Nektar++
ContField2D.h
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File ContField2D.h
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Field definition in tow-dimensions
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #ifndef NEKTAR_LIBS_MULTIREGIONS_CONTFIELD2D_H
36 #define NEKTAR_LIBS_MULTIREGIONS_CONTFIELD2D_H
37 
46 
47 
48 namespace Nektar
49 {
50  namespace MultiRegions
51  {
52  /// This class is the abstraction of a global continuous two-
53  /// dimensional spectral/hp element expansion which approximates the
54  /// solution of a set of partial differential equations.
56  {
57  public:
58  /// The default constructor.
60 
61  /// This constructor sets up global continuous field based on an
62  /// input mesh and boundary conditions.
66  const std::string &variable = "DefaultVar",
67  const bool DeclareCoeffPhysArrays = true,
68  const bool CheckIfSingularSystem = false,
71 
72  /// Construct a global continuous field with solution type based on
73  /// another field but using a separate input mesh and boundary
74  /// conditions.
75  MULTI_REGIONS_EXPORT ContField2D(const ContField2D &In,
77  const std::string &variable,
78  const bool DeclareCoeffPhysArrays = true,
79  const bool CheckIfSingularSystem = false);
80 
81  /// The copy constructor.
82  MULTI_REGIONS_EXPORT ContField2D(const ContField2D &In, bool DeclareCoeffPhysArrays = true);
83 
84  /// The default destructor.
86 
87  /// Assembles the global coefficients \f$\boldsymbol{\hat{u}}_g\f$
88  /// from the local coefficients \f$\boldsymbol{\hat{u}}_l\f$.
89  inline void Assemble();
90 
91  /// Assembles the global coefficients \f$\boldsymbol{\hat{u}}_g\f$
92  /// from the local coefficients \f$\boldsymbol{\hat{u}}_l\f$.
93  inline void Assemble(
94  const Array<OneD, const NekDouble> &inarray,
95  Array<OneD,NekDouble> &outarray) const;
96 
97  /// Returns the map from local to global level.
99  const;
100 
101 
102  /// Calculates the inner product of a function
103  /// \f$f(\boldsymbol{x})\f$ with respect to all <em>global</em>
104  /// expansion modes \f$\phi_n^e(\boldsymbol{x})\f$.
105  inline void IProductWRTBase(
106  const Array<OneD, const NekDouble> &inarray,
107  Array<OneD, NekDouble> &outarray,
108  CoeffState coeffstate = eLocal);
109 
110  /// Performs the global forward transformation of a function
111  /// \f$f(\boldsymbol{x})\f$, subject to the boundary conditions
112  /// specified.
114  Array<OneD, NekDouble> &outarray,
115  CoeffState coeffstate = eLocal);
116 
117  /// Performs the backward transformation of the spectral/hp
118  /// element expansion.
119  inline void BwdTrans(
120  const Array<OneD, const NekDouble> &inarray,
121  Array<OneD, NekDouble> &outarray,
122  CoeffState coeffstate = eLocal);
123 
124  /// Multiply a solution by the inverse mass matrix.
126  const Array<OneD, const NekDouble> &inarray,
127  Array<OneD, NekDouble> &outarray,
128  CoeffState coeffstate = eLocal);
129 
130  /// Solves the two-dimensional Laplace equation, subject to the
131  /// boundary conditions specified.
133  Array<OneD, NekDouble> &outarray,
134  const Array<OneD, const NekDouble> &dirForcing
137  variablecoeffs = NullNekDoubleArrayofArray,
138  NekDouble time = 0.0,
139  CoeffState coeffstate = eLocal);
140 
141 
142  /// Compute the eigenvalues of the linear advection operator.
144  const NekDouble ay,
149 
150  /// Returns the boundary conditions expansion.
153 
154  /// Returns the boundary conditions.
157 
158  inline int GetGlobalMatrixNnz(const GlobalMatrixKey &gkey);
159 
160  protected:
161 
162  private:
163  /// (A shared pointer to) the object which contains all the
164  /// required information for the transformation from local to
165  /// global degrees of freedom.
