  ppExp->IProductWRTDerivBase(1,qrhs,out_tmp);
2381 
2382  Vmath::Vadd(nm_elmt,force,1,out_tmp,1,force,1);
2383 
2384  // + (d/dz w, q_2)
2385  (*m_exp)[eid]->DGDeriv(
2386  2,tmp_coeffs = m_coeffs + m_coeff_offset[eid],
2387  elmtToTrace[eid], faceCoeffs, out_tmp);
2388  (*m_exp)[eid]->BwdTrans(out_tmp,qrhs);
2389  ppExp->IProductWRTDerivBase(2,qrhs,out_tmp);
2390 
2391  Vmath::Vadd(nm_elmt,force,1,out_tmp,1,force,1);
2392  // determine force[0] = (1,u)
2393  (*m_exp)[eid]->BwdTrans(
2394  tmp_coeffs = m_coeffs + m_coeff_offset[eid],qrhs);
2395  force[0] = (*m_exp)[eid]->Integral(qrhs);
2396 
2397  // multiply by inverse Laplacian matrix
2398  // get matrix inverse
2399  LocalRegions::MatrixKey lapkey(StdRegions::eInvLaplacianWithUnityMean, ppExp->DetShapeType(), *ppExp);
2400  DNekScalMatSharedPtr lapsys = ppExp->GetLocMatrix(lapkey);
2401 
2402  NekVector<NekDouble> in (nm_elmt, force, eWrapper);
2403  NekVector<NekDouble> out(nm_elmt);
2404 
2405  out = (*lapsys)*in;
2406 
2407  // Transforming back to modified basis
2408  Array<OneD, NekDouble> work(nq_elmt);
2409  ppExp->BwdTrans(out.GetPtr(), work);
2410  (*m_exp)[eid]->FwdTrans(work,
2411  tmp_coeffs = outarray + m_coeff_offset[eid]);
2412  }
2413  }
2414 
2415  /**
2416  * \brief This function evaluates the boundary conditions at a certain
2417  * time-level.
2418  *
2419  * Based on the boundary condition \f$g(\boldsymbol{x},t)\f$ evaluated
2420  * at a given time-level \a t, this function transforms the boundary
2421  * conditions onto the coefficients of the (one-dimensional) boundary
2422  * expansion. Depending on the type of boundary conditions, these
2423  * expansion coefficients are calculated in different ways:
2424  * - <b>Dirichlet boundary conditions</b><BR>
2425  * In order to ensure global \f$C^0\f$ continuity of the spectral/hp
2426  * approximation, the Dirichlet boundary conditions are projected onto
2427  * the boundary expansion by means of a modified \f$C^0\f$ continuous
2428  * Galerkin projection. This projection can be viewed as a collocation
2429  * projection at the vertices, followed by an \f$L^2\f$ projection on
2430  * the interior modes of the edges. The resulting coefficients
2431  * \f$\boldsymbol{\hat{u}}^{\mathcal{D}}\f$ will be stored for the
2432  * boundary expansion.
2433  * - <b>Neumann boundary conditions</b>
2434  * In the discrete Galerkin formulation of the problem to be solved,
2435  * the Neumann boundary conditions appear as the set of surface
2436  * integrals: \f[\boldsymbol{\hat{g}}=\int_{\Gamma}
2437  * \phi^e_n(\boldsymbol{x})g(\boldsymbol{x})d(\boldsymbol{x})\quad
2438  * \forall n \f]
2439  * As a result, it are the coefficients \f$\boldsymbol{\hat{g}}\f$
2440  * that will be stored in the boundary expansion
2441  *
2442  * @param time The time at which the boundary conditions
2443  * should be evaluated.
2444  * @param bndCondExpansions List of boundary conditions.
2445  * @param bndConditions Information about the boundary conditions.
