Nektar++
Public Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::MultiRegions::ContField2D Class Reference

This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations. More...

#include <ContField2D.h>

Inheritance diagram for Nektar::MultiRegions::ContField2D:
[legend]

Public Member Functions

 ContField2D ()
 The default constructor. More...
 
 ContField2D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable="DefaultVar", const bool DeclareCoeffPhysArrays=true, const bool CheckIfSingularSystem=false, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 This constructor sets up global continuous field based on an input mesh and boundary conditions. More...
 
 ContField2D (const ContField2D &In, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable, const bool DeclareCoeffPhysArrays=true, const bool CheckIfSingularSystem=false)
 Construct a global continuous field with solution type based on another field but using a separate input mesh and boundary conditions. More...
 
 ContField2D (const ContField2D &In, bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
virtual ~ContField2D ()
 The default destructor. More...
 
void Assemble ()
 Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void Assemble (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) const
 Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
const AssemblyMapCGSharedPtrGetLocalToGlobalMap () const
 Returns the map from local to global level. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all global expansion modes \(\phi_n^e(\boldsymbol{x})\). More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Performs the global forward transformation of a function \(f(\boldsymbol{x})\), subject to the boundary conditions specified. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Performs the backward transformation of the spectral/hp element expansion. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Multiply a solution by the inverse mass matrix. More...
 
void LaplaceSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const Array< OneD, Array< OneD, NekDouble > > &variablecoeffs=NullNekDoubleArrayofArray, NekDouble time=0.0, CoeffState coeffstate=eLocal)
 Solves the two-dimensional Laplace equation, subject to the boundary conditions specified. More...
 
void LinearAdvectionEigs (const NekDouble ax, const NekDouble ay, Array< OneD, NekDouble > &Real, Array< OneD, NekDouble > &Imag, Array< OneD, NekDouble > &Evecs=NullNekDouble1DArray)
 Compute the eigenvalues of the linear advection operator. More...
 
const Array< OneD, const MultiRegions::ExpListSharedPtr > & GetBndCondExpansions ()
 Returns the boundary conditions expansion. More...
 
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions ()
 Returns the boundary conditions. More...
 
int GetGlobalMatrixNnz (const GlobalMatrixKey &gkey)
 
- Public Member Functions inherited from Nektar::MultiRegions::DisContField2D
 DisContField2D ()
 Default constructor. More...
 
 DisContField2D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable, const bool SetUpJustDG=true, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructs a global discontinuous field based on an input mesh with boundary conditions. More...
 
 DisContField2D (const DisContField2D &In, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable, const bool SetUpJustDG=false, const bool DeclareCoeffPhysArrays=true)
 
 DisContField2D (const DisContField2D &In, const bool DeclareCoeffPhysArrays=true)
 
virtual ~DisContField2D ()
 Default destructor. More...
 
GlobalLinSysSharedPtr GetGlobalBndLinSys (const GlobalLinSysKey &mkey)
 
NekDouble L2_DGDeriv (const int dir, const Array< OneD, const NekDouble > &soln)
 Calculate the \( L^2 \) error of the \( Q_{\rm dir} \) derivative using the consistent DG evaluation of \( Q_{\rm dir} \). More...
 
void EvaluateHDGPostProcessing (Array< OneD, NekDouble > &outarray)
 Evaluate HDG post-processing to increase polynomial order of solution. More...
 
virtual ExpListSharedPtrv_GetTrace ()
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList2D
 ExpList2D ()
 Default constructor. More...
 
 ExpList2D (const ExpList2D &In, const bool DeclareCoeffPhysArrays=true)
 Copy constructor. More...
 
 ExpList2D (const ExpList2D &In, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor copying only elements defined in eIds. More...
 
 ExpList2D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph2D, const bool DelcareCoeffPhysArrays=true, const std::string &var="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Sets up a list of local expansions based on an input mesh. More...
 
 ExpList2D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::ExpansionMap &expansions, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Sets up a list of local expansions based on an expansion Map. More...
 
 ExpList2D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &TriBa, const LibUtilities::BasisKey &TriBb, const LibUtilities::BasisKey &QuadBa, const LibUtilities::BasisKey &QuadBb, const SpatialDomains::MeshGraphSharedPtr &graph2D, const LibUtilities::PointsType TriNb=LibUtilities::SIZE_PointsType, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Sets up a list of local expansions based on an input mesh and separately defined basiskeys. More...
 
 ExpList2D (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, const ExpListSharedPtr > &bndConstraint, const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > &bndCond, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph3D, const PeriodicMap &periodicFaces, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 
 ExpList2D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph3D, const std::string variable="DefaultVar", const LibUtilities::CommSharedPtr comm=LibUtilities::CommSharedPtr(), const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Specialised constructor for Neumann boundary conditions in DisContField3D and ContField3D. More...
 
virtual ~ExpList2D ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor. More...
 
 ExpList (const ExpList &in, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true)
 Constructor copying only elements defined in eIds. More...
 
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
virtual ~ExpList ()
 The default destructor. More...
 
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom \(N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m\). More...
 
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid. More...
 
ExpansionType GetExpType (void)
 Returns the type of the expansion. More...
 
void SetExpType (ExpansionType Type)
 Returns the type of the expansion. More...
 
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements. More...
 
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements. More...
 
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More...
 
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element \(=Q_{\mathrm{tot}}\). More...
 
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More...
 
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction. More...
 
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false. More...
 
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis. More...
 
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val. More...
 
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More...
 
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys. More...
 
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys. More...
 
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More...
 
bool GetPhysState (void) const
 This function indicates whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More...
 
NekDouble PhysIntegral (void)
 This function integrates a function \(f(\boldsymbol{x})\) over the domain consisting of all the elements of the expansion. More...
 
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function \(f(\boldsymbol{x})\) over the domain consisting of all the elements of the expansion. More...
 
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all local expansion modes \(\phi_n^e(\boldsymbol{x})\). More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative (in direction. More...
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Directional derivative along a given direction. More...
 
void IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative (in direction. More...
 
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function \(u(\boldsymbol{x})\) onto the global spectral/hp expansion. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements. More...
 
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const MultiRegions::VarFactorsMap &varfactors=MultiRegions::NullVarFactorsMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const bool PhysSpaceForcing=true)
 Solve helmholtz problem. More...
 
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points \(\boldsymbol{x}_i\). More...
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
 
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
void ApplyGeomInfo ()
 Apply geometry information to each expansion. More...
 
void Reset ()
 Reset geometry information and reset matrices. More...
 
void WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
void WriteTecplotZone (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotField (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1)
 
void WriteVtkHeader (std::ostream &outfile)
 
void WriteVtkFooter (std::ostream &outfile)
 
void WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0)
 
void WriteVtkPieceFooter (std::ostream &outfile, int expansion)
 
void WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v")
 
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid. More...
 
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray. More...
 
int GetShapeDimension ()
 This function returns the dimension of the shape of the element eid. More...
 
const Array< OneD, const NekDouble > & GetCoeffs () const
 This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More...
 
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array. More...
 
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion. More...
 
void FillBndCondFromField (const int nreg)
 Fill Bnd Condition expansion in nreg from the values stored in expansion. More...
 
void LocalToGlobal (bool useComm=true)
 Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm=true)
 
void GlobalToLocal (void)
 Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
const Array< OneD, const NekDouble > & GetPhys () const
 This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More...
 
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the \(L_\infty\) error of the global spectral/hp element approximation. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the \(L_2\) error with respect to soln of the global spectral/hp element approximation. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the \(H^1\) error of the global spectral/hp element approximation. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More...
 
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More...
 
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion. More...
 
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
void SetHomoLen (const NekDouble lhom)
 This function sets the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
int GetExpSize (void)
 This function returns the number of elements in the expansion. More...
 
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More...
 
const std::shared_ptr< LocalRegions::ExpansionVectorGetExp () const
 This function returns the vector of elements in the expansion. More...
 
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the \(n^{\mathrm{th}}\) element. More...
 
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &phys)
 
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n. More...
 
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n. More...
 
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More...
 
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More...
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 This function discretely evaluates the derivative of a function \(f(\boldsymbol{x})\) on the domain consisting of all elements of the expansion. More...
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
const Array< OneD, const std::shared_ptr< ExpList > > & GetBndCondExpansions ()
 
std::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
 
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
std::shared_ptr< ExpList > & GetTrace ()
 
std::shared_ptr< AssemblyMapDG > & GetTraceMap (void)
 
const Array< OneD, const int > & GetTraceBndMap (void)
 
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
const std::vector< bool > & GetLeftAdjacentFaces (void) const
 
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions ()
 
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & UpdateBndConditions ()
 
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More...
 
