45 namespace LocalRegions
67 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
71 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
73 StdRegions::StdTetExp(Ba,Bb,Bc),
77 boost::bind(&
TetExp::CreateMatrix, this, _1),
78 std::string(
"TetExpMatrix")),
79 m_staticCondMatrixManager(
80 boost::bind(&
TetExp::CreateStaticCondMatrix, this, _1),
81 std::string(
"TetExpStaticCondMatrix"))
92 StdRegions::StdTetExp(T),
95 m_matrixManager(T.m_matrixManager),
96 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
125 int nquad0 =
m_base[0]->GetNumPoints();
126 int nquad1 =
m_base[1]->GetNumPoints();
127 int nquad2 =
m_base[2]->GetNumPoints();
145 retrunVal = StdTetExp::v_Integral(tmp);
169 int TotPts =
m_base[0]->GetNumPoints()*
m_base[1]->GetNumPoints()*
170 m_base[2]->GetNumPoints();
178 StdTetExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
182 if(out_d0.num_elements())
184 Vmath::Vmul (TotPts,&df[0][0],1,&Diff0[0],1, &out_d0[0], 1);
185 Vmath::Vvtvp (TotPts,&df[1][0],1,&Diff1[0],1, &out_d0[0], 1,&out_d0[0],1);
186 Vmath::Vvtvp (TotPts,&df[2][0],1,&Diff2[0],1, &out_d0[0], 1,&out_d0[0],1);
189 if(out_d1.num_elements())
191 Vmath::Vmul (TotPts,&df[3][0],1,&Diff0[0],1, &out_d1[0], 1);
192 Vmath::Vvtvp (TotPts,&df[4][0],1,&Diff1[0],1, &out_d1[0], 1,&out_d1[0],1);
193 Vmath::Vvtvp (TotPts,&df[5][0],1,&Diff2[0],1, &out_d1[0], 1,&out_d1[0],1);
196 if(out_d2.num_elements())
198 Vmath::Vmul (TotPts,&df[6][0],1,&Diff0[0],1, &out_d2[0], 1);
199 Vmath::Vvtvp (TotPts,&df[7][0],1,&Diff1[0],1, &out_d2[0], 1, &out_d2[0],1);
200 Vmath::Vvtvp (TotPts,&df[8][0],1,&Diff2[0],1, &out_d2[0], 1, &out_d2[0],1);
205 if(out_d0.num_elements())
207 Vmath::Smul (TotPts,df[0][0],&Diff0[0],1, &out_d0[0], 1);
208 Blas::Daxpy (TotPts,df[1][0],&Diff1[0],1, &out_d0[0], 1);
209 Blas::Daxpy (TotPts,df[2][0],&Diff2[0],1, &out_d0[0], 1);
212 if(out_d1.num_elements())
214 Vmath::Smul (TotPts,df[3][0],&Diff0[0],1, &out_d1[0], 1);
215 Blas::Daxpy (TotPts,df[4][0],&Diff1[0],1, &out_d1[0], 1);
216 Blas::Daxpy (TotPts,df[5][0],&Diff2[0],1, &out_d1[0], 1);
219 if(out_d2.num_elements())
221 Vmath::Smul (TotPts,df[6][0],&Diff0[0],1, &out_d2[0], 1);
222 Blas::Daxpy (TotPts,df[7][0],&Diff1[0],1, &out_d2[0], 1);
223 Blas::Daxpy (TotPts,df[8][0],&Diff2[0],1, &out_d2[0], 1);
245 if((
m_base[0]->Collocation())&&(
m_base[1]->Collocation())&&(
m_base[2]->Collocation()))
305 bool multiplybyweights)
307 const int nquad0 =
m_base[0]->GetNumPoints();
308 const int nquad1 =
m_base[1]->GetNumPoints();
309 const int nquad2 =
m_base[2]->GetNumPoints();
310 const int order0 =
m_base[0]->GetNumModes();
311 const int order1 =
m_base[1]->GetNumModes();
313 nquad2*order0*(order1+1)/2);
315 if(multiplybyweights)
331 inarray,outarray,wsp,
371 const int nquad0 =
m_base[0]->GetNumPoints();
372 const int nquad1 =
m_base[1]->GetNumPoints();
373 const int nquad2 =
m_base[2]->GetNumPoints();
374 const int order0 =
m_base[0]->GetNumModes ();
375 const int order1 =
m_base[1]->GetNumModes ();
376 const int nqtot = nquad0*nquad1*nquad2;
394 nquad2*order0*(order1+1)/2);
403 Vmath::Vmul(nqtot,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
404 Vmath::Vmul(nqtot,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
405 Vmath::Vmul(nqtot,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
409 Vmath::Smul(nqtot, df[3*dir ][0],tmp1.get(),1,tmp2.get(), 1);
410 Vmath::Smul(nqtot, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
411 Vmath::Smul(nqtot, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
414 const int nq01 = nquad0*nquad1;
415 const int nq12 = nquad1*nquad2;
417 for(j = 0; j < nquad2; ++j)
419 for(i = 0; i < nquad1; ++i)
422 &h0[0]+i*nquad0 + j*nq01,1);
424 &h1[0]+i*nquad0 + j*nq01,1);
426 &h2[0]+i*nquad0 + j*nq01,1);
