Nektar++
AdjointAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File AdjointAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Evaluation of the adjoint advective term
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 
37 using namespace std;
38 
39 namespace Nektar
40 {
41 
42 string AdjointAdvection::className = SolverUtils
44  AdjointAdvection::create);
45 
46 /**
47  *
48  */
49 AdjointAdvection::AdjointAdvection():
51 {
52 }
53 
55 {
56 }
57 
59  const int nConvectiveFields,
61  const Array<OneD, Array<OneD, NekDouble> > &advVel,
62  const Array<OneD, Array<OneD, NekDouble> > &inarray,
63  Array<OneD, Array<OneD, NekDouble> > &outarray,
64  const NekDouble &time,
65  const Array<OneD, Array<OneD, NekDouble> > &pFwd,
66  const Array<OneD, Array<OneD, NekDouble> > &pBwd)
67 {
68  ASSERTL1(nConvectiveFields == inarray.num_elements(),
69  "Number of convective fields and Inarray are not compatible");
70 
71  int nPointsTot = fields[0]->GetNpoints();
72  int ndim = advVel.num_elements();
73  int nBaseDerivs = (m_halfMode || m_singleMode) ? 2 : m_spacedim;
74  int nDerivs = (m_halfMode) ? 2 : m_spacedim;
75 
76  Array<OneD, Array<OneD, NekDouble> > velocity(ndim);
77  for(int i = 0; i < ndim; ++i)
78  {
79  if(fields[i]->GetWaveSpace() && !m_singleMode && !m_halfMode)
80  {
81  velocity[i] = Array<OneD, NekDouble>(nPointsTot,0.0);
82  fields[i]->HomogeneousBwdTrans(advVel[i],velocity[i]);
83  }
84  else
85  {
86  velocity[i] = advVel[i];
87  }
88  }
89 
90  Array<OneD, Array<OneD, NekDouble> > grad (nDerivs);
91  for( int i = 0; i < nDerivs; ++i)
92  {
93  grad[i] = Array<OneD, NekDouble> (nPointsTot);
94  }
95 
96  // Evaluation of the base flow for periodic cases
97  if (m_slices > 1)
98  {
99  for (int i = 0; i < ndim; ++i)
100  {
102  m_period-time, m_period);
103  UpdateGradBase(i, fields[i]);
104  }
105  }
106 
107  //Evaluate the linearised advection term
108  for( int i = 0; i < ndim; ++i)
109  {
110  // Calculate gradient
111  switch(nDerivs)
112  {
113  case 1:
114  {
115  fields[i]->PhysDeriv(inarray[i], grad[0]);
116  }
117  break;
118  case 2:
119  {
120  fields[i]->PhysDeriv(inarray[i], grad[0], grad[1]);
121  }
122  break;
123  case 3:
124  {
125  fields[i]->PhysDeriv(inarray[i], grad[0], grad[1], grad[2]);
126  if(m_multipleModes)
127  {
128  // transform gradients into physical Fourier space
129  fields[i]->HomogeneousBwdTrans(grad[0], grad[0]);
130  fields[i]->HomogeneousBwdTrans(grad[1], grad[1]);
131  fields[i]->HomogeneousBwdTrans(grad[2], grad[2]);
132  }
133  }
134  break;
135  }
136 
137  // Calculate -U_j du'_i/dx_j
138  Vmath::Vmul(nPointsTot,grad[0], 1, m_baseflow[0], 1, outarray[i], 1);
139  for( int j = 1; j < nDerivs; ++j)
140  {
141  Vmath::Vvtvp(nPointsTot,grad[j], 1,
142  m_baseflow[j], 1,
143  outarray[i], 1,
144  outarray[i], 1);
145  }
146  Vmath::Neg(nPointsTot,outarray[i],1);
147 
148  // Add u'_j U_j/ dx_i
149  int lim = (m_halfMode) ? 2 : ndim;
150  if ( (m_halfMode || m_singleMode) && i==2)
151  {
152  lim = 0;
153  }
154  for( int j = 0; j < lim; ++j)
155  {
156  Vmath::Vvtvp(nPointsTot,m_gradBase[j*nBaseDerivs + i], 1,
157  velocity[j], 1,
158  outarray[i], 1,
159  outarray[i], 1);
160  }
161 
162  if(m_multipleModes)
163  {
164  fields[i]->HomogeneousFwdTrans(outarray[i],outarray[i]);
165  }
166  Vmath::Neg(nPointsTot,outarray[i],1);
167  }
168 }
169 
170 } //end of namespace
171 
bool m_singleMode
flag to determine if use single mode or not
Array< OneD, Array< OneD, NekDouble > > m_baseflow
Storage for base flow.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
STL namespace.
int m_slices
number of slices
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayofArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayofArray)
Advects a vector field.
Array< OneD, Array< OneD, NekDouble > > m_interp
interpolation vector
void UpdateBase(const NekDouble m_slices, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble m_time, const NekDouble m_period)
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
double NekDouble
NekDouble m_period
period length
bool m_multipleModes
flag to determine if use multiple mode or not
bool m_halfMode
flag to determine if use half mode or not
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:199
void UpdateGradBase(const int var, const MultiRegions::ExpListSharedPtr &field)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, Array< OneD, NekDouble > > m_gradBase
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186