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SetUpPhysNormals ()
 
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
void GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays=true)
 
void ExtractElmtToBndPhys (int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
void ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
void ExtractPhysToBnd (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
void GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, bool homoStrips=false, std::vector< unsigned int > &HomoSIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
 
const NekOptimize::GlobalOptParamSharedPtrGetGlobalOptParam (void)
 
std::map< int, RobinBCInfoSharedPtrGetRobinBCInfo ()
 
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
 
std::vector< LibUtilities::FieldDefinitionsSharedPtrGetFieldDefinitions ()
 
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs. More...
 
void GenerateElementVector (const int ElementID, const NekDouble scalar1, const NekDouble scalar2, Array< OneD, NekDouble > &outarray)
 Generate vector v such that v[i] = scalar1 if i is in the element < ElementID. Otherwise, v[i] = scalar2. More...
 
std::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
std::shared_ptr< LibUtilities::SessionReaderGetSession () const
 Returns the session object. More...
 
std::shared_ptr< LibUtilities::CommGetComm ()
 Returns the comm object. More...
 
SpatialDomains::MeshGraphSharedPtr GetGraph ()
 
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
 
std::shared_ptr< ExpList > & GetPlane (int n)
 
void CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct collections of elements containing a single element type and polynomial order from the list of expansions. More...
 
void ClearGlobalLinSysManager (void)
 

Private Member Functions

void GlobalSolve (const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solves the linear system specified by the key key. More...
 
GlobalMatrixSharedPtr GetGlobalMatrix (const GlobalMatrixKey &mkey)
 Returns the global matrix specified by mkey. More...
 
GlobalLinSysSharedPtr GetGlobalLinSys (const GlobalLinSysKey &mkey)
 Returns the linear system specified by the key mkey. More...
 
GlobalLinSysSharedPtr GenGlobalLinSys (const GlobalLinSysKey &mkey)
 
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose the Dirichlet Boundary Conditions on outarray. More...
 
virtual void v_FillBndCondFromField ()
 
virtual void v_FillBndCondFromField (const int nreg)
 
virtual void v_LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm)
 Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
virtual void v_LocalToGlobal (bool useComm)
 
virtual void v_GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
virtual void v_GlobalToLocal (void)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Template method virtual forwarder for FwdTrans(). More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Template method virtual forwarder for FwdTrans(). More...
 
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
 Template method virtual forwarded for SmoothField(). More...
 
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Template method virtual forwarder for MultiplyByInvMassMatrix(). More...
 
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const MultiRegions::VarFactorsMap &varfactors, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
 Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified. More...
 
virtual void v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray. More...
 
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & v_GetBndConditions ()
 Template method virtual forwarder for GetBndConditions(). More...
 
virtual void v_ClearGlobalLinSysManager (void)
 

Private Attributes

AssemblyMapCGSharedPtr m_locToGloMap
 (A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom. More...
 
GlobalMatrixMapShPtr m_globalMat
 (A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once. More...
 
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSysm_globalLinSysManager
 A manager which collects all the global linear systems being assembled, such that they should be constructed only once. More...
 

Additional Inherited Members

- Public Attributes inherited from Nektar::MultiRegions::DisContField2D
Array< OneD, int > m_BCtoElmMap
 
Array< OneD, int > m_BCtoEdgMap
 
- Public Attributes inherited from Nektar::MultiRegions::ExpList
ExpansionType m_expType
 
- Protected Member Functions inherited from Nektar::MultiRegions::DisContField2D
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
void SetUpDG (const std::string="DefaultVar")
 Set up all DG member variables and maps. More...
 
bool SameTypeOfBoundaryConditions (const DisContField2D &In)
 
void GenerateBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph2D, const SpatialDomains::BoundaryConditions &bcs, const std::string &variable, const bool DeclareCoeffPhysArrays=true)
 This function discretises the boundary conditions by setting up a list of one-dimensional boundary expansions. More...
 
void FindPeriodicEdges (const SpatialDomains::BoundaryConditions &bcs, const std::string &variable)
 Determine the periodic edges and vertices for the given graph. More...
 
bool IsLeftAdjacentEdge (const int n, const int e)
 
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 This method extracts the "forward" and "backward" trace data from the array field and puts the data into output vectors Fwd and Bwd. More...
 
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 Add trace contributions into elemental coefficient spaces. More...
 
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 Add trace contributions into elemental coefficient spaces. More...
 
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This method extracts the trace (edges in 2D) from the field inarray and puts the values in outarray. More...
 
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 Set up a list of element IDs and edge IDs that link to the boundary conditions. More...
 
virtual void v_GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays)
 
virtual void v_Reset ()
 Reset this field, so that geometry information can be updated. More...
 
virtual void v_GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces)
 Obtain a copy of the periodic edges and vertices for this field. More...
 
virtual AssemblyMapDGSharedPtrv_GetTraceMap ()
 
virtual const Array< OneD, const MultiRegions::ExpListSharedPtr > & v_GetBndCondExpansions ()
 
virtual MultiRegions::ExpListSharedPtrv_UpdateBndCondExpansion (int i)
 
virtual Array< OneD, SpatialDomains::BoundaryConditionShPtr > & v_UpdateBndConditions ()
 
virtual void v_EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
 
virtual std::map< int, RobinBCInfoSharedPtrv_GetRobinBCInfo ()
 Search through the edge expansions and identify which ones have Robin/Mixed type boundary conditions. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList2D
void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the one- dimensional normal velocity field given by Vn. More...
 
void v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 For each local element, copy the normals stored in the element list into the array normals. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
void SetCoeffPhysOffsets ()
 Definition of the total number of degrees of freedom and quadrature points and offsets to access data. More...
 
std::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype. More...
 
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
 
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
std::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map. More...
 
void GlobalEigenSystem (const std::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
 
std::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey. More...
 
std::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More...
 
void ReadGlobalOptimizationParameters ()
 
virtual int v_GetNumElmts (void)
 
virtual void v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
virtual const Array< OneD, const int > & v_GetTraceBndMap ()
 
virtual const std::vector< bool > & v_GetLeftAdjacentFaces (void) const
 
virtual void v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q)
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractElmtToBndPhys (const int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
virtual void v_ExtractPhysToBndElmt (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
virtual void v_ExtractPhysToBnd (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
virtual void v_GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
virtual std::vector< LibUtilities::FieldDefinitionsSharedPtrv_GetFieldDefinitions (void)
 
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list. More...
 
virtual void v_ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 
virtual void v_WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
virtual void v_WriteTecplotZone (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotField (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotConnectivity (std::ostream &outfile, int expansion)
 
virtual void v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var)
 
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 
virtual Array< OneD, const NekDoublev_HomogeneousEnergy (void)
 
virtual LibUtilities::TranspositionSharedPtr v_GetTransposition (void)
 
virtual NekDouble v_GetHomoLen (void)
 
virtual void v_SetHomoLen (const NekDouble lhom)
 
virtual Array< OneD, const unsigned int > v_GetZIDs (void)
 
virtual Array< OneD, const unsigned int > v_GetYIDs (void)
 
void ExtractFileBCs (const std::string &fileName, LibUtilities::CommSharedPtr comm, const std::string &varName, const std::shared_ptr< ExpList > locExpList)
 
- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static SpatialDomains::BoundaryConditionShPtr GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
 
- Protected Attributes inherited from Nektar::MultiRegions::DisContField2D
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
Array< OneD, MultiRegions::ExpListSharedPtrm_bndCondExpansions
 An object which contains the discretised boundary conditions. More...
 
Array< OneD, SpatialDomains::BoundaryConditionShPtrm_bndConditions
 An array which contains the information about the boundary condition on the different boundary regions. More...
 
GlobalLinSysMapShPtr m_globalBndMat
 
ExpListSharedPtr m_trace
 
AssemblyMapDGSharedPtr m_traceMap
 
LocTraceToTraceMapSharedPtr m_locTraceToTraceMap
 
Array< OneD, Array< OneD, unsigned int > > m_mapEdgeToElmn
 
Array< OneD, Array< OneD, unsigned int > > m_signEdgeToElmn
 
Array< OneD, StdRegions::Orientationm_edgedir
 
std::set< int > m_boundaryEdges
 A set storing the global IDs of any boundary edges. More...
 
PeriodicMap m_periodicVerts
 A map which identifies groups of periodic vertices. More...
 
PeriodicMap m_periodicEdges
 A map which identifies pairs of periodic edges. More...
 
std::vector< int > m_periodicFwdCopy
 A vector indicating degress of freedom which need to be copied from forwards to backwards space in case of a periodic boundary condition. More...
 
std::vector< int > m_periodicBwdCopy
 
std::vector< bool > m_leftAdjacentEdges
 
- Protected Attributes inherited from Nektar::MultiRegions::ExpList
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Mesh associated with this expansion list. More...
 
int m_ncoeffs
 The total number of local degrees of freedom. m_ncoeffs \(=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l\). More...
 
int m_npoints
 
Array< OneD, NekDoublem_coeffs
 Concatenation of all local expansion coefficients. More...
 