2446  */
2448  const NekDouble time,
2449  const std::string varName,
2450  const NekDouble x2_in,
2451  const NekDouble x3_in)
2452  {
2453  int i;
2454  int npoints;
2455  int nbnd = m_bndCondExpansions.num_elements();
2456  MultiRegions::ExpListSharedPtr locExpList;
2457 
2458  for (i = 0; i < nbnd; ++i)
2459  {
2460  if (time == 0.0 || m_bndConditions[i]->IsTimeDependent())
2461  {
2462  locExpList = m_bndCondExpansions[i];
2463  npoints = locExpList->GetNpoints();
2464 
2465  Array<OneD, NekDouble> x0(npoints, 0.0);
2466  Array<OneD, NekDouble> x1(npoints, 0.0);
2467  Array<OneD, NekDouble> x2(npoints, 0.0);
2468  Array<OneD, NekDouble> valuesFile(npoints, 1.0), valuesExp(npoints, 1.0);
2469 
2470  locExpList->GetCoords(x0, x1, x2);
2471 
2472  if (m_bndConditions[i]->GetBoundaryConditionType()
2474  {
2475  SpatialDomains::DirichletBCShPtr bcPtr = boost::static_pointer_cast<
2477  m_bndConditions[i]);
2478  string filebcs = bcPtr->m_filename;
2479  string exprbcs = bcPtr->m_expr;
2480 
2481  if (filebcs != "")
2482  {
2483  ExtractFileBCs(filebcs, bcPtr->m_comm, varName, locExpList);
2484  valuesFile = locExpList->GetPhys();
2485  }
2486 
2487  if (exprbcs != "")
2488  {
2489  LibUtilities::Equation condition = boost::static_pointer_cast<SpatialDomains::
2491  m_bndConditions[i])->m_dirichletCondition;
2492 
2493  condition.Evaluate(x0, x1, x2, time, valuesExp);
2494  }
2495 
2496  Vmath::Vmul(npoints, valuesExp, 1, valuesFile, 1, locExpList->UpdatePhys(), 1);
2497 
2498  locExpList->FwdTrans_BndConstrained(
2499  locExpList->GetPhys(),
2500  locExpList->UpdateCoeffs());
2501  }
2502  else if (m_bndConditions[i]->GetBoundaryConditionType()
2504  {
2505  SpatialDomains::NeumannBCShPtr bcPtr = boost::static_pointer_cast<
2507  m_bndConditions[i]);
2508  string filebcs = bcPtr->m_filename;
2509 
2510  if (filebcs != "")
2511  {
2512  ExtractFileBCs(filebcs, bcPtr->m_comm, varName, locExpList);
2513  }
2514  else
2515  {
2516 
2517  LibUtilities::Equation condition = boost::
2518  static_pointer_cast<SpatialDomains::
2520  m_bndConditions[i])->m_neumannCondition;
2521 
2522  condition.Evaluate(x0, x1, x2, time,
2523  locExpList->UpdatePhys());
2524 
2525  locExpList->IProductWRTBase(locExpList->GetPhys(),
2526  locExpList->UpdateCoeffs());
2527  }
2528  }
2529  else if (m_bndConditions[i]->GetBoundaryConditionType()
2531  {
2532  SpatialDomains::RobinBCShPtr bcPtr = boost::static_pointer_cast<
2534  m_bndConditions[i]);
2535  string filebcs = bcPtr->m_filename;
2536 
2537  if (filebcs != "")
2538  {
2539  ExtractFileBCs(filebcs, bcPtr->m_comm, varName, locExpList);
2540  }
2541  else
2542  {
2543  LibUtilities::Equation condition = boost::
2544  static_pointer_cast<SpatialDomains::
2546  m_bndConditions[i])->m_robinFunction;
2547 
2548  condition.Evaluate(x0, x1, x2, time,
2549  locExpList->UpdatePhys());
2550 
2551  }
2552 
2553  locExpList->IProductWRTBase(locExpList->GetPhys(),
2554  locExpList->UpdateCoeffs());
2555 
2556  }
2557  else
2558  {
2559  ASSERTL0(false, "This type of BC not implemented yet");
2560  }
2561  }
2562  }
2563  }
2564  } // end of namespace
2565 } // end of namespace
GlobalSysSolnType GetGlobalSysSolnType() const
Return the associated solution type.
const DNekScalBlkMatSharedPtr & GetBlockMatrix(const GlobalMatrixKey &gkey)
Definition: ExpList.cpp:890
boost::shared_ptr< MeshGraph3D > MeshGraph3DSharedPtr
Definition: MeshGraph3D.h:224
const Array< OneD, const NekDouble > & GetCoeffs() const
This function returns (a reference to) the array (implemented as m_coeffs) containing all local expa...
Definition: ExpList.h:1946
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
virtual void v_Reset()
Reset geometry information, metrics, matrix managers and geometry information.
Definition: ExpList.cpp:1513
GlobalLinSysSharedPtr GetGlobalBndLinSys(const GlobalLinSysKey &mkey)
boost::shared_ptr< ElementFaceVector > ElementFaceVectorSharedPtr
Definition: MeshGraph.h:138
virtual void v_ExtractTracePhys(Array< OneD, NekDouble > &outarray)
void ExtractFileBCs(const std::string &fileName, LibUtilities::CommSharedPtr comm, const std::string &varName, const boost::shared_ptr< ExpList > locExpList)
Definition: ExpList.cpp:1987
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int GetCoeff_Offset(int n) const
Get the start offset position for a global list of m_coeffs correspoinding to element n...
