47 namespace MultiRegions
50 ExpListHomogeneous1D::ExpListHomogeneous1D():
64 m_dealiasing(dealiasing)
71 m_comm->GetColumnComm()->GetColumnComm() :
76 "HomModesZ should be a multiple of npz.");
86 "HomModesZ/npz should be an even integer.");
114 ASSERTL0(
false,
"Dealiasing available just in combination "
126 m_transposition(In.m_transposition),
127 m_StripZcomm(In.m_StripZcomm),
128 m_useFFT(In.m_useFFT),
131 m_tmpOUT(In.m_tmpOUT),
132 m_homogeneousBasis(In.m_homogeneousBasis),
134 m_homogeneous1DBlockMat(In.m_homogeneous1DBlockMat),
135 m_dealiasing(In.m_dealiasing),
136 m_padsize(In.m_padsize)
142 const std::vector<unsigned int> &eIDs):
144 m_transposition(In.m_transposition),
145 m_useFFT(In.m_useFFT),
148 m_tmpOUT(In.m_tmpOUT),
149 m_homogeneousBasis(In.m_homogeneousBasis),
152 m_dealiasing(In.m_dealiasing),
153 m_padsize(In.m_padsize)
197 int num_dofs = inarray1.num_elements();
215 int num_points_per_plane = num_dofs/
m_planes.num_elements();
217 if(!
m_session->DefinesSolverInfo(
"HomoStrip"))
219 num_proc =
m_comm->GetColumnComm()->GetSize();
225 int num_dfts_per_proc = num_points_per_plane / num_proc
226 + (num_points_per_plane % num_proc > 0);
244 for(
int i = 0 ; i < num_dfts_per_proc ; i++)
248 Vmath::Vcopy(N, &(ShufV1[i*N]), 1, &(ShufV1_PAD_coef[0]), 1);
249 Vmath::Vcopy(N, &(ShufV2[i*N]), 1, &(ShufV2_PAD_coef[0]), 1);
252 m_FFT_deal->FFTBwdTrans(ShufV1_PAD_coef, ShufV1_PAD_phys);
253 m_FFT_deal->FFTBwdTrans(ShufV2_PAD_coef, ShufV2_PAD_phys);
259 ShufV1V2_PAD_phys, 1);
263 m_FFT_deal->FFTFwdTrans(ShufV1V2_PAD_phys, ShufV1V2_PAD_coef);
268 &(ShufV1V2[i*N]), 1);
300 int ndim = inarray1.num_elements();
301 ASSERTL1( inarray2.num_elements() % ndim == 0,
302 "Wrong dimensions for DealiasedDotProd.");
303 int nvec = inarray2.num_elements() / ndim;
305 int num_dofs = inarray1[0].num_elements();
308 int num_points_per_plane = num_dofs/
m_planes.num_elements();
310 if(!
m_session->DefinesSolverInfo(
"HomoStrip"))
312 num_proc =
m_comm->GetColumnComm()->GetSize();
318 int num_dfts_per_proc = num_points_per_plane / num_proc
319 + (num_points_per_plane % num_proc > 0);
326 for (
int i = 0; i < ndim; i++)
330 for (
int i = 0; i < ndim*nvec; i++)
337 for (
int i = 0; i < ndim; i++)
342 for (
int i = 0; i < ndim*nvec; i++)
353 for (
int i = 0; i < ndim; i++)
356 (num_dfts_per_proc*N,0.0);
364 for (
int i = 0; i < ndim*nvec; i++)
367 (num_dfts_per_proc*N,0.0);
375 for (
int i = 0; i < nvec; i++)
378 (num_dfts_per_proc*N,0.0);
382 for (
int i = 0; i < ndim; i++)
387 for (
int i = 0; i < ndim*nvec; i++)
394 for(
int i = 0 ; i < num_dfts_per_proc ; i++)
396 for (
int j = 0; j < ndim; j++)
401 &(ShufV1_PAD_coef[0]), 1);
403 m_FFT_deal->FFTBwdTrans(ShufV1_PAD_coef, ShufV1_PAD_phys[j]);
405 for (
int j = 0; j < ndim*nvec; j++)
408 &(ShufV2_PAD_coef[0]), 1);
409 m_FFT_deal->FFTBwdTrans(ShufV2_PAD_coef, ShufV2_PAD_phys[j]);
414 for (
int j = 0; j < nvec; j++)
417 for (