Array< OneD, NekDoublem_phys
 The global expansion evaluated at the quadrature points. More...
 
bool m_physState
 The state of the array m_phys. More...
 
std::shared_ptr< LocalRegions::ExpansionVectorm_exp
 The list of local expansions. More...
 
Collections::CollectionVector m_collections
 
std::vector< int > m_coll_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
std::vector< int > m_coll_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
Array< OneD, int > m_phys_offset
 Offset of elemental data into the array m_phys. More...
 
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
 
BlockMatrixMapShPtr m_blockMat
 
bool m_WaveSpace
 
std::unordered_map< int, int > m_elmtToExpId
 Mapping from geometry ID of element to index inside m_exp. More...
 

Detailed Description

This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations.

The class ContField2D is able to incorporate the boundary conditions imposed to the problem to be solved. Therefore, the class is equipped with three additional data members:

The first data structure, m_bndCondExpansions, contains the one-dimensional spectral/hp expansion on the boundary, #m_bndTypes stores information about the type of boundary condition on the different parts of the boundary while #m_bndCondEquations holds the equation of the imposed boundary conditions.

Furthermore, in case of Dirichlet boundary conditions, this class is capable of lifting a known solution satisfying these boundary conditions. If we denote the unknown solution by \(u^{\mathcal{H}}(\boldsymbol{x})\) and the known Dirichlet boundary conditions by \(u^{\mathcal{D}}(\boldsymbol{x})\), the expansion then can be decomposed as

\[ u^{\delta}(\boldsymbol{x}_i)=u^{\mathcal{D}}(\boldsymbol{x}_i)+ u^{\mathcal{H}}(\boldsymbol{x}_i)=\sum_{n=0}^{N^{\mathcal{D}}-1} \hat{u}_n^{\mathcal{D}}\Phi_n(\boldsymbol{x}_i)+ \sum_{n={N^{\mathcal{D}}}}^{N_{\mathrm{dof}}-1} \hat{u}_n^{\mathcal{H}} \Phi_n(\boldsymbol{x}_i).\]

This lifting is accomplished by ordering the known global degrees of freedom, prescribed by the Dirichlet boundary conditions, first in the global array \(\boldsymbol{\hat{u}}\), that is,

\[\boldsymbol{\hat{u}}=\left[ \begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array} \right].\]

Such kind of expansions are also referred to as continuous fields. This class should be used when solving 2D problems using a standard Galerkin approach.

Definition at line 55 of file ContField2D.h.

Constructor & Destructor Documentation

◆ ContField2D() [1/4]

Nektar::MultiRegions::ContField2D::ContField2D ( )

The default constructor.

Definition at line 87 of file ContField2D.cpp.

87  :
89  m_locToGloMap(),
90  m_globalMat(),
92  std::bind(&ContField2D::GenGlobalLinSys, this, std::placeholders::_1),
93  std::string("GlobalLinSys"))
94  {
95  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176
DisContField2D()
Default constructor.
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171

◆ ContField2D() [2/4]

Nektar::MultiRegions::ContField2D::ContField2D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr graph2D,
const std::string &  variable = "DefaultVar",
const bool  DeclareCoeffPhysArrays = true,
const bool  CheckIfSingularSystem = false,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

This constructor sets up global continuous field based on an input mesh and boundary conditions.

Given a mesh graph2D, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\) and allocates memory for the array #m_contCoeffs. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.

Parameters
graph2DA mesh, containing information about the domain and the spectral/hp element expansion.
bcsThe boundary conditions.
variableAn optional parameter to indicate for which variable the field should be constructed.

Definition at line 119 of file ContField2D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField2D::m_periodicEdges, Nektar::MultiRegions::DisContField2D::m_periodicVerts, and Nektar::MultiRegions::ExpList::m_session.

125  :
126  DisContField2D(pSession,graph2D,variable,false,DeclareCoeffPhysArrays,ImpType),
129  std::bind(&ContField2D::GenGlobalLinSys, this, std::placeholders::_1),
130  std::string("GlobalLinSys"))
131  {
136  CheckIfSingularSystem,
137  variable,
140 
141  if (m_session->DefinesCmdLineArgument("verbose"))
142  {
143  m_locToGloMap->PrintStats(std::cout, variable);
144  }
145  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
PeriodicMap m_periodicEdges
A map which identifies pairs of periodic edges.
PeriodicMap m_periodicVerts
A map which identifies groups of periodic vertices.
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176
DisContField2D()
Default constructor.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:1023
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...

◆ ContField2D() [3/4]

Nektar::MultiRegions::ContField2D::ContField2D ( const ContField2D In,
const SpatialDomains::MeshGraphSharedPtr graph2D,
const std::string &  variable,
const bool  DeclareCoeffPhysArrays = true,
const bool  CheckIfSingularSystem = false 
)

Construct a global continuous field with solution type based on another field but using a separate input mesh and boundary conditions.

Given a mesh graph2D, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\) and allocates memory for the array m_coeffs. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.

Parameters
InExisting ContField2D object used to provide the local to global mapping information and global solution type.
graph2DA mesh, containing information about the domain and the spectral/hp element expansion.
bcsThe boundary conditions.
bc_loc

Definition at line 171 of file ContField2D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField2D::m_periodicEdges, Nektar::MultiRegions::DisContField2D::m_periodicVerts, Nektar::MultiRegions::ExpList::m_session, and Nektar::MultiRegions::DisContField2D::SameTypeOfBoundaryConditions().

175  :
176  DisContField2D(In,graph2D,variable,false,DeclareCoeffPhysArrays),
179  std::bind(&ContField2D::GenGlobalLinSys, this, std::placeholders::_1),
180  std::string("GlobalLinSys"))
181  {
182  if(!SameTypeOfBoundaryConditions(In) || CheckIfSingularSystem)
183  {
188  CheckIfSingularSystem,
189  variable,
192 
193  if (m_session->DefinesCmdLineArgument("verbose"))
194  {
195  m_locToGloMap->PrintStats(std::cout, variable);
196  }
197  }
198  else
199  {
200  m_locToGloMap = In.m_locToGloMap;
201  }
202  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
PeriodicMap m_periodicEdges
A map which identifies pairs of periodic edges.
PeriodicMap m_periodicVerts
A map which identifies groups of periodic vertices.
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176
bool SameTypeOfBoundaryConditions(const DisContField2D &In)
DisContField2D()
Default constructor.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:1023
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...

◆ ContField2D() [4/4]

Nektar::MultiRegions::ContField2D::ContField2D ( const ContField2D In,
bool  DeclareCoeffPhysArrays = true 
)

The copy constructor.

Initialises the object as a copy of an existing ContField2D object.

Parameters
InExisting ContField2D object.
DeclareCoeffPhysArraysbool to declare if m_phys and m_coeffs should be declared. Default is true

Definition at line 211 of file ContField2D.cpp.

211  :
212  DisContField2D(In,DeclareCoeffPhysArrays),
213  m_locToGloMap(In.m_locToGloMap),
214  m_globalMat(In.m_globalMat),
215  m_globalLinSysManager(In.m_globalLinSysManager)
216  {
217  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176
DisContField2D()
Default constructor.
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171

◆ ~ContField2D()

Nektar::MultiRegions::ContField2D::~ContField2D ( )
virtual

The default destructor.

Definition at line 223 of file ContField2D.cpp.

224  {
225  }

Member Function Documentation

◆ Assemble() [1/2]

void Nektar::MultiRegions::ContField2D::Assemble ( )
inline

Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Note
The array m_coeffs should be filled with the local coefficients \(\boldsymbol{\hat{u}}_l\) and that the resulting global coefficients \(\boldsymbol{\hat{u}}_g\) will be stored in m_coeffs.

Definition at line 316 of file ContField2D.h.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

Referenced by IProductWRTBase(), MultiplyByInvMassMatrix(), v_GeneralMatrixOp(), and v_HelmSolve().

317  {
318  m_locToGloMap->Assemble(m_coeffs,m_coeffs);
319  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052

◆ Assemble() [2/2]

void Nektar::MultiRegions::ContField2D::Assemble ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
) const
inline

Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Parameters
inarrayAn array of size \(N_\mathrm{eof}\) containing the local degrees of freedom \(\boldsymbol{x}_l\).
outarrayThe resulting global degrees of freedom \(\boldsymbol{x}_g\) will be stored in this array of size \(N_\mathrm{dof}\).

Definition at line 348 of file ContField2D.h.

References m_locToGloMap.

351  {
352  m_locToGloMap->Assemble(inarray,outarray);
353  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166

◆ BwdTrans()

void Nektar::MultiRegions::ContField2D::BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)
inline

Performs the backward transformation of the spectral/hp element expansion.

Given the coefficients of an expansion, this function evaluates the spectral/hp expansion \(u^{\delta}(\boldsymbol{x})\) at the quadrature points \(\boldsymbol{x}_i\). This operation is evaluated locally by the function ExpList::BwdTrans.