167 
168  /// (A shared pointer to) a list which collects all the global
169  /// matrices being assembled, such that they should be constructed
170  /// only once.
172 
173  /// A manager which collects all the global
174  /// linear systems being assembled, such that they should be
175  /// constructed only once.
177 
178  /// Solves the linear system specified by the key \a key.
181  Array<OneD, NekDouble> &inout,
182  const Array<OneD, const NekDouble> &dirForcing
184 
185  /// Returns the global matrix specified by \a mkey.
187 
188  /// Returns the linear system specified by the key \a mkey.
190 
192 
193  /// Impose the Dirichlet Boundary Conditions on outarray
195 
197 
198  MULTI_REGIONS_EXPORT virtual void v_FillBndCondFromField(const int nreg);
199 
200  /// Gathers the global coefficients \f$\boldsymbol{\hat{u}}_g\f$
201  /// from the local coefficients \f$\boldsymbol{\hat{u}}_l\f$.
203  const Array<OneD, const NekDouble> &inarray,
204  Array<OneD,NekDouble> &outarray,
205  bool useComm);
206 
207  MULTI_REGIONS_EXPORT virtual void v_LocalToGlobal(bool useComm);
208 
209  /// Scatters from the global coefficients
210  /// \f$\boldsymbol{\hat{u}}_g\f$ to the local coefficients
211  /// \f$\boldsymbol{\hat{u}}_l\f$.
213  const Array<OneD, const NekDouble> &inarray,
214  Array<OneD,NekDouble> &outarray);
215 
216  MULTI_REGIONS_EXPORT virtual void v_GlobalToLocal(void);
217 
218  /// Template method virtual forwarder for FwdTrans().
219  MULTI_REGIONS_EXPORT virtual void v_BwdTrans(
220  const Array<OneD, const NekDouble> &inarray,
221  Array<OneD, NekDouble> &outarray,
222  CoeffState coeffstate);
223 
224 
225  /// Template method virtual forwarder for FwdTrans().
226  MULTI_REGIONS_EXPORT virtual void v_FwdTrans(
227  const Array<OneD, const NekDouble> &inarray,
228  Array<OneD, NekDouble> &outarray,
229  CoeffState coeffstate);
230 
231  /// Template method virtual forwarded for SmoothField().
232  MULTI_REGIONS_EXPORT virtual void v_SmoothField(
233  Array<OneD,NekDouble> &field);
234 
235  /// Template method virtual forwarder for MultiplyByInvMassMatrix().
237  const Array<OneD, const NekDouble> &inarray,
238  Array<OneD, NekDouble> &outarray,
239  CoeffState coeffstate);
240 
241  /// Solves the two-dimensional Helmholtz equation, subject to the
242  /// boundary conditions specified.
243  MULTI_REGIONS_EXPORT virtual void v_HelmSolve(
244  const Array<OneD, const NekDouble> &inarray,
245  Array<OneD, NekDouble> &outarray,
246  const FlagList &flags,
247  const StdRegions::ConstFactorMap &factors,
248  const StdRegions::VarCoeffMap &varcoeff,
249  const MultiRegions::VarFactorsMap &varfactors,
250  const Array<OneD, const NekDouble> &dirForcing,
251  const bool PhysSpaceForcing);
252 
253  /// Calculates the result of the multiplication of a global
254  /// matrix of type specified by \a mkey with a vector given by \a
255  /// inarray.
