Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
ProcessVorticity.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessVorticity.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Computes vorticity field.
33 //
34 ////////////////////////////////////////////////////////////////////////////////
35 
36 #include <iostream>
37 #include <string>
38 using namespace std;
39 
40 #include "ProcessMapping.h"
41 #include "ProcessVorticity.h"
42 #include <GlobalMapping/Mapping.h>
43 
46 
47 namespace Nektar
48 {
49 namespace FieldUtils
50 {
51 
52 ModuleKey ProcessVorticity::className =
54  ModuleKey(eProcessModule, "vorticity"),
55  ProcessVorticity::create,
56  "Computes vorticity field.");
57 
58 ProcessVorticity::ProcessVorticity(FieldSharedPtr f) : ProcessModule(f)
59 {
60 }
61 
63 {
64 }
65 
66 void ProcessVorticity::Process(po::variables_map &vm)
67 {
68  if (m_f->m_verbose)
69  {
70  if (m_f->m_comm->TreatAsRankZero())
71  {
72  cout << "ProcessVorticity: Calculating vorticity..." << endl;
73  }
74  }
75 
76  int i, j, s;
77  int expdim = m_f->m_graph->GetMeshDimension();
78  int spacedim = expdim;
79  if ((m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
80  (m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
81  {
82  spacedim = 3;
83  }
84  int nfields = m_f->m_fielddef[0]->m_fields.size();
85  if (spacedim == 1)
86  {
87  ASSERTL0(false, "Error: Vorticity for a 1D problem cannot "
88  "be computed")
89  }
90  int addfields = (spacedim == 2) ? 1 : 3;
91 
92  int npoints = m_f->m_exp[0]->GetNpoints();
93  Array<OneD, Array<OneD, NekDouble> > grad(spacedim * spacedim);
94  Array<OneD, Array<OneD, NekDouble> > outfield(addfields);
95 
96  int nstrips;
97 
98  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
99 
100  m_f->m_exp.resize(nfields * nstrips);
101 
102  for (i = 0; i < spacedim * spacedim; ++i)
103  {
104  grad[i] = Array<OneD, NekDouble>(npoints);
105  }
106 
107  for (i = 0; i < addfields; ++i)
108  {
109  outfield[i] = Array<OneD, NekDouble>(npoints);
110  }
111 
112  Array<OneD, Array<OneD, NekDouble> > tmp(spacedim);
113  for (int i = 0; i < spacedim; i++)
114  {
115  tmp[i] = Array<OneD, NekDouble>(npoints);
116  }
117 
118  vector<MultiRegions::ExpListSharedPtr> Exp(nstrips * addfields);
119 
120  // Get mapping
122 
123  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
124  {
125  // Get velocity and convert to Cartesian system,
126  // if it is still in transformed system
127  Array<OneD, Array<OneD, NekDouble> > vel(spacedim);
128  if (m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
129  {
130  if (m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
131  {
132  // Initialize arrays and copy velocity
133  for (int i = 0; i < spacedim; ++i)
134  {
135  vel[i] = Array<OneD, NekDouble>(npoints);
136  if (m_f->m_exp[0]->GetWaveSpace())
137  {
138  m_f->m_exp[0]->HomogeneousBwdTrans(
139  m_f->m_exp[s * nfields + i]->GetPhys(), vel[i]);
140  }
141  else
142  {
143  Vmath::Vcopy(npoints,
144  m_f->m_exp[s * nfields + i]->GetPhys(), 1,
145  vel[i], 1);
146  }
147  }
148  // Convert velocity to cartesian system
149  mapping->ContravarToCartesian(vel, vel);
150  // Convert back to wavespace if necessary
151  if (m_f->m_exp[0]->GetWaveSpace())
152  {
153  for (int i = 0; i < spacedim; ++i)
154  {
155  m_f->m_exp[0]->HomogeneousFwdTrans(vel[i], vel[i]);
156  }
157  }
158  }
159  else
160  {
161  for (int i = 0; i < spacedim; ++i)
162  {
163  vel[i] = Array<OneD, NekDouble>(npoints);
164  Vmath::Vcopy(npoints,
165  m_f->m_exp[s * nfields + i]->GetPhys(), 1,
166  vel[i], 1);
167  }
168  }
169  }
170  else
171  {
172  for (int i = 0; i < spacedim; ++i)