The coefficients of the expansion should be contained in the variable m_coeffs of the ExpList object In. The resulting physical values at the quadrature points \(u^{\delta}(\boldsymbol{x}_i)\) are stored in the array m_phys.

Parameters
InAn ExpList, containing the local coefficients \(\hat{u}_n^e\) in its array m_coeffs.

Definition at line 424 of file ContField2D.h.

References Nektar::MultiRegions::ExpList::BwdTrans_IterPerExp(), Nektar::StdRegions::eBwdTrans, Nektar::MultiRegions::eGlobal, GetGlobalMatrix(), Nektar::MultiRegions::ExpList::GlobalToLocal(), Nektar::MultiRegions::ExpList::m_globalOptParam, m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by v_BwdTrans(), and v_SmoothField().

428  {
429  if(coeffstate == eGlobal)
430  {
431  bool doGlobalOp = m_globalOptParam->DoGlobalMatOp(
433 
434  if(doGlobalOp)
435  {
436  GlobalMatrixKey gkey(StdRegions::eBwdTrans,m_locToGloMap);
438  mat->Multiply(inarray,outarray);
439  }
440  else
441  {
442  Array<OneD, NekDouble> wsp(m_ncoeffs);
443  GlobalToLocal(inarray,wsp);
444  BwdTrans_IterPerExp(wsp,outarray);
445  }
446  }
447  else
448  {
449  BwdTrans_IterPerExp(inarray,outarray);
450  }
451  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1106
Global coefficients.
void BwdTrans_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function elementally evaluates the backward transformation of the global spectral/hp element exp...
Definition: ExpList.h:1786
std::shared_ptr< GlobalMatrix > GlobalMatrixSharedPtr
Shared pointer to a GlobalMatrix object.
Definition: GlobalMatrix.h:88
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
GlobalMatrixSharedPtr GetGlobalMatrix(const GlobalMatrixKey &mkey)
Returns the global matrix specified by mkey.
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ FwdTrans()

void Nektar::MultiRegions::ContField2D::FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Performs the global forward transformation of a function \(f(\boldsymbol{x})\), subject to the boundary conditions specified.

Given a function \(f(\boldsymbol{x})\) defined at the quadrature points, this function determines the unknown global coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) employing a discrete Galerkin projection from physical space to coefficient space. The operation is evaluated by the function GlobalSolve using the global mass matrix.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\hat{u}_g\) are stored in the array m_coeffs.

Parameters
SinAn ExpList, containing the discrete evaluation of \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.

Definition at line 245 of file ContField2D.cpp.

References Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), and m_locToGloMap.

Referenced by v_FwdTrans().

249  {
250  // Inner product of forcing
251  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
252  Array<OneD,NekDouble> wsp(contNcoeffs);
253  IProductWRTBase(inarray,wsp,eGlobal);
254 
255  // Solve the system
256  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
257 
258  if(coeffstate == eGlobal)
259  {
260  GlobalSolve(key,wsp,outarray);
261  }
262  else
263  {
264  Array<OneD,NekDouble> tmp(contNcoeffs,0.0);
265  GlobalSolve(key,wsp,tmp);
266  GlobalToLocal(tmp,outarray);
267  }
268  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Global coefficients.
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ GenGlobalLinSys()

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField2D::GenGlobalLinSys ( const GlobalLinSysKey mkey)
private

Definition at line 602 of file ContField2D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalLinSys(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_locToGloMap.

604  {
605  ASSERTL1(mkey.LocToGloMapIsDefined(),
606  "To use method must have a AssemblyMap "
607  "attached to key");
609  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
std::shared_ptr< GlobalLinSys > GenGlobalLinSys(const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
This operation constructs the global linear system of type mkey.
Definition: ExpList.cpp:1362
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ GetBndCondExpansions()

const Array< OneD, const MultiRegions::ExpListSharedPtr > & Nektar::MultiRegions::ContField2D::GetBndCondExpansions ( )
inline

Returns the boundary conditions expansion.

Definition at line 454 of file ContField2D.h.

References Nektar::MultiRegions::DisContField2D::m_bndCondExpansions.

455  {
456  return m_bndCondExpansions;
457  }
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.

◆ GetBndConditions()

const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField2D::GetBndConditions ( )
inline

Returns the boundary conditions.

Definition at line 460 of file ContField2D.h.

References Nektar::MultiRegions::DisContField2D::m_bndConditions.

Referenced by v_GetBndConditions().

461  {
462  return m_bndConditions;
463  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...

◆ GetGlobalLinSys()

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField2D::GetGlobalLinSys ( const GlobalLinSysKey mkey)
private

Returns the linear system specified by the key mkey.

The function searches the map #m_globalLinSys to see if the global matrix has been created before. If not, it calls the function GenGlobalLinSys to generate the requested global system.

Parameters
mkeyThis key uniquely defines the requested linear system.

Definition at line 596 of file ContField2D.cpp.

References m_globalLinSysManager.

Referenced by GlobalSolve().

598  {
599  return m_globalLinSysManager[mkey];
600  }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176

◆ GetGlobalMatrix()

GlobalMatrixSharedPtr Nektar::MultiRegions::ContField2D::GetGlobalMatrix ( const GlobalMatrixKey mkey)
private

Returns the global matrix specified by mkey.

Returns the global matrix associated with the given GlobalMatrixKey. If the global matrix has not yet been constructed on this field, it is first constructed using GenGlobalMatrix().

Parameters
mkeyGlobal matrix key.
Returns
Assocated global matrix.

Definition at line 564 of file ContField2D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalMatrix(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), m_globalMat, and m_locToGloMap.

Referenced by BwdTrans(), IProductWRTBase(), and v_GeneralMatrixOp().

566  {
567  ASSERTL1(mkey.LocToGloMapIsDefined(),
568  "To use method must have a AssemblyMap "
569  "attached to key");
570 
571  GlobalMatrixSharedPtr glo_matrix;
572  auto matrixIter = m_globalMat->find(mkey);
573 
574  if(matrixIter == m_globalMat->end())
575  {
576  glo_matrix = GenGlobalMatrix(mkey,m_locToGloMap);
577  (*m_globalMat)[mkey] = glo_matrix;
578  }
579  else
580  {
581  glo_matrix = matrixIter->second;
582  }
583 
584  return glo_matrix;
585  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
std::shared_ptr< GlobalMatrix > GenGlobalMatrix(const GlobalMatrixKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
Generates a global matrix from the given key and map.
Definition: ExpList.cpp:1086
std::shared_ptr< GlobalMatrix > GlobalMatrixSharedPtr
Shared pointer to a GlobalMatrix object.
Definition: GlobalMatrix.h:88
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ GetGlobalMatrixNnz()

int Nektar::MultiRegions::ContField2D::GetGlobalMatrixNnz ( const GlobalMatrixKey gkey)
inline

Definition at line 465 of file ContField2D.h.

References ASSERTL1, Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_globalMat.

466  {
467  ASSERTL1(gkey.LocToGloMapIsDefined(),
468  "To use method must have a AssemblyMap "
469  "attached to key");
470 
471  auto matrixIter = m_globalMat->find(gkey);
472 
473  if(matrixIter == m_globalMat->end())
474  {
475  return 0;
476  }
477  else
478  {
479  return matrixIter->second->GetNumNonZeroEntries();
480  }
481 
482  return 0;
483  }
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition: ContField2D.h:171
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ GetLocalToGlobalMap()

const AssemblyMapCGSharedPtr & Nektar::MultiRegions::ContField2D::GetLocalToGlobalMap ( ) const
inline

Returns the map from local to global level.

Definition at line 357 of file ContField2D.h.

References m_locToGloMap.

358  {
359  return m_locToGloMap;
360  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166

◆ GlobalSolve()

void Nektar::MultiRegions::ContField2D::GlobalSolve ( const GlobalLinSysKey key,
const Array< OneD, const NekDouble > &  rhs,
Array< OneD, NekDouble > &  inout,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
private

Solves the linear system specified by the key key.