256  virtual void v_GeneralMatrixOp(
257  const GlobalMatrixKey &gkey,
258  const Array<OneD,const NekDouble> &inarray,
259  Array<OneD, NekDouble> &outarray,
260  CoeffState coeffstate);
261 
262  // Solve the linear advection problem assuming that m_coeffs
263  // vector contains an intial estimate for solution
265  const Array<OneD, const NekDouble> &inarray,
266  Array<OneD, NekDouble> &outarray,
267  const NekDouble lambda,
268  CoeffState coeffstate = eLocal,
270  dirForcing = NullNekDouble1DArray);
271 
272  // Solve the linear advection problem assuming that m_coeff
273  // vector contains an intial estimate for solution
275  const Array<OneD, const NekDouble> &inarray,
276  Array<OneD, NekDouble> &outarray,
277  const NekDouble lambda,
278  CoeffState coeffstate = eLocal,
280  dirForcing = NullNekDouble1DArray);
281 
282  /// Template method virtual forwarder for GetBndConditions().
283  MULTI_REGIONS_EXPORT virtual const Array<OneD,const SpatialDomains
286 
287  };
288 
289  typedef std::shared_ptr<ContField2D> ContField2DSharedPtr;
290 
291  /**
292  * This operation is evaluated as:
293  * \f{tabbing}
294  * \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\
295  * > > Do \= $i=$ $0,N_m^e-1$ \\
296  * > > > $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] =
297  * \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot
298  * \boldsymbol{\hat{u}}^{e}[i]$\\
299  * > > continue\\
300  * > continue
301  * \f}
302  * where \a map\f$[e][i]\f$ is the mapping array and \a
303  * sign\f$[e][i]\f$ is an array of similar dimensions ensuring the
304  * correct modal connectivity between the different elements (both
305  * these arrays are contained in the data member #m_locToGloMap). This
306  * operation is equivalent to the gather operation
307  * \f$\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\f$,
308  * where \f$\mathcal{A}\f$ is the
309  * \f$N_{\mathrm{eof}}\times N_{\mathrm{dof}}\f$ permutation matrix.
310  *
311  * @note The array #m_coeffs should be filled with the local
312  * coefficients \f$\boldsymbol{\hat{u}}_l\f$ and that the
313  * resulting global coefficients \f$\boldsymbol{\hat{u}}_g\f$
314  * will be stored in #m_coeffs.
315  */
316  inline void ContField2D::Assemble()
317  {
318  m_locToGloMap->Assemble(m_coeffs,m_coeffs);
319  }
320 
321  /**
322  * This operation is evaluated as:
323  * \f{tabbing}
324  * \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\
325  * > > Do \= $i=$ $0,N_m^e-1$ \\
326  * > > > $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] =
327  * \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot
328  * \boldsymbol{\hat{u}}^{e}[i]$\\
329  * > > continue\\
330  * > continue
331  * \f}
332  * where \a map\f$[e][i]\f$ is the mapping array and \a
333  * sign\f$[e][i]\f$ is an array of similar dimensions ensuring the
334  * correct modal connectivity between the different elements (both
335  * these arrays are contained in the data member #m_locToGloMap). This
336  * operation is equivalent to the gather operation
337  * \f$\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\f$,
338  * where \f$\mathcal{A}\f$ is the
339  * \f$N_{\mathrm{eof}}\times N_{\mathrm{dof}}\f$ permutation matrix.
340  *
341  * @param inarray An array of size \f$N_\mathrm{eof}\f$
342  * containing the local degrees of freedom
343  * \f$\boldsymbol{x}_l\f$.
344  * @param outarray The resulting global degrees of freedom
345  * \f$\boldsymbol{x}_g\f$ will be stored in this
346  * array of size \f$N_\mathrm{dof}\f$.
347  */
349  const Array<OneD, const NekDouble> &inarray,
350  Array<OneD,NekDouble> &outarray) const
351  {
352  m_locToGloMap->Assemble(inarray,outarray);
353  }
354 
355 
356  inline const AssemblyMapCGSharedPtr&
358  {
359  return m_locToGloMap;
360  }
361 
362 
363  /**
364  * The operation is evaluated locally (i.e. with respect to all local
365  * expansion modes) by the function ExpList#IProductWRTBase. The inner
366  * product with respect to the global expansion modes is than obtained
367  * by a global assembly operation.