428 &h3[0]+i*nquad0 + j*nq01,1);
432 for(i = 0; i < nquad0; i++)
434 Blas::Dscal(nq12, 1+z0[i], &h1[0]+i, nquad0);
439 &tmp3[0], 1, &h1[0], 1,
442 &tmp5[0], 1, &tmp5[0], 1);
452 &tmp4[0], 1, &h3[0], 1,
488 return StdTetExp::v_PhysEvaluate(Lcoord,physvals);
504 m_geom->GetLocCoords(coord,Lcoord);
507 return StdTetExp::v_PhysEvaluate(Lcoord,physvals);
519 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 &&
520 Lcoords[1] <= -1.0 && Lcoords[1] >= 1.0 &&
521 Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
522 "Local coordinates are not in region [-1,1]");
526 for(i = 0; i <
m_geom->GetCoordim(); ++i)
528 coords[i] =
m_geom->GetCoord(i,Lcoords);
558 m_base[2]->GetBasisKey());
565 2,
m_base[0]->GetPointsKey());
567 2,
m_base[1]->GetPointsKey());
569 2,
m_base[2]->GetPointsKey());
578 return m_geom->GetCoordim();
583 const std::vector<unsigned int > &nummodes,
584 const int mode_offset,
586 std::vector<LibUtilities::BasisType> &fromType)
588 int data_order0 = nummodes[mode_offset];
589 int fillorder0 = min(
m_base[0]->GetNumModes(),data_order0);
590 int data_order1 = nummodes[mode_offset+1];
591 int order1 =
m_base[1]->GetNumModes();
592 int fillorder1 = min(order1,data_order1);
593 int data_order2 = nummodes[mode_offset+2];
594 int order2 =
m_base[2]->GetNumModes();
595 int fillorder2 = min(order2,data_order2);
607 "Extraction routine not set up for this basis");
610 "Extraction routine not set up for this basis");
613 for(j = 0; j < fillorder0; ++j)
615 for(i = 0; i < fillorder1-j; ++i)
619 cnt += data_order2-j-i;
624 for(i = fillorder1-j; i < data_order1-j; ++i)
626 cnt += data_order2-j-i;
629 for(i = fillorder1-j; i < order1-j; ++i)
638 ASSERTL0(
false,
"basis is either not set up or not "
649 int nquad0 =
m_base[0]->GetNumPoints();
650 int nquad1 =
m_base[1]->GetNumPoints();
651 int nquad2 =
m_base[2]->GetNumPoints();
663 if(outarray.num_elements()!=nq0*nq1)
668 for (
int i = 0; i < nquad0*nquad1; ++i)
679 if(outarray.num_elements()!=nq0*nq1)
685 for (
int k=0; k<nquad2; k++)
687 for(
int i = 0; i < nquad0; ++i)
689 outarray[k*nquad0+i] = (nquad0*nquad1*k)+i;
698 if(outarray.num_elements()!=nq0*nq1)
704 for(
int j = 0; j < nquad1*nquad2; ++j)
706 outarray[j] = nquad0-1 + j*nquad0;
714 if(outarray.num_elements() != nq0*nq1)
720 for(
int j = 0; j < nquad1*nquad2; ++j)
722 outarray[j] = j*nquad0;
727 ASSERTL0(
false,
"face value (> 3) is out of range");
756 for (i = 0; i < vCoordDim; ++i)
772 for (i = 0; i < vCoordDim; ++i)
774 normal[i][0] = -df[3*i+2][0];
781 for (i = 0; i < vCoordDim; ++i)
783 normal[i][0] = -df[3*i+1][0];
790 for (i = 0; i < vCoordDim; ++i)
792 normal[i][0] = df[3*i][0]+df[3*i+1][0]+
800 for(i = 0; i < vCoordDim; ++i)
802 normal[i][0] = -df[3*i][0];
807 ASSERTL0(
false,
"face is out of range (edge < 3)");
812 for (i = 0; i < vCoordDim; ++i)
814 fac += normal[i][0]*normal[i][0];
818 for (i = 0; i < vCoordDim; ++i)
828 int nq0 = ptsKeys[0].GetNumPoints();
829 int nq1 = ptsKeys[1].GetNumPoints();
830 int nq2 = ptsKeys[2].GetNumPoints();
861 for(j = 0; j < nq01; ++j)
863 normals[j] = -df[2][j]*jac[j];
864 normals[nqtot+j] = -df[5][j]*jac[j];
865 normals[2*nqtot+j] = -df[8][j]*jac[j];
869 points0 = ptsKeys[0];
870 points1 = ptsKeys[1];
876 for (j = 0; j < nq0; ++j)
878 for(k = 0; k < nq2; ++k)
882 -df[1][tmp]*jac[tmp];
883 normals[nqtot+j+k*nq0] =
884 -df[4][tmp]*jac[tmp];
885 normals[2*nqtot+j+k*nq0] =
886 -df[7][tmp]*jac[tmp];
887 faceJac[j+k*nq0] = jac[tmp];
891 points0 = ptsKeys[0];
892 points1 = ptsKeys[2];
898 for (j = 0; j < nq1; ++j)
900 for(k = 0; k < nq2; ++k)
902 int tmp = nq0-1+nq0*j+nq01*k;
904 (df[0][tmp]+df[1][tmp]+df[2][tmp])*
906 normals[nqtot+j+k*nq1] =
907 (df[3][tmp]+df[4][tmp]+df[5][tmp])*
909 normals[2*nqtot+j+k*nq1] =
910 (df[6][tmp]+df[7][tmp]+df[8][tmp])*