Given a linear system specified by the key key,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}},\]

this function solves this linear system taking into account the boundary conditions specified in the data member m_bndCondExpansions. Therefore, it adds an array \(\boldsymbol{\hat{g}}\) which represents the non-zero surface integral resulting from the weak boundary conditions (e.g. Neumann boundary conditions) to the right hand side, that is,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}+ \boldsymbol{\hat{g}}.\]

Furthermore, it lifts the known degrees of freedom which are prescribed by the Dirichlet boundary conditions. As these known coefficients \(\boldsymbol{\hat{u}}^{\mathcal{D}}\) are numbered first in the global coefficient array \(\boldsymbol{\hat{u}}_g\), the linear system can be decomposed as,

\[\left[\begin{array}{cc} \boldsymbol{M}^{\mathcal{DD}}&\boldsymbol{M}^{\mathcal{DH}}\\ \boldsymbol{M}^{\mathcal{HD}}&\boldsymbol{M}^{\mathcal{HH}} \end{array}\right] \left[\begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array}\right]= \left[\begin{array}{c} \boldsymbol{\hat{f}}^{\mathcal{D}}\\ \boldsymbol{\hat{f}}^{\mathcal{H}} \end{array}\right]+ \left[\begin{array}{c} \boldsymbol{\hat{g}}^{\mathcal{D}}\\ \boldsymbol{\hat{g}}^{\mathcal{H}} \end{array}\right] \]

which will then be solved for the unknown coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) as,

\[ \boldsymbol{M}^{\mathcal{HH}}\boldsymbol{\hat{u}}^{\mathcal{H}}= \boldsymbol{\hat{f}}^{\mathcal{H}}+ \boldsymbol{\hat{g}}^{\mathcal{H}}- \boldsymbol{M}^{\mathcal{HD}}\boldsymbol{\hat{u}}^{\mathcal{D}}\]

Parameters
mkeyThis key uniquely defines the linear system to be solved.
SinAn ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.
ScaleForcingAn optional parameter with which the forcing vector \(\boldsymbol{\hat{f}}\) should be multiplied.
Note
inout contains initial guess and final output.

Definition at line 535 of file ContField2D.cpp.

References GetGlobalLinSys(), m_locToGloMap, and v_ImposeDirichletConditions().

Referenced by FwdTrans(), LaplaceSolve(), MultiplyByInvMassMatrix(), v_HelmSolve(), v_LinearAdvectionDiffusionReactionSolve(), and v_LinearAdvectionReactionSolve().

540  {
541  int NumDirBcs = m_locToGloMap->GetNumGlobalDirBndCoeffs();
542  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
543 
544  // STEP 1: SET THE DIRICHLET DOFS TO THE RIGHT VALUE
545  // IN THE SOLUTION ARRAY
547 
548  // STEP 2: CALCULATE THE HOMOGENEOUS COEFFICIENTS
549  if(contNcoeffs - NumDirBcs > 0)
550  {
552  LinSys->Solve(rhs,inout,m_locToGloMap,dirForcing);
553  }
554  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
virtual void v_ImposeDirichletConditions(Array< OneD, NekDouble > &outarray)
Impose the Dirichlet Boundary Conditions on outarray.
std::shared_ptr< GlobalLinSys > GlobalLinSysSharedPtr
Pointer to a GlobalLinSys object.
Definition: GlobalLinSys.h:50
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs
GlobalLinSysSharedPtr GetGlobalLinSys(const GlobalLinSysKey &mkey)
Returns the linear system specified by the key mkey.

◆ IProductWRTBase()

void Nektar::MultiRegions::ContField2D::IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)
inline

Calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all global expansion modes \(\phi_n^e(\boldsymbol{x})\).

The operation is evaluated locally (i.e. with respect to all local expansion modes) by the function ExpList::IProductWRTBase. The inner product with respect to the global expansion modes is than obtained by a global assembly operation.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object in. The result is stored in the array m_coeffs.

Parameters
InAn ExpList, containing the discrete evaluation of \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.

Definition at line 378 of file ContField2D.h.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eIProductWRTBase, GetGlobalMatrix(), Nektar::MultiRegions::ExpList::IProductWRTBase_IterPerExp(), Nektar::MultiRegions::ExpList::m_globalOptParam, m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by FwdTrans(), LaplaceSolve(), v_HelmSolve(), v_LinearAdvectionDiffusionReactionSolve(), v_LinearAdvectionReactionSolve(), and v_SmoothField().

383  {
384  if(coeffstate == eGlobal)
385  {
386  bool doGlobalOp = m_globalOptParam->DoGlobalMatOp(
388 
389  if(doGlobalOp)
390  {
391  GlobalMatrixKey gkey(StdRegions::eIProductWRTBase,
392  m_locToGloMap);
394  mat->Multiply(inarray,outarray);
395  m_locToGloMap->UniversalAssemble(outarray);
396  }
397  else
398  {
399  Array<OneD, NekDouble> wsp(m_ncoeffs);
400  IProductWRTBase_IterPerExp(inarray,wsp);
401  Assemble(wsp,outarray);
402  }
403  }
404  else
405  {
406  IProductWRTBase_IterPerExp(inarray,outarray);
407  }
408  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1106
Global coefficients.
std::shared_ptr< GlobalMatrix > GlobalMatrixSharedPtr
Shared pointer to a GlobalMatrix object.
Definition: GlobalMatrix.h:88
void IProductWRTBase_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function calculates the inner product of a function with respect to all local expansion modes ...
Definition: ExpList.h:1725
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
GlobalMatrixSharedPtr GetGlobalMatrix(const GlobalMatrixKey &mkey)
Returns the global matrix specified by mkey.
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField2D.h:316

◆ LaplaceSolve()

void Nektar::MultiRegions::ContField2D::LaplaceSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray,
const Array< OneD, Array< OneD, NekDouble > > &  variablecoeffs = NullNekDoubleArrayofArray,
NekDouble  time = 0.0,
CoeffState  coeffstate = eLocal 
)

Solves the two-dimensional Laplace equation, subject to the boundary conditions specified.

Consider the two dimensional Laplace equation,

\[\nabla\cdot\left(\boldsymbol{\sigma}\nabla u(\boldsymbol{x})\right) = f(\boldsymbol{x}),\]

supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). In the equation above \(\boldsymbol{\sigma}\) is the (symmetric positive definite) diffusion tensor:

\[ \sigma = \left[ \begin{array}{cc} \sigma_{00}(\boldsymbol{x},t) & \sigma_{01}(\boldsymbol{x},t) \\ \sigma_{01}(\boldsymbol{x},t) & \sigma_{11}(\boldsymbol{x},t) \end{array} \right]. \]

Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:

\[\boldsymbol{L} \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]

where \(\boldsymbol{L}\) is the Laplacian matrix. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\boldsymbol{\hat{u}}_g\) are stored in the array m_coeffs.

Parameters
SinAn ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.
variablecoeffsThe (optional) parameter containing the coefficients evaluated at the quadrature points. It is an Array of (three) arrays which stores the laplacian coefficients in the following way

\[\mathrm{variablecoeffs} = \left[ \begin{array}{c} \left[\sigma_{00}(\boldsymbol{x_i},t)\right]_i \\ \left[\sigma_{01}(\boldsymbol{x_i},t)\right]_i \\ \left[\sigma_{11}(\boldsymbol{x_i},t)\right]_i \end{array}\right] \]

If this argument is not passed to the function, the following equation will be solved:

\[\nabla^2u(\boldsymbol{x}) = f(\boldsymbol{x}),\]

timeThe time-level at which the coefficients are evaluated

Definition at line 386 of file ContField2D.cpp.

References Nektar::SpatialDomains::eDirichlet, Nektar::StdRegions::eFactorTime, Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eVarCoeffD00, Nektar::StdRegions::eVarCoeffD11, Nektar::StdRegions::eVarCoeffD22, Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, and Vmath::Neg().

393  {
394  // Inner product of forcing
395  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
396  Array<OneD,NekDouble> wsp(contNcoeffs);
397  IProductWRTBase(inarray,wsp,eGlobal);
398  // Note -1.0 term necessary to invert forcing function to
399  // be consistent with matrix definition
400  Vmath::Neg(m_ncoeffs, wsp, 1);
401 
402  // Forcing function with weak boundary conditions
403  int i,j;
404  int bndcnt=0;
405  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
406  {
407  if(m_bndConditions[i]->GetBoundaryConditionType() != SpatialDomains::eDirichlet)
408  {
409  for(j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
410  {
411  wsp[m_locToGloMap
412  ->GetBndCondCoeffsToGlobalCoeffsMap(bndcnt++)]
413  += (m_bndCondExpansions[i]->GetCoeffs())[j];
414  }
415  }
416  else
417  {
418  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
419  }
420  }
421 
422  StdRegions::VarCoeffMap varcoeffs;
423  varcoeffs[StdRegions::eVarCoeffD00] = variablecoeffs[0];
424  varcoeffs[StdRegions::eVarCoeffD11] = variablecoeffs[3];
425  varcoeffs[StdRegions::eVarCoeffD22] = variablecoeffs[5];
427  factors[StdRegions::eFactorTime] = time;
428 
429  // Solve the system
430  GlobalLinSysKey key(StdRegions::eLaplacian,m_locToGloMap,factors,
431  varcoeffs);
432 
433  if(coeffstate == eGlobal)
434  {
435  GlobalSolve(key,wsp,outarray,dirForcing);
436  }
437  else
438  {
439  Array<OneD,NekDouble> tmp(contNcoeffs,0.0);
440  GlobalSolve(key,wsp,tmp,dirForcing);
441  GlobalToLocal(tmp,outarray);
442  }
443  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
Global coefficients.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:264
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1558
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ LinearAdvectionEigs()

void Nektar::MultiRegions::ContField2D::LinearAdvectionEigs ( const NekDouble  ax,
const NekDouble  ay,
Array< OneD, NekDouble > &  Real,
Array< OneD, NekDouble > &  Imag,
Array< OneD, NekDouble > &  Evecs = NullNekDouble1DArray 
)

Compute the eigenvalues of the linear advection operator.