int k = 0; k < ndim; k++)
420 ShufV2_PAD_phys[j*ndim+k], 1,
421 ShufV1V2_PAD_phys, 1,
422 ShufV1V2_PAD_phys, 1);
426 m_FFT_deal->FFTFwdTrans(ShufV1V2_PAD_phys, ShufV1V2_PAD_coef);
430 &(ShufV1V2[j][i*N]), 1);
437 for (
int j = 0; j < nvec; j++)
447 for (
int j = 0; j < nvec; j++)
461 int cnt = 0, cnt1 = 0;
464 for(
int n = 0; n <
m_planes.num_elements(); ++n)
466 m_planes[n]->FwdTrans(inarray+cnt, tmparray = outarray + cnt1,
483 int cnt = 0, cnt1 = 0;
487 for(
int n = 0; n <
m_planes.num_elements(); ++n)
489 m_planes[n]->FwdTrans_IterPerExp(inarray+cnt, tmparray = outarray + cnt1);
504 int cnt = 0, cnt1 = 0;
507 for(
int n = 0; n <
m_planes.num_elements(); ++n)
509 m_planes[n]->BwdTrans(inarray+cnt, tmparray = outarray + cnt1,
512 cnt1 +=
m_planes[n]->GetTotPoints();
525 int cnt = 0, cnt1 = 0;
528 for(
int n = 0; n <
m_planes.num_elements(); ++n)
530 m_planes[n]->BwdTrans_IterPerExp(inarray+cnt, tmparray = outarray + cnt1);
533 cnt1 +=
m_planes[n]->GetTotPoints();
546 int cnt = 0, cnt1 = 0;
559 for(
int n = 0; n <
m_planes.num_elements(); ++n)
561 m_planes[n]->IProductWRTBase(tmpIn+cnt, tmparray = outarray + cnt1,coeffstate);
573 int cnt = 0, cnt1 = 0;
586 for(
int n = 0; n <
m_planes.num_elements(); ++n)
588 m_planes[n]->IProductWRTBase_IterPerExp(tmpIn+cnt, tmparray = outarray + cnt1);
608 num_dofs = inarray.num_elements();
612 num_dofs = outarray.num_elements();
617 int num_points_per_plane = num_dofs/
m_planes.num_elements();
618 int num_dfts_per_proc;
619 if(!
m_session->DefinesSolverInfo(
"HomoStrip"))
621 int nP =
m_comm->GetColumnComm()->GetSize();
622 num_dfts_per_proc = num_points_per_plane / nP
623 + (num_points_per_plane % nP > 0);
628 num_dfts_per_proc = num_points_per_plane / nP
629 + (num_points_per_plane % nP > 0);
647 for(
int i = 0 ; i < num_dfts_per_proc ; i++)
654 for(
int i = 0 ; i < num_dfts_per_proc ; i++)
667 fft_out,1,outarray,1);
697 int nrows = blkmat->GetRows();
698 int ncols = blkmat->GetColumns();
742 return matrixIter->second;
752 int num_trans_per_proc = 0;
761 n_exp =
m_planes[0]->GetTotPoints();
764 num_trans_per_proc = n_exp/
m_comm->GetColumnComm()->GetSize() + (n_exp%
m_comm->GetColumnComm()->GetSize() > 0);
792 StdPoint.DetShapeType(),
795 loc_mat = StdPoint.GetStdMatrix(matkey);
800 StdPoint.DetShapeType(),
803 loc_mat = StdPoint.GetStdMatrix(matkey);
814 StdSeg.DetShapeType(),
817 loc_mat = StdSeg.GetStdMatrix(matkey);
822 StdSeg.DetShapeType(),
825 loc_mat = StdSeg.GetStdMatrix(matkey);
831 for(
int i = 0; i < num_trans_per_proc; ++i)
833 BlkMatrix->SetBlock(i,i,loc_mat);
841 std::vector<LibUtilities::FieldDefinitionsSharedPtr> returnval;
846 std::vector<NekDouble> HomoLen;
847 HomoLen.push_back(
m_lhom);
849 std::vector<unsigned int> StripsIDs;
852 m_session->MatchSolverInfo(
"HomoStrip",
"True",strips,
false);
858 std::vector<unsigned int> PlanesIDs;
868 for(
int i = 0; i <
m_planes.num_elements(); i++)
873 m_planes[0]->GeneralGetFieldDefinitions(returnval, 1, HomoBasis,
