Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
ExpList1DHomogeneous2D.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File ExpList1DHomogeneous2D.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: An ExpList1D which is homogeneous in 2 directions and so
33 // uses much of the functionality from a ExpList2D and its daughters
34 //
35 ///////////////////////////////////////////////////////////////////////////////
36 
38 
39 using namespace std;
40 
41 namespace Nektar
42 {
43  namespace MultiRegions
44  {
45  // Forward declaration for typedefs
46  ExpList1DHomogeneous2D::ExpList1DHomogeneous2D():
48  {
49  }
50 
51  // Constructor for ExpList1DHomogeneous2D to act as a Explist1D field
53  const LibUtilities::BasisKey &HomoBasis_y,
54  const LibUtilities::BasisKey &HomoBasis_z,
55  const NekDouble lhom_y,
56  const NekDouble lhom_z,
57  const bool useFFT,
58  const bool dealiasing,
59  const Array<OneD, ExpListSharedPtr> &points):
60  ExpListHomogeneous2D(pSession,HomoBasis_y,HomoBasis_z,lhom_y,lhom_z,useFFT,dealiasing)
61  {
62  int n,nel;
63 
64  ASSERTL1(m_ny*m_nz == points.num_elements(),
65  "Size of basis number of points and number of lines are "
66  "not the same");
67 
68  for(n = 0; n < points.num_elements(); ++n)
69  {
70  m_lines[n] = points[n];
71  (*m_exp).push_back(points[n]->GetExp(0));
72  }
73 
74  // Setup Default optimisation information.
75  nel = 1;
78 
79  SetCoeffPhys();
80  }
81 
82  /**
83  * @param In ExpList1DHomogeneous2D object to copy.
84  */
87  {
88  for(int n = 0; n < m_lines.num_elements(); ++n)
89  {
90  m_lines[n] = In.m_lines[n];
91  }
92 
93  SetCoeffPhys();
94  }
95 
96  /**
97  * Destructor
98  */
100  {
101  }
102 
104  {
105  int i,n,cnt;
106  int ncoeffs_per_line = m_lines[0]->GetNcoeffs();
107  int npoints_per_line = m_lines[0]->GetTotPoints();
108 
109  int nyzlines = m_lines.num_elements();
110 
111  // Set total coefficients and points
112  m_ncoeffs = ncoeffs_per_line*nyzlines;
113  m_npoints = npoints_per_line*nyzlines;
114 
117 
118  int nel = m_lines[0]->GetExpSize();
119  m_coeff_offset = Array<OneD,int>(nel*nyzlines);
120  m_phys_offset = Array<OneD,int>(nel*nyzlines);
121  m_offset_elmt_id = Array<OneD,int>(nel*nyzlines);
122  Array<OneD, NekDouble> tmparray;
123 
124  for(cnt = n = 0; n < nyzlines; ++n)
125  {
126  m_lines[n]->SetCoeffsArray(tmparray= m_coeffs + ncoeffs_per_line*n);
127  m_lines[n]->SetPhysArray(tmparray = m_phys + npoints_per_line*n);
128 
129  for(i = 0; i < nel; ++i)
130  {
131  m_coeff_offset[cnt] = m_lines[n]->GetCoeff_Offset(i) + n*ncoeffs_per_line;
132  m_phys_offset[cnt] = m_lines[n]->GetPhys_Offset(i) + n*npoints_per_line;
133  m_offset_elmt_id[cnt++] = m_lines[n]->GetOffset_Elmt_Id(i) + n*nel;
134  }
135  }
136  }
137 
142  {
143  int n,m,j;
144  Array<OneD, NekDouble> tmp_xc;
145  int nylines = m_homogeneousBasis_y->GetNumPoints();
146  int nzlines = m_homogeneousBasis_z->GetNumPoints();
147  int npoints = 1;
148 
149  // Fill x-y-z-direction
152 
153  Array<OneD, NekDouble> x(npoints);
154  Array<OneD, NekDouble> y(nylines);
155  Array<OneD, NekDouble> z(nzlines);
156 
157  Vmath::Smul(nylines,m_lhom_y/2.0,pts_y,1,y,1);
158  Vmath::Sadd(nylines,m_lhom_y/2.0,y,1,y,1);
159 
160  Vmath::Smul(nzlines,m_lhom_z/2.0,pts_z,1,z,1);
161  Vmath::Sadd(nzlines,m_lhom_z/2.0,z,1,z,1);
162 
163  m_lines[0]->GetCoords(x);
164 
165 
166  for(m = 0; m < nzlines; ++m)
167  {
168  for(j = 0; j < nylines; ++j)
169  {
170  for(n = 0; n < npoints; ++n)
171  {
172  Vmath::Fill(1,x[n],tmp_xc = xc0 + n +(j*npoints) + (m*npoints*nylines), 1);
173  Vmath::Fill(1,y[j],tmp_xc = xc1 + n +(j*npoints) + (m*npoints*nylines), 1);
174  Vmath::Fill(1,z[m],tmp_xc = xc2 + n +(j*npoints) + (m*npoints*nylines), 1);
175  }
176  }
177  }
178  }
179 
180  /**
181  * The operation calls the 2D plane coordinates through the
182  * function ExpList#GetCoords and then evaluated the third
183  * coordinate using the member \a m_lhom
184  *
185  * @param coord_0 After calculation, the \f$x_1\f$ coordinate
186  * will be stored in this array.