Constructs the GlobalLinearSysKey for the linear advection operator with the supplied parameters, and computes the eigenvectors and eigenvalues of the associated matrix.

Parameters
axAdvection parameter, x.
ayAdvection parameter, y.
RealComputed eigenvalues, real component.
ImagComputed eigenvalues, imag component.
EvecsComputed eigenvectors.

Definition at line 456 of file ContField2D.cpp.

References CG_Iterations::ax, Nektar::StdRegions::eFactorTime, Nektar::StdRegions::eLinearAdvectionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, Nektar::MultiRegions::ExpList::GenGlobalMatrixFull(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_npoints.

461  {
462  // Solve the system
463  Array<OneD, Array<OneD, NekDouble> > vel(2);
464  Array<OneD, NekDouble> vel_x(m_npoints,ax);
465  Array<OneD, NekDouble> vel_y(m_npoints,ay);
466  vel[0] = vel_x;
467  vel[1] = vel_y;
468 
469  StdRegions::VarCoeffMap varcoeffs;
470  varcoeffs[StdRegions::eVarCoeffVelX] = Array<OneD, NekDouble>(m_npoints,ax);
471  varcoeffs[StdRegions::eVarCoeffVelY] = Array<OneD, NekDouble>(m_npoints,ay);
473  factors[StdRegions::eFactorTime] = 0.0;
475  factors,varcoeffs);
476 
478  Gmat->EigenSolve(Real,Imag,Evecs);
479  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:264
std::shared_ptr< DNekMat > GenGlobalMatrixFull(const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
Definition: ExpList.cpp:1222

◆ MultiplyByInvMassMatrix()

void Nektar::MultiRegions::ContField2D::MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Multiply a solution by the inverse mass matrix.

Computes the matrix vector product \( \mathbf{y} = \mathbf{M}^{-1}\mathbf{x} \). If coeffstate == eGlobal is set then the elemental system is used directly. If not set, the global system is assembled, the system is solved, and mapped back to the local elemental system.

Parameters
inarrayInput vector \(\mathbf{x}\).
outarrayOutput vector \(\mathbf{y}\).
coeffStateFlag for using global system.

Definition at line 296 of file ContField2D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), m_locToGloMap, and Vmath::Vcopy().

Referenced by v_MultiplyByInvMassMatrix(), and v_SmoothField().

301  {
302  GlobalLinSysKey key(StdRegions::eMass,m_locToGloMap);
303  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
304 
305  if(coeffstate == eGlobal)
306  {
307  if(inarray.data() == outarray.data())
308  {
309  Array<OneD, NekDouble> tmp(contNcoeffs,0.0);
310  Vmath::Vcopy(contNcoeffs,inarray,1,tmp,1);
311  GlobalSolve(key,tmp,outarray);
312  }
313  else
314  {
315  GlobalSolve(key,inarray,outarray);
316  }
317  }
318  else
319  {
320  Array<OneD, NekDouble> globaltmp(contNcoeffs,0.0);
321 
322  if(inarray.data() == outarray.data())
323  {
324  Array<OneD,NekDouble> tmp(inarray.num_elements());
325  Vmath::Vcopy(inarray.num_elements(),inarray,1,tmp,1);
326  Assemble(tmp,outarray);
327  }
328  else
329  {
330  Assemble(inarray,outarray);
331  }
332 
333  GlobalSolve(key,outarray,globaltmp);
334  GlobalToLocal(globaltmp,outarray);
335  }
336  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Global coefficients.
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField2D.h:316
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_BwdTrans()

void Nektar::MultiRegions::ContField2D::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Template method virtual forwarder for FwdTrans().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 615 of file ContField2D.cpp.

References BwdTrans().

619  {
620  BwdTrans(inarray,outarray,coeffstate);
621  }
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Performs the backward transformation of the spectral/hp element expansion.
Definition: ContField2D.h:424

◆ v_ClearGlobalLinSysManager()

void Nektar::MultiRegions::ContField2D::v_ClearGlobalLinSysManager ( void  )
privatevirtual

Reset the GlobalLinSys Manager

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1132 of file ContField2D.cpp.

References m_globalLinSysManager.

1133  {
1134  m_globalLinSysManager.ClearManager("GlobalLinSys");
1135  }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField2D.h:176

◆ v_FillBndCondFromField() [1/2]

void Nektar::MultiRegions::ContField2D::v_FillBndCondFromField ( void  )
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 695 of file ContField2D.cpp.

References Nektar::SpatialDomains::ePeriodic, Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::ExpList::LocalToGlobal(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, Nektar::MultiRegions::ExpList::m_coeffs, m_locToGloMap, and sign.

696  {
697  NekDouble sign;
698  int bndcnt = 0;
699  const Array<OneD,const int> &bndMap =
700  m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap();
701 
702  Array<OneD, NekDouble> tmp(m_locToGloMap->GetNumGlobalCoeffs());
703  LocalToGlobal(m_coeffs,tmp);
704 
705  // Now fill in all other Dirichlet coefficients.
706  for(int i = 0; i < m_bndCondExpansions.num_elements(); ++i)
707  {
708  if (m_bndConditions[i]->GetBoundaryConditionType() ==
710  {
711  continue;
712  }
713 
714  Array<OneD, NekDouble>& coeffs = m_bndCondExpansions[i]->UpdateCoeffs();
715 
716  for(int j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); ++j)
717  {
718  sign = m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsSign(bndcnt);
719  coeffs[j] = sign * tmp[bndMap[bndcnt++]];
720  }
721  }
722  }
void LocalToGlobal(bool useComm=true)
Gathers the global coefficients from the local coefficients .
Definition: ExpList.h:2083
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:16
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1558
double NekDouble
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...

◆ v_FillBndCondFromField() [2/2]

void Nektar::MultiRegions::ContField2D::v_FillBndCondFromField ( const int  nreg)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 725 of file ContField2D.cpp.

References ASSERTL1, Nektar::SpatialDomains::ePeriodic, Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::ExpList::LocalToGlobal(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, Nektar::MultiRegions::ExpList::m_coeffs, m_locToGloMap, and sign.

726  {
727  NekDouble sign;
728  int bndcnt = 0;
729  const Array<OneD,const int> &bndMap =
730  m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap();
731 
732  Array<OneD, NekDouble> tmp(m_locToGloMap->GetNumGlobalCoeffs());
733  LocalToGlobal(m_coeffs,tmp,false);
734 
735  ASSERTL1(nreg < m_bndCondExpansions.num_elements(),
736  "nreg is out or range since this many boundary "
737  "regions to not exist");
738 
739  // Now fill in all other Dirichlet coefficients.
740  Array<OneD, NekDouble>& coeffs = m_bndCondExpansions[nreg]->UpdateCoeffs();
741 
742  for(int j = 0; j < nreg; ++j)
743  {
744  if (m_bndConditions[j]->GetBoundaryConditionType() ==
746  {
747  continue;
748  }
749 
750  bndcnt += m_bndCondExpansions[j]->GetNcoeffs();
751  }
752 
753  for(int j = 0; j < (m_bndCondExpansions[nreg])->GetNcoeffs(); ++j)
754  {
755  sign = m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsSign(bndcnt);
756  coeffs[j] = sign * tmp[bndMap[bndcnt++]];
757  }
758  }
void LocalToGlobal(bool useComm=true)
Gathers the global coefficients from the local coefficients .
Definition: ExpList.h:2083
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:16
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1558
double NekDouble
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ v_FwdTrans()

void Nektar::MultiRegions::ContField2D::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Template method virtual forwarder for FwdTrans().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 627 of file ContField2D.cpp.

References FwdTrans().

631  {
632  FwdTrans(inarray,outarray,coeffstate);
633  }
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Performs the global forward transformation of a function , subject to the boundary conditions specifi...

◆ v_GeneralMatrixOp()

void Nektar::MultiRegions::ContField2D::v_GeneralMatrixOp ( const GlobalMatrixKey gkey,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray.

This is equivalent to the operation:

\[\boldsymbol{M\hat{u}}_g\]

where \(\boldsymbol{M}\) is the global matrix of type specified by mkey. After scattering the global array inarray to local level, this operation is evaluated locally by the function ExpList::GeneralMatrixOp. The global result is then obtained by a global assembly procedure.

Parameters
mkeyThis key uniquely defines the type matrix required for the operation.
inarrayThe vector \(\boldsymbol{\hat{u}}_g\) of size \(N_{\mathrm{dof}}\).
outarrayThe resulting vector of size \(N_{\mathrm{dof}}\).

Reimplemented from Nektar::MultiRegions::DisContField2D.