Definition: ExpList.h:2084
static ExpListSharedPtr NullExpListSharedPtr
Definition: ExpList.h:1485
void EvaluateBoundaryConditions(const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
Definition: ExpList.h:2249
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
std::vector< PointGeomSharedPtr > PointGeomVector
Definition: Geometry3D.h:61
void SetAdjacentElementExp(int face, Expansion3DSharedPtr &f)
Definition: Expansion2D.h:249
bool isLocal
Flag specifying if this entity is local to this partition.
int GetPhys_Offset(int n) const
Get the start offset position for a global list of m_phys correspoinding to element n...
Definition: ExpList.h:2092
bool IsLeftAdjacentFace(const int n, const int e)
const BoundaryConditionCollection & GetBoundaryConditions(void) const
Definition: Conditions.h:248
boost::shared_ptr< RobinBCInfo > RobinBCInfoSharedPtr
SpatialDomains::Geometry3DSharedPtr GetGeom3D() const
Definition: Expansion3D.h:180
virtual void v_GetBndElmtExpansion(int i, boost::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays)
const boost::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2075
std::set< int > m_boundaryFaces
A set storing the global IDs of any boundary faces.
STL namespace.
PeriodicMap m_periodicFaces
A map which identifies pairs of periodic faces.
virtual void v_GetFwdBwdTracePhys(Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
This method extracts the "forward" and "backward" trace data from the array field and puts the data i...
std::map< int, std::vector< unsigned int > > BndRegionOrdering
Definition: MeshPartition.h:54
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:252
void GetBoundaryToElmtMap(Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
Definition: ExpList.h:2302
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
void EvaluateHDGPostProcessing(Array< OneD, NekDouble > &outarray)
Evaluate HDG post-processing to increase polynomial order of solution.
std::map< int, std::vector< unsigned int > > CompositeOrdering
Definition: MeshPartition.h:53
virtual void v_AddFwdBwdTraceIntegral(const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
Add trace contributions into elemental coefficient spaces.
void ApplyGeomInfo()
Apply geometry information to each expansion.
Definition: ExpList.cpp:1500
boost::shared_ptr< NeumannBoundaryCondition > NeumannBCShPtr
Definition: Conditions.h:221
boost::shared_ptr< HexGeom > HexGeomSharedPtr
Definition: HexGeom.h:110
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2054
virtual void v_EvaluateBoundaryConditions(const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
This function evaluates the boundary conditions at a certain time-level.
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
boost::shared_ptr< GlobalLinSys > GenGlobalBndLinSys(const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocTo...
Definition: ExpList.cpp:1270
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
Gauss Radau pinned at x=-1, .
Definition: PointsType.h:59
Principle Orthogonal Functions .
Definition: BasisType.h:47
void FindPeriodicFaces(const SpatialDomains::BoundaryConditions &bcs, const std::string &variable)
Determine the periodic faces, edges and vertices for the given graph.
boost::shared_ptr< DirichletBoundaryCondition > DirichletBCShPtr
Definition: Conditions.h:220
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:1047
virtual std::map< int, RobinBCInfoSharedPtr > v_GetRobinBCInfo()
boost::shared_ptr< Comm > CommSharedPtr
Pointer to a Communicator object.
Definition: Comm.h:55
static StdRegions::Orientation GetFaceOrientation(const QuadGeom &face1, const QuadGeom &face2)
Get the orientation of face1.
Definition: QuadGeom.cpp:254
The base class for all shapes.
Definition: StdExpansion.h:69
std::vector< int > m_periodicFwdCopy
A vector indicating degress of freedom which need to be copied from forwards to backwards space in ca...
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
boost::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Definition: ExpList.h:1036
DisContField3D()
Default constructor.
virtual const std::vector< bool > & v_GetLeftAdjacentFaces(void) const
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:227
boost::shared_ptr< Expansion3D > Expansion3DSharedPtr
Definition: Expansion2D.h:48
LocTraceToTraceMapSharedPtr m_locTraceToTraceMap
Map of local trace (the points at the face of the element) to the trace space discretisation.
int id
Geometry ID of entity.
bool m_physState
The state of the array m_phys.
Definition: ExpList.h:1024
NekDouble Evaluate() const
Definition: Equation.h:102
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
Array< OneD, int > m_offset_elmt_id
Array containing the element id m_offset_elmt_id[n] that the n^th consecutive block of data in m_coef...