173  {
174  vel[i] = Array<OneD, NekDouble>(npoints);
175  Vmath::Vcopy(npoints, m_f->m_exp[s * nfields + i]->GetPhys(), 1,
176  vel[i], 1);
177  }
178  }
179 
180  // Calculate Gradient & Vorticity
181  if (spacedim == 2)
182  {
183  for (i = 0; i < spacedim; ++i)
184  {
185  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1]);
186  mapping->CovarToCartesian(tmp, tmp);
187  for (int j = 0; j < spacedim; j++)
188  {
189  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * spacedim + j], 1);
190  }
191  }
192  // W_z = Vx - Uy
193  Vmath::Vsub(npoints, grad[1 * spacedim + 0], 1,
194  grad[0 * spacedim + 1], 1, outfield[0], 1);
195  }
196  else
197  {
198  for (i = 0; i < spacedim; ++i)
199  {
200  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1],
201  tmp[2]);
202  mapping->CovarToCartesian(tmp, tmp);
203  for (int j = 0; j < spacedim; j++)
204  {
205  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * spacedim + j], 1);
206  }
207  }
208 
209  // W_x = Wy - Vz
210  Vmath::Vsub(npoints, grad[2 * spacedim + 1], 1,
211  grad[1 * spacedim + 2], 1, outfield[0], 1);
212  // W_y = Uz - Wx
213  Vmath::Vsub(npoints, grad[0 * spacedim + 2], 1,
214  grad[2 * spacedim + 0], 1, outfield[1], 1);
215  // W_z = Vx - Uy
216  Vmath::Vsub(npoints, grad[1 * spacedim + 0], 1,
217  grad[0 * spacedim + 1], 1, outfield[2], 1);
218  }
219 
220  for (i = 0; i < addfields; ++i)
221  {
222  int n = s * addfields + i;
223  Exp[n] =
224  m_f->AppendExpList(m_f->m_fielddef[0]->m_numHomogeneousDir);
225  Vmath::Vcopy(npoints, outfield[i], 1, Exp[n]->UpdatePhys(), 1);
226  Exp[n]->FwdTrans_IterPerExp(outfield[i], Exp[n]->UpdateCoeffs());
227  }
228  }
229 
231  for (s = 0; s < nstrips; ++s)
232  {
233  for (i = 0; i < addfields; ++i)
234  {
235  it = m_f->m_exp.begin() + s * (nfields + addfields) + nfields + i;
236  m_f->m_exp.insert(it, Exp[s * addfields + i]);
237  }
238  }
239 
240  vector<string> outname;
241  if (addfields == 1)
242  {
243  outname.push_back("W_z");
244  }
245  else
246  {
247  outname.push_back("W_x");
248  outname.push_back("W_y");
249  outname.push_back("W_z");
250  }
251 
252  std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef =
253  m_f->m_exp[0]->GetFieldDefinitions();
254  std::vector<std::vector<NekDouble> > FieldData(FieldDef.size());
255 
256  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
257  {
258  for (j = 0; j < nfields + addfields; ++j)
259  {
260  for (i = 0; i < FieldDef.size() / nstrips; ++i)
261  {
262  int n = s * FieldDef.size() / nstrips + i;
263 
264  if (j >= nfields)
265  {
266  FieldDef[n]->m_fields.push_back(outname[j - nfields]);
267  }
268  else
269  {
270  FieldDef[n]->m_fields.push_back(
271  m_f->m_fielddef[0]->m_fields[j]);
272  }
273  m_f->m_exp[s * (nfields + addfields) + j]->AppendFieldData(
274  FieldDef[n], FieldData[n]);
275  }
276  }
277  }
278 
279  m_f->m_fielddef = FieldDef;
280  m_f->m_data = FieldData;
281 }
282 }
283 }
virtual void Process(po::variables_map &vm)
Write mesh to output file.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
STL namespace.
pair< ModuleType, string > ModuleKey
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
boost::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:767
GLOBAL_MAPPING_EXPORT typedef boost::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:51
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:343
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
Abstract base class for processing modules.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
ModuleFactory & GetModuleFactory()
FieldSharedPtr m_f
Field object.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215