Definition at line 972 of file ContField2D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::ExpList::GeneralMatrixOp_IterPerExp(), GetGlobalMatrix(), Nektar::MultiRegions::GlobalMatrixKey::GetMatrixType(), Nektar::MultiRegions::ExpList::GlobalToLocal(), Nektar::MultiRegions::ExpList::m_globalOptParam, m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

977  {
978  if(coeffstate == eGlobal)
979  {
980  bool doGlobalOp = m_globalOptParam->DoGlobalMatOp(
981  gkey.GetMatrixType());
982 
983  if(doGlobalOp)
984  {
986  mat->Multiply(inarray,outarray);
987  m_locToGloMap->UniversalAssemble(outarray);
988  }
989  else
990  {
991  Array<OneD,NekDouble> tmp1(2*m_ncoeffs);
992  Array<OneD,NekDouble> tmp2(tmp1+m_ncoeffs);
993  GlobalToLocal(inarray,tmp1);
994  GeneralMatrixOp_IterPerExp(gkey,tmp1,tmp2);
995  Assemble(tmp2,outarray);
996  }
997  }
998  else
999  {
1000  GeneralMatrixOp_IterPerExp(gkey,inarray,outarray);
1001  }
1002  }
void GeneralMatrixOp_IterPerExp(const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: ExpList.cpp:1019
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1106
Global coefficients.
std::shared_ptr< GlobalMatrix > GlobalMatrixSharedPtr
Shared pointer to a GlobalMatrix object.
Definition: GlobalMatrix.h:88
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
GlobalMatrixSharedPtr GetGlobalMatrix(const GlobalMatrixKey &mkey)
Returns the global matrix specified by mkey.
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField2D.h:316
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ v_GetBndConditions()

const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField2D::v_GetBndConditions ( void  )
privatevirtual

Template method virtual forwarder for GetBndConditions().

Reimplemented from Nektar::MultiRegions::DisContField2D.

Definition at line 1123 of file ContField2D.cpp.

References GetBndConditions().

1124  {
1125  return GetBndConditions();
1126  }
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions()
Returns the boundary conditions.
Definition: ContField2D.h:460

◆ v_GlobalToLocal() [1/2]

void Nektar::MultiRegions::ContField2D::v_GlobalToLocal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
privatevirtual

Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}^{e}[i] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]$ \\ \> \> continue \\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the scatter operation \(\boldsymbol{\hat{u}}_l=\mathcal{A}\boldsymbol{\hat{u}}_g\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Note
The array m_coeffs should be filled with the global coefficients \(\boldsymbol{\hat{u}}_g\) and that the resulting local coefficients \(\boldsymbol{\hat{u}}_l\) will be stored in m_coeffs.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 785 of file ContField2D.cpp.

References m_locToGloMap.

788  {
789  m_locToGloMap->GlobalToLocal(inarray, outarray);
790  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166

◆ v_GlobalToLocal() [2/2]

void Nektar::MultiRegions::ContField2D::v_GlobalToLocal ( void  )
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 793 of file ContField2D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

794  {
795  m_locToGloMap->GlobalToLocal(m_coeffs,m_coeffs);
796  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052

◆ v_HelmSolve()

void Nektar::MultiRegions::ContField2D::v_HelmSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const FlagList flags,
const StdRegions::ConstFactorMap factors,
const StdRegions::VarCoeffMap varcoeff,
const MultiRegions::VarFactorsMap varfactors,
const Array< OneD, const NekDouble > &  dirForcing,
const bool  PhysSpaceForcing 
)
privatevirtual

Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified.

Consider the two dimensional Helmholtz equation,

\[\nabla^2u(\boldsymbol{x})-\lambda u(\boldsymbol{x}) = f(\boldsymbol{x}),\]

supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:

\[\left(\boldsymbol{L}+\lambda\boldsymbol{M}\right) \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]

where \(\boldsymbol{L}\) and \(\boldsymbol{M}\) are the Laplacian and mass matrix respectively. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve. It is assumed #m_coeff contains an initial estimate for the solution.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object inarray. The resulting global coefficients \(\boldsymbol{\hat{u}}_g\) are stored in the array #m_contCoeffs or m_coeffs depending on whether coeffstate is eGlobal or eLocal

Parameters
inarrayAn ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.
factorsThe parameter \(\lambda\) of the Helmholtz equation is specified through the factors map

Reimplemented from Nektar::MultiRegions::DisContField2D.

Definition at line 883 of file ContField2D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eHelmholtz, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::ePeriodic, Nektar::SpatialDomains::eRobin, Nektar::eUseGlobal, Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), Nektar::FlagList::isSet(), Nektar::MultiRegions::ExpList::LocalToGlobal(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, m_locToGloMap, Vmath::Neg(), and Vmath::Vadd().

893  {
894  //----------------------------------
895  // Setup RHS Inner product
896  //----------------------------------
897  // Inner product of forcing
898  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
899  Array<OneD,NekDouble> wsp(contNcoeffs);
900  if(PhysSpaceForcing)
901  {
902  IProductWRTBase(inarray,wsp,eGlobal);
903  }
904  else
905  {
906  Assemble(inarray,wsp);
907  }
908  // Note -1.0 term necessary to invert forcing function to
909  // be consistent with matrix definition
910  Vmath::Neg(contNcoeffs, wsp, 1);
911 
912  // Fill weak boundary conditions
913  int i,j;
914  int bndcnt=0;
915  Array<OneD, NekDouble> gamma(contNcoeffs, 0.0);
916 
917  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
918  {
919  if(m_bndConditions[i]->GetBoundaryConditionType() == SpatialDomains::eNeumann ||
920  m_bndConditions[i]->GetBoundaryConditionType() == SpatialDomains::eRobin)
921  {
922  for(j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
923  {
924  gamma[m_locToGloMap
925  ->GetBndCondCoeffsToGlobalCoeffsMap(bndcnt++)]
926  += (m_bndCondExpansions[i]->GetCoeffs())[j];
927  }
928  }
929  else if (m_bndConditions[i]->GetBoundaryConditionType() != SpatialDomains::ePeriodic)
930  {
931  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
932  }
933  }
934 
935  m_locToGloMap->UniversalAssemble(gamma);
936 
937  // Add weak boundary conditions to forcing
938  Vmath::Vadd(contNcoeffs, wsp, 1, gamma, 1, wsp, 1);
939 
940  GlobalLinSysKey key(StdRegions::eHelmholtz,m_locToGloMap,factors,varcoeff,varfactors);
941 
942  if(flags.isSet(eUseGlobal))
943  {
944  GlobalSolve(key,wsp,outarray,dirForcing);
945  }
946  else
947  {
948  Array<OneD,NekDouble> tmp(contNcoeffs);
949  LocalToGlobal(outarray,tmp);
950  GlobalSolve(key,wsp,tmp,dirForcing);
951  GlobalToLocal(tmp,outarray);
952  }
953  }
void LocalToGlobal(bool useComm=true)
Gathers the global coefficients from the local coefficients .
Definition: ExpList.h:2083
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Global coefficients.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1558
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField2D.h:316
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302

◆ v_ImposeDirichletConditions()

void Nektar::MultiRegions::ContField2D::v_ImposeDirichletConditions ( Array< OneD, NekDouble > &  outarray)
privatevirtual

Impose the Dirichlet Boundary Conditions on outarray.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 635 of file ContField2D.cpp.

References Nektar::SpatialDomains::eDirichlet, Nektar::SpatialDomains::ePeriodic, Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, m_locToGloMap, sign, and Vmath::Vcopy().

Referenced by GlobalSolve().

636  {
637  int i,j;
638  int bndcnt=0;
639  int nDir = m_locToGloMap->GetNumGlobalDirBndCoeffs();
640 
641  // STEP 1: SET THE DIRICHLET DOFS TO THE RIGHT VALUE IN THE SOLUTION
642  // ARRAY
643  NekDouble sign;
644  const Array<OneD,const int> &bndMap =
645  m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap();
646 
647  Array<OneD, NekDouble> tmp(
648  m_locToGloMap->GetNumGlobalBndCoeffs(), 0.0);
649 
650  // Fill in Dirichlet coefficients that are to be sent to
651  // other processors. This code block uses a
652  // tuple<int,int.NekDouble> which stores the local id of
653  // coefficent the global id of the data location and the
654  // inverse of the values of the data (arising from
655  // periodic boundary conditiosn)
656  map<int, vector<ExtraDirDof> > &extraDirDofs =
657  m_locToGloMap->GetExtraDirDofs();
658 
659  for (auto &it : extraDirDofs)
660  {
661  for (i = 0; i < it.second.size(); ++i)
662  {
663  tmp[std::get<1>(it.second.at(i))] =
664  m_bndCondExpansions[it.first]->GetCoeffs()[
665  std::get<0>(it.second.at(i))]*std::get<2>(it.second.at(i));
666  }
667  }
668  m_locToGloMap->UniversalAssembleBnd(tmp);
669 
670  // Now fill in all other Dirichlet coefficients.
671  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
672  {
673  if(m_bndConditions[i]->GetBoundaryConditionType() ==
675  {
676  const Array<OneD,const NekDouble>& coeffs =
677  m_bndCondExpansions[i]->GetCoeffs();
678  for(j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); ++j)
679  {
680  sign = m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsSign(
681  bndcnt);
682  tmp[bndMap[bndcnt++]] = sign * coeffs[j];
683  }
684  }
685  else if(m_bndConditions[i]->GetBoundaryConditionType() !=
687  {
688  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
689  }
690  }
691 
692  Vmath::Vcopy(nDir, tmp, 1, outarray, 1);
693  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:16
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1558
double NekDouble
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_LinearAdvectionDiffusionReactionSolve()

void Nektar::MultiRegions::ContField2D::v_LinearAdvectionDiffusionReactionSolve ( const Array< OneD, Array< OneD, NekDouble > > &  velocity,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const NekDouble  lambda,
CoeffState  coeffstate = eLocal,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
privatevirtual

First compute the inner product of forcing function with respect to base, and then solve the system with the linear advection operator.