368  *
369  * The values of the function \f$f(\boldsymbol{x})\f$ evaluated at the
370  * quadrature points \f$\boldsymbol{x}_i\f$ should be contained in the
371  * variable #m_phys of the ExpList object \a in. The result is stored
372  * in the array #m_coeffs.
373  *
374  * @param In An ExpList, containing the discrete evaluation
375  * of \f$f(\boldsymbol{x})\f$ at the quadrature
376  * points in its array #m_phys.
377  */
379  const Array<OneD, const NekDouble> &inarray,
380  Array<OneD, NekDouble> &outarray,
381  CoeffState coeffstate)
382 
383  {
384  if(coeffstate == eGlobal)
385  {
386  bool doGlobalOp = m_globalOptParam->DoGlobalMatOp(
388 
389  if(doGlobalOp)
390  {
392  m_locToGloMap);
394  mat->Multiply(inarray,outarray);
395  m_locToGloMap->UniversalAssemble(outarray);
396  }
397  else
398  {
400  IProductWRTBase_IterPerExp(inarray,wsp);
401  Assemble(wsp,outarray);
402  }
403  }
404  else
405  {
406  IProductWRTBase_IterPerExp(inarray,outarray);
407  }
408  }
409 
410  /**
411  * Given the coefficients of an expansion, this function evaluates the
412  * spectral/hp expansion \f$u^{\delta}(\boldsymbol{x})\f$ at the
413  * quadrature points \f$\boldsymbol{x}_i\f$. This operation is
414  * evaluated locally by the function ExpList#BwdTrans.
415  *
416  * The coefficients of the expansion should be contained in the variable
417  * #m_coeffs of the ExpList object \a In. The resulting physical values
418  * at the quadrature points \f$u^{\delta}(\boldsymbol{x}_i)\f$ are
419  * stored in the array #m_phys.
420  *
421  * @param In An ExpList, containing the local coefficients
422  * \f$\hat{u}_n^e\f$ in its array #m_coeffs.
423  */
425  const Array<OneD, const NekDouble> &inarray,
426  Array<OneD, NekDouble> &outarray,
427  CoeffState coeffstate)
428  {
429  if(coeffstate == eGlobal)
430  {
431  bool doGlobalOp = m_globalOptParam->DoGlobalMatOp(
433 
434  if(doGlobalOp)
435  {
438  mat->Multiply(inarray,outarray);
439  }
440  else
441  {
443  GlobalToLocal(inarray,wsp);
444  BwdTrans_IterPerExp(wsp,outarray);
445  }
446  }
447  else
448  {
449  BwdTrans_IterPerExp(inarray,outarray);
450  }
451  }
452 
455  {
456  return m_bndCondExpansions;
457  }
458 
461  {
462  return m_bndConditions;
463  }
464 
466  {
468  "To use method must have a AssemblyMap "
469  "attached to key");
470 
471  auto matrixIter = m_globalMat->find(gkey);
472 
473  if(matrixIter == m_globalMat->end())
474  {
475  return 0;
476  }
477  else
478  {
479  return matrixIter->second->GetNumNonZeroEntries();
480  }
481 
482  return 0;
483  }
484 
485  } //end of namespace
486 } //end of namespace
487 
488 #endif // MULTIERGIONS_CONTFIELD2D_H
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
Template method virtual forwarder for FwdTrans().
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:163
void LaplaceSolve(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const Array< OneD, Array< OneD, NekDouble > > &variablecoeffs=NullNekDoubleArrayofArray, NekDouble time=0.0, CoeffState coeffstate=eLocal)
Solves the two-dimensional Laplace equation, subject to the boundary conditions specified.
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Local coefficients.
std::shared_ptr< AssemblyMapCG > AssemblyMapCGSharedPtr
Definition: AssemblyMapCG.h:51
static Array< OneD, NekDouble > NullNekDouble1DArray
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Performs the global forward transformation of a function , subject to the boundary conditions specifi...
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1106
void v_LinearAdvectionReactionSolve(const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions()
Returns the boundary conditions.