Definition: ExpList.h:1058
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:217
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
boost::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
static std::string npts
Definition: InputFld.cpp:43
Principle Orthogonal Functions .
Definition: BasisType.h:48
Principle Orthogonal Functions .
Definition: BasisType.h:46
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
SpatialDomains::MeshGraphSharedPtr m_graph
Mesh associated with this expansion list.
Definition: ExpList.h:972
void GenerateBoundaryConditionExpansion(const SpatialDomains::MeshGraphSharedPtr &graph3D, const SpatialDomains::BoundaryConditions &bcs, const std::string &variable)
virtual void v_GeneralMatrixOp(const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the result of the multiplication of a global matrix of type specified by mkey with a vecto...
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:969
Defines a specification for a set of points.
Definition: Points.h:58
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:396
double NekDouble
void SetUpDG(const std::string="DefaultVar")
Set up all DG member variables and maps.
boost::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
bool SameTypeOfBoundaryConditions(const DisContField3D &In)
Defines a list of flags.
std::map< int, BoundaryConditionMapShPtr > BoundaryConditionCollection
Definition: Conditions.h:226
boost::shared_ptr< ExpList2D > ExpList2DSharedPtr
Shared pointer to an ExpList2D object.
Definition: ExpList2D.h:49
boost::shared_ptr< GeometryVector > Composite
Definition: MeshGraph.h:114
std::map< int, std::vector< PeriodicEntity > > PeriodicMap
Describe a linear system.
std::map< int, Composite > CompositeMap
Definition: MeshGraph.h:115
StdRegions::Orientation orient
Orientation of entity within higher dimensional entity.
StdRegions::MatrixType GetMatrixType() const
Return the matrix type.
Describes a matrix with ordering defined by a local to global map.
const Array< OneD, const NekDouble > & GetPhys() const
This function returns (a reference to) the array (implemented as m_phys) containing the function ev...
Definition: ExpList.h:2045
boost::shared_ptr< Geometry2D > Geometry2DSharedPtr
Definition: Geometry2D.h:59
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
LibUtilities::CommSharedPtr m_comm
Communicator.
Definition: ExpList.h:966
static AssemblyMapSharedPtr NullAssemblyMapSharedPtr
Definition: AssemblyMap.h:55
PeriodicMap m_periodicVerts
A map which identifies groups of periodic vertices.
2D geometry information
Definition: Geometry2D.h:65
virtual void v_GetBoundaryToElmtMap(Array< OneD, int > &ElmtID, Array< OneD, int > &FaceID)
Set up a list of elemeent IDs and edge IDs that link to the boundary conditions.
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:250
virtual void v_Reset()
Reset this field, so that geometry information can be updated.
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Definition: ExpList.h:1649
boost::shared_ptr< PrismGeom > PrismGeomSharedPtr
Definition: PrismGeom.h:109
Gauss Radau pinned at x=-1, .
Definition: PointsType.h:60
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1493
boost::shared_ptr< TetGeom > TetGeomSharedPtr
Definition: TetGeom.h:106
Abstraction of a three-dimensional multi-elemental expansion which is merely a collection of local ex...
Definition: ExpList3D.h:49
static SpatialDomains::BoundaryConditionShPtr GetBoundaryCondition(const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
Definition: ExpList.cpp:3037
boost::shared_ptr< GlobalLinSys > GlobalLinSysSharedPtr
Pointer to a GlobalLinSys object.
Definition: GlobalLinSys.h:52
static StdRegions::Orientation GetFaceOrientation(const TriGeom &face1, const TriGeom &face2)
Definition: TriGeom.cpp:237
virtual void v_HelmSolve(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
const BoundaryRegionCollection & GetBoundaryRegions(void) const
Definition: Conditions.h:238
boost::shared_ptr< BoundaryConditionBase > BoundaryConditionShPtr
Definition: Conditions.h:219
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:737
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
boost::shared_ptr< StdExpansion > StdExpansionSharedPtr
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
boost::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:442
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
Describes the specification for a Basis.
Definition: Basis.h:50
Array< OneD, DataType > & GetPtr()
Definition: NekVector.cpp:230
boost::shared_ptr< RobinBoundaryCondition > RobinBCShPtr
Definition: Conditions.h:222
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:52
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
virtual void v_AddTraceIntegral(const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
Add trace contributions into elemental coefficient spaces.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
PeriodicMap m_periodicEdges
A map which identifies groups of periodic edges.
boost::shared_ptr< Expansion2D > Expansion2DSharedPtr
Definition: Expansion1D.h:49