Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
RiemannInvariantBC.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: RiemannInvariantBC.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Riemann invariant boundary condition
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 #include "RiemannInvariantBC.h"
37 
38 using namespace std;
39 
40 namespace Nektar
41 {
42 
43 std::string RiemannInvariantBC::className = GetCFSBndCondFactory().
44  RegisterCreatorFunction("RiemannInvariant",
45  RiemannInvariantBC::create,
46  "Riemann invariant boundary condition.");
47 
48 RiemannInvariantBC::RiemannInvariantBC(
51  const Array<OneD, Array<OneD, NekDouble> >& pTraceNormals,
52  const int pSpaceDim,
53  const int bcRegion,
54  const int cnt)
55  : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
56 {
57  // Calculate VnInf
58  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
59  m_VnInf = Array<OneD, NekDouble> (nTracePts, 0.0);
60 
61  // Computing the normal velocity for characteristics coming
62  // from outside the computational domain
63  for( int i =0; i < m_spacedim; i++)
64  {
65  Vmath::Svtvp(nTracePts, m_velInf[i],
66  m_traceNormals[i], 1,
67  m_VnInf, 1,
68  m_VnInf, 1);
69  }
70 }
71 
74  Array<OneD, Array<OneD, NekDouble> > &physarray,
75  const NekDouble &time)
76 {
77  int i, j;
78  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
79  int nDimensions = m_spacedim;
80 
81  const Array<OneD, const int> &traceBndMap
82  = m_fields[0]->GetTraceBndMap();
83 
84  NekDouble gammaInv = 1.0 / m_gamma;
85  NekDouble gammaMinusOne = m_gamma - 1.0;
86  NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
87 
88  // Computing the normal velocity for characteristics coming
89  // from inside the computational domain
90  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
91  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
92  for (i = 0; i < nDimensions; ++i)
93  {
94  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
95  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
96  }
97 
98  // Computing the absolute value of the velocity in order to compute the
99  // Mach number to decide whether supersonic or subsonic
100  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
101  m_varConv->GetAbsoluteVelocity(Fwd, absVel);
102 
103  // Get speed of sound
104  Array<OneD, NekDouble > pressure (nTracePts);
105  Array<OneD, NekDouble > soundSpeed(nTracePts);
106 
107  m_varConv->GetPressure(Fwd, pressure);
108  m_varConv->GetSoundSpeed(Fwd, pressure, soundSpeed);
109 
110  // Get Mach
111  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
112  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
113  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
114 
115  // Auxiliary variables
116  int eMax;
117  int e, id1, id2, nBCEdgePts, pnt;
118  NekDouble cPlus, rPlus, cMinus, rMinus, VDBC, VNBC;
119  Array<OneD, NekDouble> velBC(nDimensions, 0.0);
120  Array<OneD, NekDouble> rhoVelBC(nDimensions, 0.0);
121  NekDouble rhoBC, EBC, cBC, sBC, pBC;
122 
123  eMax = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize();
124 
125  // Loop on m_bcRegions
126  for (e = 0; e < eMax; ++e)
127  {
128  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
129  GetExp(e)->GetTotPoints();
130 
131  id1 = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
132  GetPhys_Offset(e);
133  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset+e]);
134 
135  // Loop on the points of the m_bcRegion
136  for (i = 0; i < nBCEdgePts; i++)
137  {
138  pnt = id2+i;
139 
140  // Impose inflow Riemann invariant
141  if (Vn[pnt] <= 0.0)
142  {
143  // Subsonic flows
144  if (Mach[pnt] < 1.00)
145  {
146  // + Characteristic from inside
147  cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
148  rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
149 
150  // - Characteristic from boundary
151  cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
152  rMinus = m_VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
153  }
154  else
155  {
156  // + Characteristic from inside
157  cPlus = sqrt(m_gamma * m_pInf / m_rhoInf);
158  rPlus = m_VnInf[pnt] + 2.0 * cPlus * gammaMinusOneInv;
159 
160  // + Characteristic from inside
161  cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