912 faceJac[j+k*nq1] = jac[tmp];
916 points0 = ptsKeys[1];
917 points1 = ptsKeys[2];
923 for (j = 0; j < nq1; ++j)
925 for(k = 0; k < nq2; ++k)
927 int tmp = j*nq0+nq01*k;
929 -df[0][tmp]*jac[tmp];
930 normals[nqtot+j+k*nq1] =
931 -df[3][tmp]*jac[tmp];
932 normals[2*nqtot+j+k*nq1] =
933 -df[6][tmp]*jac[tmp];
934 faceJac[j+k*nq1] = jac[tmp];
938 points0 = ptsKeys[1];
939 points1 = ptsKeys[2];
944 ASSERTL0(
false,
"face is out of range (face < 3)");
953 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
956 for(i = 0; i < vCoordDim; ++i)
963 Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
970 Vmath::Vvtvp(nq_face,normal[i],1,normal[i],1,work,1,work,1);
978 Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
1010 StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,
1037 StdTetExp::v_SVVLaplacianFilter( array, mkey);
1064 returnval = StdTetExp::v_GenMatrix(mkey);
1162 int rows = deriv0.GetRows();
1163 int cols = deriv1.GetColumns();
1167 (*WeakDeriv) = df[3*dir][0]*deriv0
1168 + df[3*dir+1][0]*deriv1
1169 + df[3*dir+2][0]*deriv2;
1213 int rows = lap00.GetRows();
1214 int cols = lap00.GetColumns();
1219 (*lap) = gmat[0][0]*lap00
1224 + gmat[7][0]*(lap12 +
Transpose(lap12));
1239 int rows = LapMat.GetRows();
1240 int cols = LapMat.GetColumns();
1245 (*helm) = LapMat + factor*MassMat;
1389 unsigned int nint = (
unsigned int)(
m_ncoeffs - nbdry);
1390 unsigned int exp_size[] = {nbdry, nint};
1391 unsigned int nblks = 2;
1403 goto UseLocRegionsMatrix;
1410 goto UseLocRegionsMatrix;
1415 factor = mat->Scale();
1416 goto UseStdRegionsMatrix;
1419 UseStdRegionsMatrix:
1434 UseLocRegionsMatrix:
1450 for(i = 0; i < nbdry; ++i)
1452 for(j = 0; j < nbdry; ++j)
1454 (*A)(i,j) = mat(bmap[i],bmap[j]);
1457 for(j = 0; j < nint; ++j)
1459 (*B)(i,j) = mat(bmap[i],imap[j]);
1463 for(i = 0; i < nint; ++i)
1465 for(j = 0; j < nbdry; ++j)
1467 (*C)(i,j) = mat(imap[i],bmap[j]);
1470 for(j = 0; j < nint; ++j)
1472 (*D)(i,j) = mat(imap[i],imap[j]);
1481 (*A) = (*A) - (*B)*(*C);
1506 return tmp->GetStdMatrix(mkey);
1531 if(inarray.get() == outarray.get())
1536 Blas::Dgemv(
'N',
m_ncoeffs,
m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1537 m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1541 Blas::Dgemv(
'N',
m_ncoeffs,
m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1542 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1559 int nquad0 =
m_base[0]->GetNumPoints();
1560 int nquad1 =
m_base[1]->GetNumPoints();
1561 int nquad2 =
m_base[2]->GetNumPoints();
1562 int nqtot = nquad0*nquad1*nquad2;
1564 ASSERTL1(wsp.num_elements() >= 6*nqtot,
1565 "Insufficient workspace size.");
1567 "Workspace not set up for ncoeffs > nqtot");
1594 StdExpansion3D::PhysTensorDeriv(inarray,wsp0,wsp1,wsp2);
1600 Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp0[0],1,&metric01[0],1,&wsp1[0],1,&wsp3[0],1);
1601 Vmath::Vvtvp (nqtot,&metric02[0],1,&wsp2[0],1,&wsp3[0],1,&wsp3[0],1);
1602 Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp0[0],1,&metric11[0],1,&wsp1[0],1,&wsp4[0],1);
1603 Vmath::Vvtvp (nqtot,&metric12[0],1,&wsp2[0],1,&wsp4[0],1,&wsp4[0],1);
1604 Vmath::Vvtvvtp(nqtot,&metric02[0],1,&wsp0[0],1,&metric12[0],1,&wsp1[0],1,&wsp5[0],1);
1605 Vmath::Vvtvp (nqtot,&metric22[0],1,&wsp2[0],1,&wsp5[0],1,&wsp5[0],1);
1626 const unsigned int dim = 3;
1632 for (
unsigned int i = 0; i < dim; ++i)
1634 for (
unsigned int j = i; j < dim; ++j)
1667 const unsigned int nquad0 =
m_base[0]->GetNumPoints();
1668 const unsigned int nquad1 =
m_base[1]->GetNumPoints();
1669 const unsigned int nquad2 =
m_base[2]->GetNumPoints();
1671 for(j = 0; j < nquad2; ++j)
1673 for(i = 0; i < nquad1; ++i)
1675 Vmath::Fill(nquad0, 4.0/(1.0-z1[i])/(1.0-z2[j]), &h0[0]+i*nquad0 + j*nquad0*nquad1,1);