874 HomoLen, strips, StripsIDs, PlanesIDs);
883 std::vector<NekDouble> HomoLen;
884 HomoLen.push_back(
m_lhom);
886 std::vector<unsigned int> StripsIDs;
889 m_session->MatchSolverInfo(
"HomoStrip",
"True",strips,
false);
895 std::vector<unsigned int> PlanesIDs;
903 for(
int i = 0; i <
m_planes.num_elements(); i++)
909 m_planes[0]->GeneralGetFieldDefinitions(fielddef, 1, HomoBasis,
910 HomoLen, strips, StripsIDs, PlanesIDs);
923 int ncoeffs_per_plane =
m_planes[0]->GetNcoeffs();
929 for(i = 0; i <
m_planes[0]->GetExpSize(); ++i)
935 for(i = 0; i < fielddef->m_elementIDs.size(); ++i)
938 int datalen = (*m_exp)[eid]->GetNcoeffs();
940 for(n = 0; n <
m_planes.num_elements(); ++n)
942 fielddata.insert(fielddata.end(),&coeffs[
m_coeff_offset[eid]+n*ncoeffs_per_plane],&coeffs[m_coeff_offset[eid]+n*ncoeffs_per_plane]+datalen);
955 std::vector<NekDouble> &fielddata,
962 int datalen = fielddata.size()/fielddef->m_fields.size();
963 std::vector<unsigned int> fieldDefHomoZids;
967 for(i = 0; i < fielddef->m_fields.size(); ++i)
969 if(fielddef->m_fields[i] == field)
976 if(i == fielddef->m_fields.size())
978 cout <<
"Field "<< field<<
"not found in data file. " << endl;
983 int modes_offset = 0;
984 int planes_offset = 0;
992 for (i = 0; i <
m_planes.num_elements(); ++i)
997 for (i = 0; i <
m_planes[0]->GetExpSize(); ++i)
1003 if(fielddef->m_numHomogeneousDir)
1005 nzmodes = fielddef->m_homogeneousZIDs.size();
1006 fieldDefHomoZids = fielddef->m_homogeneousZIDs;
1011 fieldDefHomoZids.push_back(0);
1015 int ncoeffs_per_plane =
m_planes[0]->GetNcoeffs();
1017 for(i = 0; i < fielddef->m_elementIDs.size(); ++i)
1019 if(fielddef->m_uniOrder ==
true)
1025 fielddef->m_numModes,
1034 offset += datalen*nzmodes;
1035 modes_offset += (*m_exp)[0]->GetNumBases() +
1036 fielddef->m_numHomogeneousDir;
1040 int eid = it->second;
1043 for(n = 0; n < nzmodes; ++n, offset += datalen)
1054 planes_offset = it->second;
1055 if(datalen == (*
m_exp)[eid]->GetNcoeffs())
1061 (*m_exp)[eid]->ExtractDataToCoeffs(&fielddata[offset], fielddef->m_numModes,modes_offset,&coeffs[
m_coeff_offset[eid] + planes_offset*ncoeffs_per_plane], fielddef->m_basis);
1064 modes_offset += (*m_exp)[0]->GetNumBases() + fielddef->m_numHomogeneousDir;
1074 int fromNcoeffs_per_plane = fromExpList->GetPlane(0)->GetNcoeffs();
1075 int toNcoeffs_per_plane =
m_planes[0]->GetNcoeffs();
1078 for(i = 0; i <
m_planes.num_elements(); ++i)
1080 m_planes[i]->ExtractCoeffsToCoeffs(fromExpList->GetPlane(i),fromcoeffs_tmp = fromCoeffs + fromNcoeffs_per_plane*i, tocoeffs_tmp = toCoeffs + toNcoeffs_per_plane*i);
1090 m_planes[0]->WriteVtkPieceData(outfile, expansion, var);
1095 int nq = (*m_exp)[expansion]->GetTotPoints();
1096 int npoints_per_plane =
m_planes[0]->GetTotPoints();
1099 int outputExtraPlane = 0;
1105 outputExtraPlane = 1;
1116 int fromRank = (rank+1) % size;
1117 int toRank = (rank == 0) ? size-1 : rank-1;