162  rMinus = m_VnInf[pnt] - 2.0 * cPlus * gammaMinusOneInv;
163  }
164 
165  // Riemann boundary variables
166  VNBC = 0.5 * (rPlus + rMinus);
167  cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
168  VDBC = VNBC - m_VnInf[pnt];
169 
170  // Thermodynamic boundary variables
171  sBC = m_pInf / (pow(m_rhoInf, m_gamma));
172  rhoBC = pow((cBC * cBC) / (m_gamma * sBC), gammaMinusOneInv);
173  pBC = rhoBC * cBC * cBC * gammaInv;
174 
175  // Kinetic energy initialiasation
176  NekDouble EkBC = 0.0;
177 
178  // Boundary velocities
179  for ( j = 0; j < nDimensions; ++j)
180  {
181  velBC[j] = m_velInf[j] + VDBC * m_traceNormals[j][pnt];
182  rhoVelBC[j] = rhoBC * velBC[j];
183  EkBC += 0.5 * rhoBC * velBC[j]*velBC[j];
184  }
185 
186  // Boundary energy
187  EBC = pBC * gammaMinusOneInv + EkBC;
188 
189  // Imposing Riemann Invariant boundary conditions
190  (m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
191  UpdatePhys())[id1+i] = rhoBC;
192  for (j = 0; j < nDimensions; ++j)
193  {
194  (m_fields[j+1]->GetBndCondExpansions()[m_bcRegion]->
195  UpdatePhys())[id1+i] = rhoVelBC[j];
196  }
197  (m_fields[nDimensions+1]->GetBndCondExpansions()[m_bcRegion]->
198  UpdatePhys())[id1+i] = EBC;
199 
200  }
201  else // Impose outflow Riemann invariant
202  {
203  // Subsonic flows
204  if (Mach[pnt] < 1.00)
205  {
206  // + Characteristic from inside
207  cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
208  rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
209 
210  // - Characteristic from boundary
211  cMinus = sqrt(m_gamma * m_pInf / m_rhoInf);
212  rMinus = m_VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
213  }
214  else
215  {
216  // + Characteristic from inside
217  cPlus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
218  rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
219 
220  // + Characteristic from inside
221  cMinus = sqrt(m_gamma * pressure[pnt] / Fwd[0][pnt]);
222  rMinus = Vn[pnt] - 2.0 * cPlus * gammaMinusOneInv;
223  }
224 
225  // Riemann boundary variables
226  VNBC = 0.5 * (rPlus + rMinus);
227  cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
228  VDBC = VNBC - Vn[pnt];
229 
230  // Thermodynamic boundary variables
231  sBC = pressure[pnt] / (pow(Fwd[0][pnt], m_gamma));
232  rhoBC = pow((cBC * cBC) / (m_gamma * sBC), gammaMinusOneInv);
233  pBC = rhoBC * cBC * cBC * gammaInv;
234 
235  // Kinetic energy initialiasation
236  NekDouble EkBC = 0.0;
237 
238  // Boundary velocities
239  for ( j = 0; j < nDimensions; ++j)
240  {
241  velBC[j] = Fwd[j+1][pnt] / Fwd[0][pnt] +
242  VDBC * m_traceNormals[j][pnt];
243  rhoVelBC[j] = rhoBC * velBC[j];
244  EkBC += 0.5 * rhoBC * velBC[j]*velBC[j];
245  }
246 
247  // Boundary energy
248  EBC = pBC * gammaMinusOneInv + EkBC;
249 
250  // Imposing Riemann Invariant boundary conditions
251  (m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
252  UpdatePhys())[id1+i] = rhoBC;
253  for (j = 0; j < nDimensions; ++j)
254  {
255  (m_fields[j+1]->GetBndCondExpansions()[m_bcRegion]->
256  UpdatePhys())[id1+i] = rhoVelBC[j];
257  }
258  (m_fields[nDimensions+1]->GetBndCondExpansions()[m_bcRegion]->
259  UpdatePhys())[id1+i] = EBC;
260  }
261  }
262  }
263 }
264 
265 }
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:90
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:485
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
STL namespace.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:241
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:86
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:424
virtual void v_Apply(Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time)
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:42
NekDouble m_pInf
Definition: CFSBndCond.h:97
Array< OneD, NekDouble > m_VnInf
Reference normal velocity.
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:71
double NekDouble
NekDouble m_gamma
Parameters of the flow.
Definition: CFSBndCond.h:95
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:92
Array< OneD, NekDouble > m_velInf
Definition: CFSBndCond.h:98
int m_offset
Offset.
Definition: CFSBndCond.h:103
NekDouble m_rhoInf
Definition: CFSBndCond.h:96
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:88
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:101