Nektar++
CoupledLocalToGlobalC0ContMap.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File CoupledLcoalToGlobalC0ContMap.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Wrapper class around the library
32 // LocalToGlobalC0ContMap class for use in the Couplied Linearised NS
33 // solver.
34 ///////////////////////////////////////////////////////////////////////////////
35 
38 #include <LocalRegions/SegExp.h>
42 
43 using namespace std;
44 
45 namespace Nektar
46 {
47  /**
48  * This is an vector extension of
49  * MultiRegions::AssemblyMapCG::SetUp2DExpansionC0ContMap related to the
50  * Linearised Navier Stokes problem
51  */
52  CoupledLocalToGlobalC0ContMap::CoupledLocalToGlobalC0ContMap(
55  const SpatialDomains::BoundaryConditionsSharedPtr &boundaryConditions,
58  const int nz_loc,
59  const bool CheckforSingularSys):
60  AssemblyMapCG(pSession)
61  {
62  int i,j,k,n;
63  int cnt = 0,offset=0;
64  int meshVertId;
65  int meshEdgeId;
66  int bndEdgeCnt;
67  int globalId;
68  int nEdgeCoeffs;
69  int nEdgeInteriorCoeffs;
70  int firstNonDirGraphVertId;
71  int nLocBndCondDofs = 0;
72  int nLocDirBndCondDofs = 0;
73  int nExtraDirichlet = 0;
77  StdRegions::Orientation edgeOrient;
78  Array<OneD, unsigned int> edgeInteriorMap;
79  Array<OneD, int> edgeInteriorSign;
80  int nvel = fields.num_elements();
81 
82  const LocalRegions::ExpansionVector &locExpVector = *(fields[0]->GetExp());
83  int id, diff;
84  int nel = fields[0]->GetNumElmts();
85 
86  MultiRegions::PeriodicMap periodicVerts;
87  MultiRegions::PeriodicMap periodicEdges;
88  MultiRegions::PeriodicMap periodicFaces;
89  vector<map<int,int> > ReorderedGraphVertId(3);
91  int staticCondLevel = 0;
92 
93  if(CheckforSingularSys) //all singularity checking by setting flag to true
94  {
95  m_systemSingular = true;
96  }
97  else // Turn off singular checking by setting flag to false
98  {
99  m_systemSingular = false;
100  }
101 
102  /**
103  * STEP 1: Wrap boundary conditions vector in an array
104  * (since routine is set up for multiple fields) and call
105  * the graph re-odering subroutine to obtain the reordered
106  * values
107  */
108 
109  // Obtain any periodic information and allocate default mapping array
110  fields[0]->GetPeriodicEntities(periodicVerts,periodicEdges,periodicFaces);
111 
112 
113  const Array<OneD, const MultiRegions::ExpListSharedPtr> bndCondExp = fields[0]->GetBndCondExpansions();
114 
116  for(i = 0; i < nvel; ++i)
117  {
118  bndConditionsVec[i] = fields[i]->GetBndConditions();
119  }
120 
121  map<int,int> IsDirVertDof;
122  map<int,int> IsDirEdgeDof;
123 
125  for(j = 0; j < bndCondExp.num_elements(); ++j)
126  {
127  map<int,int> BndExpVids;
128  // collect unique list of vertex ids for this expansion
129  for(k = 0; k < bndCondExp[j]->GetNumElmts(); ++k)
130  {
131  g = bndCondExp[j]->GetExp(k)->as<LocalRegions::Expansion1D>()
132  ->GetGeom1D();
133  BndExpVids[g->GetVid(0)] = g->GetVid(0);
134  BndExpVids[g->GetVid(1)] = g->GetVid(1);
135  }
136 
137  for(i = 0; i < nvel; ++i)
138  {
139  if(bndConditionsVec[i][j]->GetBoundaryConditionType()==SpatialDomains::eDirichlet)
140  {
141  // set number of Dirichlet conditions along edge
142  for(k = 0; k < bndCondExp[j]->GetNumElmts(); ++k)
143  {
144  IsDirEdgeDof[bndCondExp[j]->GetExp(k)
146  ->GetGeom1D()->GetGlobalID()] += 1;
147  }
148 
149 
150  // Set number of Dirichlet conditions at vertices
151  // with a clamp on its maximum value being nvel to
152  // handle corners between expansions
153  for(auto &mapIt : BndExpVids)
154  {
155  id = IsDirVertDof[mapIt.second]+1;
156  IsDirVertDof[mapIt.second] = (id > nvel)?nvel:id;
157  }
158  }
159  else
160  {
161  // Check to see that edge normals have non-zero
162  // component in this direction since otherwise
163  // also can be singular.
