Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
SkewSymmetricAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File SkewSymmetricAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Evaluation of the Navier Stokes advective term
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
37 
38 using namespace std;
39 
40 namespace Nektar
41 {
42 string SkewSymmetricAdvection::className
44  "SkewSymmetric",
45  SkewSymmetricAdvection::create);
46 
47 /**
48  *
49  */
50 SkewSymmetricAdvection::SkewSymmetricAdvection():
51  Advection()
52 
53 {
54 }
55 
56 
57 /**
58  *
59  */
61 {
62 }
63 
64 
65 /**
66  *
67  */
71 {
72  Advection::v_InitObject(pSession, pFields);
73 
75  m_homogen_dealiasing = pSession->DefinesSolverInfo("dealiasing");
76  pSession->MatchSolverInfo("ModeType","SingleMode",m_SingleMode,false);
77  pSession->MatchSolverInfo("ModeType","HalfMode",m_HalfMode,false);
78 }
79 
80 
81 /**
82  *
83  */
85  const int nConvectiveFields,
87  const Array<OneD, Array<OneD, NekDouble> > &advVel,
88  const Array<OneD, Array<OneD, NekDouble> > &inarray,
89  Array<OneD, Array<OneD, NekDouble> > &outarray,
90  const NekDouble &time,
91  const Array<OneD, Array<OneD, NekDouble> > &pFwd,
92  const Array<OneD, Array<OneD, NekDouble> > &pBwd)
93 {
94  // use dimension of Velocity vector to dictate dimension of operation
95  int ndim = advVel.num_elements();
96  int nqtot = fields[0]->GetTotPoints();
97  ASSERTL1(nConvectiveFields == inarray.num_elements(),"Number of convective fields and Inarray are not compatible");
98 
99  Array<OneD, Array<OneD, NekDouble> > velocity(ndim);
100  for(int i = 0; i < ndim; ++i)
101  {
102  if(fields[i]->GetWaveSpace() && !m_SingleMode && !m_HalfMode)
103  {
104  velocity[i] = Array<OneD, NekDouble>(nqtot,0.0);
105  fields[i]->HomogeneousBwdTrans(advVel[i],velocity[i]);
106  }
107  else
108  {
109  velocity[i] = advVel[i];
110  }
111  }
112 
113  for(int n = 0; n < nConvectiveFields; ++n)
114  {
115  // ToDo: here we should add a check that V has right dimension
116 
117  int nPointsTot = fields[0]->GetNpoints();
118  Array<OneD, NekDouble> gradV0,gradV1,gradV2, tmp, Up;
119 
120  gradV0 = Array<OneD, NekDouble> (nPointsTot);
121  tmp = Array<OneD, NekDouble> (nPointsTot);
122 
123  // Evaluate V\cdot Grad(u)
124  switch(ndim)
125  {
126  case 1:
127  fields[0]->PhysDeriv(inarray[n],gradV0);
128  Vmath::Vmul(nPointsTot,gradV0,1,velocity[0],1,outarray[n],1);
129  Vmath::Vmul(nPointsTot,inarray[n],1,velocity[0],1,gradV0,1);
130  fields[0]->PhysDeriv(gradV0,tmp);
131  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
132  Vmath::Smul(nPointsTot,0.5,outarray[n],1,outarray[n],1);
133  break;
134  case 2:
135  gradV1 = Array<OneD, NekDouble> (nPointsTot);
136  fields[0]->PhysDeriv(inarray[n],gradV0,gradV1);
137  Vmath::Vmul (nPointsTot,gradV0,1,velocity[0],1,outarray[n],1);
138  Vmath::Vvtvp(nPointsTot,gradV1,1,velocity[1],1,outarray[n],1,outarray[n],1);
139  Vmath::Vmul(nPointsTot,inarray[n],1,velocity[0],1,gradV0,1);
140  Vmath::Vmul(nPointsTot,inarray[n],1,velocity[1],1,gradV1,1);
141  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,tmp);
142  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
143  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);
144  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
145  Vmath::Smul(nPointsTot,0.5,outarray[n],1,outarray[n],1);
146  break;
147  case 3:
148  gradV1 = Array<OneD, NekDouble> (nPointsTot);
149  gradV2 = Array<OneD, NekDouble> (nPointsTot);
150 
151  fields[0]->PhysDeriv(inarray[n],gradV0,gradV1,gradV2);
152 
153  //outarray[n] = 1/2(u*du/dx + v*du/dy + w*du/dz + duu/dx + duv/dy + duw/dz)
154 
155  if(m_homogen_dealiasing == true && fields[0]->GetWaveSpace() == false)
156  {
157  fields[0]->DealiasedProd(velocity[0],gradV0,gradV0,m_CoeffState);
158  fields[0]->DealiasedProd(velocity[1],gradV1,gradV1,m_CoeffState);
159  fields[0]->DealiasedProd(velocity[2],gradV2,gradV2,m_CoeffState);
160  Vmath::Vadd(nPointsTot,gradV0,1,gradV1,1,outarray[n],1);
161  Vmath::Vadd(nPointsTot,gradV2,1,outarray[n],1,outarray[n],1);