187  *
188  * @param coord_1 After calculation, the \f$x_2\f$ coordinate
189  * will be stored in this array. This
190  * coordinate might be evaluated using the
191  * predefined value \a m_lhom
192  *
193  * @param coord_2 After calculation, the \f$x_3\f$ coordinate
194  * will be stored in this array. This
195  * coordinate is evaluated using the
196  * predefined value \a m_lhom
197  */
201  {
202  int n,m,j;
203  Array<OneD, NekDouble> tmp_xc;
204  int npoints = 1;
205 
206  int nylines = m_homogeneousBasis_y->GetNumPoints();
207  int nzlines = m_homogeneousBasis_z->GetNumPoints();
208 
209  // Fill z-direction
212 
213  Array<OneD, NekDouble> x(npoints);
214  Array<OneD, NekDouble> y(nylines);
215  Array<OneD, NekDouble> z(nzlines);
216 
217  m_lines[0]->GetCoords(x);
218 
219  Vmath::Smul(nylines,m_lhom_y/2.0,pts_y,1,y,1);
220  Vmath::Sadd(nylines,m_lhom_y/2.0,y,1,y,1);
221 
222  Vmath::Smul(nzlines,m_lhom_z/2.0,pts_z,1,z,1);
223  Vmath::Sadd(nzlines,m_lhom_z/2.0,z,1,z,1);
224 
225  for(m = 0; m < nzlines; ++m)
226  {
227  for(j = 0; j < nylines; ++j)
228  {
229  for(n = 0; n < npoints; ++n)
230  {
231  Vmath::Fill(1,x[n],tmp_xc = xc0 + n +(j*npoints) + (m*npoints*nylines), 1);
232  Vmath::Fill(1,y[j],tmp_xc = xc1 + n +(j*npoints) + (m*npoints*nylines), 1);
233  Vmath::Fill(1,z[m],tmp_xc = xc2 + n +(j*npoints) + (m*npoints*nylines), 1);
234  }
235  }
236  }
237  }
238 
239 
240  /**
241  * Perform the 2D Forward transform of a set of points representing a plane of
242  * boundary conditions which are merely the collection of the boundary conditions
243  * coming from each 1D expansion.
244  * @param inarray The value of the BC on each point of the y-z homogeneous plane.
245  * @param outarray The value of the the coefficient of the 2D Fourier expansion
246  */
247  //void HomoFwdTrans2D(const Array<OneD, const NekDouble> &inarray, Array<OneD, NekDouble> &outarray)
248  //{
249 
250 
251  //}
252 
253  /**
254  * Write Tecplot Files Zone
255  * @param outfile Output file name.