1676 Vmath::Fill(nquad0, 2.0/(1.0-z1[i])/(1.0-z2[j]), &h1[0]+i*nquad0 + j*nquad0*nquad1,1);
1677 Vmath::Fill(nquad0, 2.0/(1.0-z2[j]), &h2[0]+i*nquad0 + j*nquad0*nquad1,1);
1678 Vmath::Fill(nquad0, (1.0+z1[i])/(1.0-z2[j]), &h3[0]+i*nquad0 + j*nquad0*nquad1,1);
1681 for(i = 0; i < nquad0; i++)
1683 Blas::Dscal(nquad1*nquad2, 1+z0[i], &h1[0]+i, nquad0);
1692 Vmath::Vadd(nqtot, &df[1][0], 1, &df[2][0], 1, &wsp4[0], 1);
1693 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &wsp4[0], 1, &h1[0], 1, &wsp4[0], 1);
1695 Vmath::Vadd(nqtot, &df[4][0], 1, &df[5][0], 1, &wsp5[0], 1);
1696 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &wsp5[0], 1, &h1[0], 1, &wsp5[0], 1);
1698 Vmath::Vadd(nqtot, &df[7][0], 1, &df[8][0], 1, &wsp6[0], 1);
1699 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &wsp6[0], 1, &h1[0], 1, &wsp6[0], 1);
1702 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1703 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1706 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0], 1, &g4[0], 1);
1707 Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1711 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h2[0], 1, &df[2][0], 1, &h3[0], 1, &wsp7[0], 1);
1713 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h2[0], 1, &df[5][0], 1, &h3[0], 1, &wsp8[0], 1);
1715 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h2[0], 1, &df[8][0], 1, &h3[0], 1, &wsp9[0], 1);
1718 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0], 1, &g3[0], 1);
1719 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1723 Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0], 1, &g1[0], 1);
1724 Vmath::Vvtvp (nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1727 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp7[0], 1, &df[5][0], 1, &wsp8[0], 1, &g5[0], 1);
1728 Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1731 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1, &df[5][0], 1, &g2[0], 1);
1732 Vmath::Vvtvp (nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1737 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[1][0] + df[2][0], &h1[0], 1, &wsp4[0], 1);
1739 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[4][0] + df[5][0], &h1[0], 1, &wsp5[0], 1);
1741 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[7][0] + df[8][0], &h1[0], 1, &wsp6[0], 1);
1744 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1745 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1748 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1, &g4[0], 1);
1749 Vmath::Svtvp (nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1753 Vmath::Svtsvtp(nqtot, df[1][0], &h2[0], 1, df[2][0], &h3[0], 1, &wsp7[0], 1);
1755 Vmath::Svtsvtp(nqtot, df[4][0], &h2[0], 1, df[5][0], &h3[0], 1, &wsp8[0], 1);
1757 Vmath::Svtsvtp(nqtot, df[7][0], &h2[0], 1, df[8][0], &h3[0], 1, &wsp9[0], 1);
1760 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0], 1, &g3[0], 1);
1761 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1765 Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0], 1, &g1[0], 1);
1766 Vmath::Vvtvp (nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1769 Vmath::Svtsvtp(nqtot, df[2][0], &wsp7[0], 1, df[5][0], &wsp8[0], 1, &g5[0], 1);
1770 Vmath::Svtvp (nqtot, df[8][0], &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1773 Vmath::Fill(nqtot, df[2][0]*df[2][0] + df[5][0]*df[5][0] + df[8][0]*df[8][0], &g2[0], 1);
1776 for (
unsigned int i = 0; i < dim; ++i)
1778 for (
unsigned int j = i; j < dim; ++j)
void ComputeLaplacianMetric()
const LibUtilities::PointsKeyVector GetPointsKeys() const
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey)
NekDouble GetConstFactor(const ConstFactorType &factor) const
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