1123 fromRank, extraPlane);
1128 outfile <<
" <DataArray type=\"Float64\" Name=\""
1129 << var <<
"\">" << endl;
1131 for (
int n = 0; n <
m_planes.num_elements(); ++n)
1134 for(i = 0; i < nq; ++i)
1139 if (outputExtraPlane)
1141 for(i = 0; i < nq; ++i)
1144 0 : extraPlane[i]) <<
" ";
1148 outfile <<
" </DataArray>" << endl;
1156 cnt1 =
m_planes[0]->Get1DScaledTotPoints(scale);
1158 ASSERTL1(
m_planes.num_elements()*cnt1 <= outarray.num_elements(),
"size of outarray does not match internal estimage");
1161 for(
int i = 0; i <
m_planes.num_elements(); i++)
1164 m_planes[i]->PhysInterp1DScaled(scale,inarray+i*cnt,
1165 tmparray = outarray+i*cnt1);
1174 cnt =
m_planes[0]->Get1DScaledTotPoints(scale);
1175 cnt1 =
m_planes[0]->GetTotPoints();
1177 ASSERTL1(
m_planes.num_elements()*cnt <= inarray.num_elements(),
"size of outarray does not match internal estimage");
1180 for(
int i = 0; i <
m_planes.num_elements(); i++)
1182 m_planes[i]->PhysGalerkinProjection1DScaled(scale,inarray+i*cnt,
1183 tmparray = outarray+i*cnt1);
1192 int nT_pts = inarray.num_elements();
1193 int nP_pts = nT_pts/
m_planes.num_elements();
1201 for(
int i = 0; i <
m_planes.num_elements(); i++)
1203 m_planes[i]->PhysDeriv(inarray + i*nP_pts ,tmp2 = out_d0 + i*nP_pts , tmp3 = out_d1 + i*nP_pts );
1213 temparray = inarray;
1240 for(
int i = 0; i <
m_planes.num_elements(); i++)
1244 Vmath::Smul(nP_pts,beta,tmp1 = temparray + i*nP_pts,1,tmp2 = outarray + (i-
int(sign))*nP_pts,1);
1261 if(!
m_session->DefinesSolverInfo(
"HomoStrip"))
1264 "Parallelisation in the homogeneous direction "
1265 "implemented just for Fourier basis");
1270 "Parallelisation in the homogeneous direction "
1271 "implemented just for Fourier basis");
1276 ASSERTL0(
false,
"Semi-phyisical time-stepping not "
1277 "implemented yet for non-Fourier "
1286 for(
int i = 0; i < nP_pts; i++)
1288 StdSeg.PhysDeriv(temparray + i*
m_planes.num_elements(), tmp2 = outarray + i*
m_planes.num_elements());
1303 int nT_pts = inarray.num_elements();
1304 int nP_pts = nT_pts/
m_planes.num_elements();
1315 for(
int i=0; i <
m_planes.num_elements(); i++)
1317 m_planes[i]->PhysDeriv(edir, inarray + i*nP_pts ,tmp2 = out_d + i*nP_pts);
1327 temparray = inarray;
1353 for(
int i = 0; i <
m_planes.num_elements(); i++)
1357 Vmath::Smul(nP_pts,beta,tmp1 = temparray + i*nP_pts,1,tmp2 = outarray + (i-
int(sign))*nP_pts,1);
1373 if(!
m_session->DefinesSolverInfo(
"HomoStrip"))
1376 "Parallelisation in the homogeneous direction "
1377 "implemented just for Fourier basis");
1382 "Parallelisation in the homogeneous direction "
1383 "implemented just for Fourier basis");
1388 ASSERTL0(
false,
"Semi-phyisical time-stepping not implemented yet for non-Fourier basis");
1396 for(
int i = 0; i < nP_pts; i++)
1398 StdSeg.PhysDeriv(temparray + i*
m_planes.num_elements(), tmp2 = outarray + i*
m_planes.num_elements());
Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expa...
void HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
Homo1DBlockMatrixMapShPtr m_homogeneous1DBlockMat
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
#define ASSERTL0(condition, msg)
DNekBlkMatSharedPtr GetHomogeneous1DBlockMatrix(Homogeneous1DMatType mattype, CoeffState coeffstate=eLocal) const
virtual void v_PhysGalerkinProjection1DScaled(const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
boost::shared_ptr< Transposition > TranspositionSharedPtr
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
static Array< OneD, NekDouble > NullNekDouble1DArray
boost::unordered_map< int, int > m_elmtToExpId
Mapping from geometry ID of element to index inside m_exp.
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
#define sign(a, b)
return the sign(b)*a
LibUtilities::TranspositionSharedPtr m_transposition
virtual void v_WriteVtkPieceData(std::ostream &outfile, int expansion, std::string var)
virtual void v_PhysInterp1DScaled(const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
virtual void v_ExtractCoeffsToCoeffs(const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
boost::shared_ptr< FieldDefinitions > FieldDefinitionsSharedPtr
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
LibUtilities::NektarFFTSharedPtr m_FFT_deal
static BasisSharedPtr NullBasisSharedPtr
Array< OneD, NekDouble > m_tmpOUT
NekDouble m_lhom
Width of homogeneous direction.
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
virtual void v_HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
boost::shared_ptr< DNekMat > DNekMatSharedPtr
NektarFFTFactory & GetNektarFFTFactory()
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
virtual LibUtilities::TranspositionSharedPtr v_GetTransposition(void)
int GetNumberOfCoefficients(ShapeType shape, std::vector< unsigned int > &modes, int offset)
virtual void v_AppendFieldData(LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
BasisManagerT & BasisManager(void)
Class representing a segment element in reference space.
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
LibUtilities::BasisSharedPtr m_homogeneousBasis
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
Base class for all multi-elemental spectral/hp expansions.
boost::unordered_map< int, int > m_zIdToPlane
1D Evenly-spaced points using Fourier Fit
static const NekDouble kNekZeroTol
Fourier Modified expansions with just the real part of the first mode .
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
boost::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
virtual void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
virtual void v_BwdTrans_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
LibUtilities::SessionReaderSharedPtr m_session
Session.
Array< OneD, ExpListSharedPtr > m_planes
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
virtual void v_FwdTrans_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
ExpListHomogeneous1D()
Default constructor.
Array< OneD, NekDouble > m_tmpIN
Fourier Modified expansions with just the imaginary part of the first mode .
virtual Array< OneD, const unsigned int > v_GetZIDs(void)
virtual void v_DealiasedDotProd(const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
virtual void v_ExtractDataToCoeffs(LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
Extract data from raw field data into expansion list.
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
virtual void v_DealiasedProd(const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
LibUtilities::CommSharedPtr m_comm
Communicator.
void Homogeneous1DTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool IsForwards, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
virtual std::vector< LibUtilities::FieldDefinitionsSharedPtr > v_GetFieldDefinitions(void)
DNekBlkMatSharedPtr GenHomogeneous1DBlockMatrix(Homogeneous1DMatType mattype, CoeffState coeffstate=eLocal) const
virtual void v_IProductWRTBase_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Fourier ModifiedExpansion with just the first mode .
virtual ~ExpListHomogeneous1D()
Destructor.
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
LibUtilities::CommSharedPtr m_StripZcomm
bool m_useFFT
FFT variables.
static const BasisKey NullBasisKey(eNoBasisType, 0, NullPointsKey)
Defines a null basis with no type or points.
std::map< Homogeneous1DMatType, DNekBlkMatSharedPtr > Homo1DBlockMatrixMap
A map between homo matrix keys and their associated block matrices.
virtual NekDouble v_GetHomoLen(void)
void Zero(int n, T *x, const int incx)
Zero vector.
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
Describes the specification for a Basis.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
LibUtilities::NektarFFTSharedPtr m_FFT