Definition: ContField2D.h:460
virtual void v_ImposeDirichletConditions(Array< OneD, NekDouble > &outarray)
Impose the Dirichlet Boundary Conditions on outarray.
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
std::shared_ptr< ContField2D > ContField2DSharedPtr
Definition: ContField2D.h:289
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Performs the backward transformation of the spectral/hp element expansion.
Definition: ContField2D.h:424
#define MULTI_REGIONS_EXPORT
std::shared_ptr< GlobalLinSys > GlobalLinSysSharedPtr
Pointer to a GlobalLinSys object.
Definition: GlobalLinSys.h:50
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176
Global coefficients.
virtual void v_LocalToGlobal(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm)
Gathers the global coefficients from the local coefficients .
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion w...
Definition: ContField2D.h:55
void BwdTrans_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function elementally evaluates the backward transformation of the global spectral/hp element exp...
Definition: ExpList.h:1786
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:264
std::shared_ptr< GlobalMatrix > GlobalMatrixSharedPtr
Shared pointer to a GlobalMatrix object.
Definition: GlobalMatrix.h:88
bool LocToGloMapIsDefined() const
Returns true if a local to global map is defined.
void IProductWRTBase_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function calculates the inner product of a function with respect to all local expansion modes ...
Definition: ExpList.h:1725
virtual void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
Template method virtual forwarder for FwdTrans().
virtual void v_SmoothField(Array< OneD, NekDouble > &field)
Template method virtual forwarded for SmoothField().
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
GlobalMatrixSharedPtr GetGlobalMatrix(const GlobalMatrixKey &mkey)
Returns the global matrix specified by mkey.
virtual ~ContField2D()
The default destructor.
virtual void v_GeneralMatrixOp(const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
Calculates the result of the multiplication of a global matrix of type specified by mkey with a vecto...
ContField2D()
The default constructor.
Definition: ContField2D.cpp:87
virtual void v_GlobalToLocal(void)
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField2D.h:316
double NekDouble
Defines a list of flags.
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
virtual const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & v_GetBndConditions()
Template method virtual forwarder for GetBndConditions().
Describe a linear system.
std::shared_ptr< BoundaryConditionBase > BoundaryConditionShPtr
Definition: Conditions.h:219
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
Describes a matrix with ordering defined by a local to global map.
const AssemblyMapCGSharedPtr & GetLocalToGlobalMap() const
Returns the map from local to global level.
Definition: ContField2D.h:357
std::shared_ptr< GlobalMatrixMap > GlobalMatrixMapShPtr
Shared pointer to a global matrix map.
Definition: GlobalMatrix.h:92
virtual void v_MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
Template method virtual forwarder for MultiplyByInvMassMatrix().
void MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Multiply a solution by the inverse mass matrix.
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs
virtual void v_HelmSolve(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const MultiRegions::VarFactorsMap &varfactors, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified...
GlobalLinSysSharedPtr GetGlobalLinSys(const GlobalLinSysKey &mkey)
Returns the linear system specified by the key mkey.
void LinearAdvectionEigs(const NekDouble ax, const NekDouble ay, Array< OneD, NekDouble > &Real, Array< OneD, NekDouble > &Imag, Array< OneD, NekDouble > &Evecs=NullNekDouble1DArray)
Compute the eigenvalues of the linear advection operator.
virtual void v_ClearGlobalLinSysManager(void)
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayofArray
int GetGlobalMatrixNnz(const GlobalMatrixKey &gkey)
Definition: ContField2D.h:465
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
std::shared_ptr< SessionReader > SessionReaderSharedPtr
const Array< OneD, const MultiRegions::ExpListSharedPtr > & GetBndCondExpansions()
Returns the boundary conditions expansion.
Definition: ContField2D.h:454
virtual void v_LinearAdvectionDiffusionReactionSolve(const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
std::map< StdRegions::ConstFactorType, Array< OneD, NekDouble > > VarFactorsMap