162  fields[0]->DealiasedProd(inarray[n],velocity[0],gradV0,m_CoeffState);
163  fields[0]->DealiasedProd(inarray[n],velocity[1],gradV1,m_CoeffState);
164  fields[0]->DealiasedProd(inarray[n],velocity[2],gradV2,m_CoeffState);
165  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,tmp);
166  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
167  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);
168  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
169  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],gradV2,tmp);
170  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
171  Vmath::Smul(nPointsTot,0.5,outarray[n],1,outarray[n],1);
172  }
173  else if(fields[0]->GetWaveSpace() == true && m_homogen_dealiasing == false)
174  {
175  Up = Array<OneD, NekDouble> (nPointsTot);
176  //vector reused to avoid even more memory requirements
177  //names may be misleading
178  fields[0]->HomogeneousBwdTrans(gradV0,tmp);
179  Vmath::Vmul(nPointsTot,tmp,1,velocity[0],1,outarray[n],1); // + u*du/dx
180  fields[0]->HomogeneousBwdTrans(gradV1,tmp);
181  Vmath::Vvtvp(nPointsTot,tmp,1,velocity[1],1,outarray[n],1,outarray[n],1);// + v*du/dy
182  fields[0]->HomogeneousBwdTrans(gradV2,tmp);
183  Vmath::Vvtvp(nPointsTot,tmp,1,velocity[2],1,outarray[n],1,outarray[n],1);// + w*du/dz
184 
185  fields[0]->HomogeneousBwdTrans(inarray[n],Up);
186  Vmath::Vmul(nPointsTot,Up,1,velocity[0],1,gradV0,1);
187  Vmath::Vmul(nPointsTot,Up,1,velocity[1],1,gradV1,1);
188  Vmath::Vmul(nPointsTot,Up,1,velocity[2],1,gradV2,1);
189 
190  fields[0]->SetWaveSpace(false);
191  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,tmp);//duu/dx
192  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
193  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);//duv/dy
194  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
195  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],gradV2,tmp);//duw/dz
196  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
197  fields[0]->SetWaveSpace(true);
198 
199  Vmath::Smul(nPointsTot,0.5,outarray[n],1,tmp,1);
200  fields[0]->HomogeneousFwdTrans(tmp,outarray[n]);
201  }
202  else if(fields[0]->GetWaveSpace() == false && m_homogen_dealiasing == false)
203  {
204  Vmath::Vmul(nPointsTot,gradV0,1,velocity[0],1,outarray[n],1);
205  Vmath::Vvtvp(nPointsTot,gradV1,1,velocity[1],1,outarray[n],1,outarray[n],1);
206  Vmath::Vvtvp(nPointsTot,gradV2,1,velocity[2],1,outarray[n],1,outarray[n],1);
207  Vmath::Vmul(nPointsTot,inarray[n],1,velocity[0],1,gradV0,1);
208  Vmath::Vmul(nPointsTot,inarray[n],1,velocity[1],1,gradV1,1);
209  Vmath::Vmul(nPointsTot,inarray[n],1,velocity[2],1,gradV2,1);
210  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,tmp);
211  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
212  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);
213  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
214  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],gradV2,tmp);
215  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
216  Vmath::Smul(nPointsTot,0.5,outarray[n],1,outarray[n],1);
217  }
218  else
219  {
220  ASSERTL0(false, "Dealiasing is not allowed in combination "
221  "with the Skew-Symmetric advection form for "
222  "efficiency reasons.");
223  }
224  break;
225  default:
226  ASSERTL0(false,"dimension unknown");
227  }
228 
229  Vmath::Neg(nqtot,outarray[n],1);
230  }
231 
232 }
233 
234 } //end of namespace
235 
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
Local coefficients.
MultiRegions::CoeffState m_CoeffState
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
STL namespace.
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayofArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayofArray)
Advects a vector field.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:396
double NekDouble
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
Definition: Advection.cpp:100
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
Defines a callback function which evaluates the flux vector.
Definition: Advection.h:69
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.