#define ASSERTL0(condition, msg)
const ConstFactorMap & GetConstFactors() const
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray)
Integrate the physical point list inarray over region.
const VarCoeffMap & GetVarCoeffs() const
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const
void GeneralMatrixOp_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Principle Modified Functions .
DNekMatSharedPtr BuildTransformationMatrix(const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
MatrixType GetMatrixType() const
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
virtual NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Principle Modified Functions .
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put in...
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
LibUtilities::ShapeType GetShapeType() const
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
virtual void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
SpatialDomains::GeometrySharedPtr m_geom
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
boost::shared_ptr< DNekMat > DNekMatSharedPtr
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
LibUtilities::ShapeType DetShapeType() const
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
bool ConstFactorExists(const ConstFactorType &factor) const
virtual void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
int NumBndryCoeffs(void) const
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
int getNumberOfCoefficients(int Na)
Principle Modified Functions .
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
int GetNumPoints() const
Return points order at which basis is defined.
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
Defines a specification for a set of points.
void v_ComputeFaceNormal(const int face)
Compute the normal of a triangular face.
virtual void v_GetFacePhysMap(const int face, Array< OneD, int > &outarray)
Returns the physical values at the quadrature points of a face.
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
std::map< int, NormalVector > m_faceNormals
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey)
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
virtual int v_GetCoordim()
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
PointsKey GetPointsKey() const
Return distribution of points.
SpatialDomains::GeometrySharedPtr GetGeom() const
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
virtual void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculates the inner product .
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Geometry is straight-sided with constant geometric factors.
void ComputeQuadratureMetric()
boost::shared_ptr< TetGeom > TetGeomSharedPtr
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
Get the coordinates "coords" at the local coordinates "Lcoords".
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
const LibUtilities::BasisKey DetFaceBasisKey(const int i, const int k) const
boost::shared_ptr< StdTetExp > StdTetExpSharedPtr
GeomType
Indicates the type of element geometry.
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
Differentiate inarray in the three coordinate directions.
void Zero(int n, T *x, const int incx)
Zero vector.
boost::shared_ptr< StdExpansion > StdExpansionSharedPtr
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Geometry is curved or has non-constant factors.
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
void v_DropLocStaticCondMatrix(const MatrixKey &mkey)
Describes the specification for a Basis.
virtual void v_ComputeLaplacianMetric()
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
virtual LibUtilities::ShapeType v_DetShapeType() const
Return Shape of region, using ShapeType enum list.