256  * @param expansion Expansion that is considered
257  */
258  void ExpList1DHomogeneous2D::v_WriteTecplotZone(std::ostream &outfile, int expansion)
259  {
260  int i,j;
261 
262  int nquad0 = 1;
263  int nquad1 = m_homogeneousBasis_y->GetNumPoints();
264  int nquad2 = m_homogeneousBasis_z->GetNumPoints();
265 
266  Array<OneD,NekDouble> coords[3];
267 
268  coords[0] = Array<OneD,NekDouble>(3*nquad0*nquad1*nquad2);
269  coords[1] = coords[0] + nquad0*nquad1*nquad2;
270  coords[2] = coords[1] + nquad0*nquad1*nquad2;
271 
272  GetCoords(expansion,coords[0],coords[1],coords[2]);
273 
274  outfile << "Zone, I=" << nquad1 << ", J=" << nquad0*nquad2
275  << ", F=Block" << std::endl;
276 
277  for(j = 0; j < nquad1; ++j)
278  {
279  for(i = 0; i < nquad2*GetCoordim(0)+1; ++i)
280  {
281  outfile << coords[j][i] << " ";
282  }
283  outfile << std::endl;
284  }
285  }
286 
287 
288  void ExpList1DHomogeneous2D::v_WriteVtkPieceHeader(std::ostream &outfile, int expansion, int istrip)
289  {
290  int i,j;
291 
292  int nquad0 = 1;
293  int nquad1 = m_homogeneousBasis_y->GetNumPoints();
294  int nquad2 = m_homogeneousBasis_z->GetNumPoints();
295 
296  int ntot = nquad0*nquad1*nquad2;
297  int ntotminus = (nquad0)*(nquad1-1)*(nquad2-1);
298 
299  Array<OneD,NekDouble> coords[3];
300  coords[0] = Array<OneD,NekDouble>(ntot);
301  coords[1] = Array<OneD,NekDouble>(ntot);
302  coords[2] = Array<OneD,NekDouble>(ntot);
303  GetCoords(expansion,coords[0],coords[1],coords[2]);
304 
305  outfile << " <Piece NumberOfPoints=\""
306  << ntot << "\" NumberOfCells=\""
307  << ntotminus << "\">" << endl;
308  outfile << " <Points>" << endl;
309  outfile << " <DataArray type=\"Float32\" "
310  << "NumberOfComponents=\"3\" format=\"ascii\">" << endl;
311  outfile << " ";
312  for (i = 0; i < ntot; ++i)
313  {
314  for (j = 0; j < 3; ++j)
315  {
316  outfile << coords[j][i] << " ";
317  }
318  outfile << endl;
319  }
320  outfile << endl;
321  outfile << " </DataArray>" << endl;
322  outfile << " </Points>" << endl;
323  outfile << " <Cells>" << endl;
324  outfile << " <DataArray type=\"Int32\" "
325  << "Name=\"connectivity\" format=\"ascii\">" << endl;
326  for (i = 0; i < nquad0; ++i)
327  {
328  for (j = 0; j < nquad1-1; ++j)
329  {
330  outfile << j*nquad0 + i << " "
331  << j*nquad0 + i + 1 << " "
332  << (j+1)*nquad0 + i + 1 << " "
333  << (j+1)*nquad0 + i << endl;
334  }
335  }
336  outfile << endl;
337  outfile << " </DataArray>" << endl;
338  outfile << " <DataArray type=\"Int32\" "
339  << "Name=\"offsets\" format=\"ascii\">" << endl;
340  for (i = 0; i < ntotminus; ++i)
341  {
342  outfile << i*4+4 << " ";
343  }
344  outfile << endl;
345  outfile << " </DataArray>" << endl;
346  outfile << " <DataArray type=\"UInt8\" "
347  << "Name=\"types\" format=\"ascii\">" << endl;
348  for (i = 0; i < ntotminus; ++i)
349  {
350  outfile << "9 ";
351  }
352  outfile << endl;
353  outfile << " </DataArray>" << endl;
354  outfile << " </Cells>" << endl;
355  outfile << " <PointData>" << endl;
356  }
357 
358 
359  } //end of namespace
360 } //end of namespace
361 
362 
363 /**
364 * $Log: v $
365 *
366 **/
367 
Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expa...
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1060
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void SetCoeffPhys(void)
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
const boost::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2075
void GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
This function calculates the coordinates of all the elemental quadrature points . ...
STL namespace.
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
NekDouble m_lhom_z
Width of homogeneous direction z.
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:1047
Abstraction of a one-dimensional multi-elemental expansion which is merely a collection of local expa...
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
virtual void v_WriteVtkPieceHeader(std::ostream &outfile, int expansion, int istrip)
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1050
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
Array< OneD, int > m_offset_elmt_id
Array containing the element id m_offset_elmt_id[n] that the n^th consecutive block of data in m_coef...
Definition: ExpList.h:1058
NekDouble m_lhom_y
Width of homogeneous direction y.
double NekDouble
virtual void v_GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2)
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:315
int m_ny
Number of modes = number of poitns in y direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
int m_nz
Number of modes = number of poitns in z direction.
virtual void v_WriteTecplotZone(std::ostream &outfile, int expansion)
int GetCoordim(int eid)
This function returns the dimension of the coordinates of the element eid.
Definition: ExpList.h:1906
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
Describes the specification for a Basis.
Definition: Basis.h:50