Parameters
velocityArray of advection velocities in physical space
inarrayForcing function.
outarrayResult.
lambdareaction coefficient
coeffstateState of Coefficients, Local or Global
dirForcingDirichlet Forcing.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1016 of file ContField2D.cpp.

References Nektar::SpatialDomains::eDirichlet, Nektar::StdRegions::eFactorLambda, Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eLinearAdvectionDiffusionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), Nektar::MultiRegions::DisContField2D::m_bndCondExpansions, Nektar::MultiRegions::DisContField2D::m_bndConditions, m_locToGloMap, Vmath::Neg(), and Vmath::Vadd().

1022  {
1023  // Inner product of forcing
1024  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
1025  Array<OneD,NekDouble> wsp(contNcoeffs);
1026  IProductWRTBase(inarray,wsp,eGlobal);
1027  // Note -1.0 term necessary to invert forcing function to
1028  // be consistent with matrix definition
1029  Vmath::Neg(contNcoeffs, wsp, 1);
1030 
1031  // Forcing function with weak boundary conditions
1032  int i,j;
1033  int bndcnt=0;
1034  Array<OneD, NekDouble> gamma(contNcoeffs, 0.0);
1035  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
1036  {
1037  if(m_bndConditions[i]->GetBoundaryConditionType() != SpatialDomains::eDirichlet)
1038  {
1039  for(j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
1040  {
1041  gamma[m_locToGloMap
1042  ->GetBndCondCoeffsToGlobalCoeffsMap(bndcnt++)]
1043  += (m_bndCondExpansions[i]->GetCoeffs())[j];
1044  }
1045  }
1046  else
1047  {
1048  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
1049  }
1050  }
1051  m_locToGloMap->UniversalAssemble(gamma);
1052  // Add weak boundary conditions to forcing
1053  Vmath::Vadd(contNcoeffs, wsp, 1, gamma, 1, wsp, 1);
1054 
1055  // Solve the system
1057  factors[StdRegions::eFactorLambda] = lambda;
1058  StdRegions::VarCoeffMap varcoeffs;
1059  varcoeffs[StdRegions::eVarCoeffVelX] = velocity[0];
1060  varcoeffs[StdRegions::eVarCoeffVelY] = velocity[1];
1061  GlobalLinSysKey key(StdRegions::eLinearAdvectionDiffusionReaction,m_locToGloMap,factors,varcoeffs);
1062 
1063  if(coeffstate == eGlobal)
1064  {
1065  GlobalSolve(key,wsp,outarray,dirForcing);
1066  }
1067  else
1068  {
1069  Array<OneD,NekDouble> tmp(contNcoeffs,0.0);
1070  GlobalSolve(key,wsp,tmp,dirForcing);
1071  GlobalToLocal(tmp,outarray);
1072  }
1073  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
Global coefficients.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:264
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1558
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302

◆ v_LinearAdvectionReactionSolve()

void Nektar::MultiRegions::ContField2D::v_LinearAdvectionReactionSolve ( const Array< OneD, Array< OneD, NekDouble > > &  velocity,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const NekDouble  lambda,
CoeffState  coeffstate = eLocal,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
privatevirtual

First compute the inner product of forcing function with respect to base, and then solve the system with the linear advection operator.

Parameters
velocityArray of advection velocities in physical space
inarrayForcing function.
outarrayResult.
lambdareaction coefficient
coeffstateState of Coefficients, Local or Global
dirForcingDirichlet Forcing.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1085 of file ContField2D.cpp.

References Nektar::StdRegions::eFactorLambda, Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eLinearAdvectionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), and m_locToGloMap.

1092  {
1093  // Inner product of forcing
1094  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
1095  Array<OneD,NekDouble> wsp(contNcoeffs);
1096  IProductWRTBase(inarray,wsp,eGlobal);
1097 
1098  // Solve the system
1100  factors[StdRegions::eFactorLambda] = lambda;
1101  StdRegions::VarCoeffMap varcoeffs;
1102  varcoeffs[StdRegions::eVarCoeffVelX] = velocity[0];
1103  varcoeffs[StdRegions::eVarCoeffVelY] = velocity[1];
1104  GlobalLinSysKey key(StdRegions::eLinearAdvectionReaction,m_locToGloMap,factors,varcoeffs);
1105 
1106  if(coeffstate == eGlobal)
1107  {
1108  GlobalSolve(key,wsp,outarray,dirForcing);
1109  }
1110  else
1111  {
1112  Array<OneD,NekDouble> tmp(contNcoeffs,0.0);
1113  GlobalSolve(key,wsp,tmp,dirForcing);
1114  GlobalToLocal(tmp,outarray);
1115  }
1116  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
Global coefficients.
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:264
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ v_LocalToGlobal() [1/2]

void Nektar::MultiRegions::ContField2D::v_LocalToGlobal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  useComm 
)
privatevirtual

Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{-1}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Note
The array m_coeffs should be filled with the local coefficients \(\boldsymbol{\hat{u}}_l\) and that the resulting global coefficients \(\boldsymbol{\hat{u}}_g\) will be stored in m_coeffs. Also if useComm is set to false then no communication call will be made to check if all values are consistent over processors

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 827 of file ContField2D.cpp.

References m_locToGloMap.

831  {
832  m_locToGloMap->LocalToGlobal(inarray, outarray, useComm);
833  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166

◆ v_LocalToGlobal() [2/2]

void Nektar::MultiRegions::ContField2D::v_LocalToGlobal ( bool  useComm)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 836 of file ContField2D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

838  {
839  m_locToGloMap->LocalToGlobal(m_coeffs,m_coeffs, useComm);
840  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052

◆ v_MultiplyByInvMassMatrix()

void Nektar::MultiRegions::ContField2D::v_MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Template method virtual forwarder for MultiplyByInvMassMatrix().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 845 of file ContField2D.cpp.

References MultiplyByInvMassMatrix().

849  {
850  MultiplyByInvMassMatrix(inarray,outarray,coeffstate);
851  }
void MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Multiply a solution by the inverse mass matrix.

◆ v_SmoothField()

void Nektar::MultiRegions::ContField2D::v_SmoothField ( Array< OneD, NekDouble > &  field)
privatevirtual

Template method virtual forwarded for SmoothField().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 273 of file ContField2D.cpp.

References BwdTrans(), Nektar::MultiRegions::eGlobal, IProductWRTBase(), m_locToGloMap, and MultiplyByInvMassMatrix().

274  {
275  int gloNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
276  Array<OneD,NekDouble> tmp1(gloNcoeffs);
277  Array<OneD,NekDouble> tmp2(gloNcoeffs);
278 
279  IProductWRTBase(field,tmp1,eGlobal);
280  MultiplyByInvMassMatrix(tmp1,tmp2,eGlobal);
281  BwdTrans(tmp2,field,eGlobal);
282  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField2D.h:166
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Performs the backward transformation of the spectral/hp element expansion.
Definition: ContField2D.h:424
Global coefficients.
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
Definition: ContField2D.h:378
void MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Multiply a solution by the inverse mass matrix.

Member Data Documentation

◆ m_globalLinSysManager

LibUtilities::NekManager<GlobalLinSysKey, GlobalLinSys> Nektar::MultiRegions::ContField2D::m_globalLinSysManager
private

A manager which collects all the global linear systems being assembled, such that they should be constructed only once.

Definition at line 176 of file ContField2D.h.

Referenced by GetGlobalLinSys(), and v_ClearGlobalLinSysManager().

◆ m_globalMat

GlobalMatrixMapShPtr Nektar::MultiRegions::ContField2D::m_globalMat
private

(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.

Definition at line 171 of file ContField2D.h.

Referenced by GetGlobalMatrix(), and GetGlobalMatrixNnz().

◆ m_locToGloMap

AssemblyMapCGSharedPtr Nektar::MultiRegions::ContField2D::m_locToGloMap
private