164  /// @TODO: Fix this so that we can extract normals from edges
165  for(k = 0; k < bndCondExp[j]->GetNumElmts(); ++k)
166  {
169  = bndCondExp[j]->GetExp(k)
171  locnorm = loc_exp->GetLeftAdjacentElementExp()->GetEdgeNormal(loc_exp->GetLeftAdjacentElementEdge());
172  //locnorm = bndCondExp[j]->GetExp(k)->Get GetMetricInfo()->GetNormal();
173 
174  int ndir = locnorm.num_elements();
175  if(i < ndir) // account for Fourier version where n can be larger then ndir
176  {
177  for(int l = 0; l < locnorm[0].num_elements(); ++l)
178  {
179  if(fabs(locnorm[i][l]) > NekConstants::kNekZeroTol)
180  {
181  m_systemSingular = false;
182  break;
183  }
184  }
185  }
186  if(m_systemSingular == false)
187  {
188  break;
189  }
190  }
191  }
192  }
193  }
194 
195  Array<OneD, map<int,int> >Dofs(2);
196 
197  Array<OneD, int> AddMeanPressureToEdgeId(nel,-1);
198  int edgeId,vertId;
199 
200 
201  // special case of singular problem - need to fix one pressure
202  // dof to a dirichlet edge. Since we attached pressure dof to
203  // last velocity component of edge need to make sure this
204  // component is Dirichlet
205  if(m_systemSingular)
206  {
207  id = -1;
208  for(i = 0; i < bndConditionsVec[0].num_elements(); ++i)
209  {
210  if(bndConditionsVec[nvel-1][i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
211  {
212  id = bndCondExp[i]->GetExp(0)
213  ->as<LocalRegions::Expansion1D>()->GetGeom1D()
214  ->GetGlobalID();
215  break;
216  }
217  }
218 
219  ASSERTL0(id != -1," Did not find an edge to attach singular pressure degree of freedom");
220 
221  // determine element with this edge id. There may be a
222  // more direct way of getting element from spatialDomains
223  for(i = 0; i < nel; ++i)
224  {
225  for(j = 0; j < locExpVector[i]->GetNverts(); ++j)
226  {
227  edgeId = (locExpVector[i]->as<LocalRegions::Expansion2D>()
228  ->GetGeom2D())->GetEid(j);
229 
230  if(edgeId == id)
231  {
232  AddMeanPressureToEdgeId[i] = id;
233  break;
234  }
235  }
236 
237  if(AddMeanPressureToEdgeId[i] != -1)
238  {
239  break;
240  }
241  }
242  }
243 
244 
245  for(i = 0; i < nel; ++i)
246  {
247  for(j = 0; j < locExpVector[i]->GetNverts(); ++j)
248  {
249  vertId = (locExpVector[i]->as<LocalRegions::Expansion2D>()
250  ->GetGeom2D())->GetVid(j);
251  if(Dofs[0].count(vertId) == 0)
252  {
253  Dofs[0][vertId] = nvel*nz_loc;
254 
255  // Adjust for a Dirichlet boundary condition to give number to be solved
256  if(IsDirVertDof.count(vertId) != 0)
257  {
258  Dofs[0][vertId] -= IsDirVertDof[vertId]*nz_loc;
259  }
260  }
261 
262  edgeId = (locExpVector[i]->as<LocalRegions::Expansion2D>()
263  ->GetGeom2D())->GetEid(j);
264  if(Dofs[1].count(edgeId) == 0)
265  {
266  Dofs[1][edgeId] = nvel*(locExpVector[i]->GetEdgeNcoeffs(j)-2)*nz_loc;
267  }
268 
269  // Adjust for Dirichlet boundary conditions to give number to be solved
270  if(IsDirEdgeDof.count(edgeId) != 0)
271  {
272  Dofs[1][edgeId] -= IsDirEdgeDof[edgeId]*nz_loc*(locExpVector[i]->GetEdgeNcoeffs(j)-2);
273  }
274  }
275  }
276 
277  set<int> extraDirVerts, extraDirEdges;
278 
279  CreateGraph(*fields[0], bndCondExp, bndConditionsVec, false,
280  periodicVerts, periodicEdges, periodicFaces,
281  ReorderedGraphVertId, bottomUpGraph, extraDirVerts,
282  extraDirEdges, firstNonDirGraphVertId, nExtraDirichlet, 4);
283  /*
284  SetUp2DGraphC0ContMap(*fields[0],
285  bndCondExp,
286  bndConditionsVec,
287  periodicVerts, periodicEdges,
288  Dofs, ReorderedGraphVertId,
289  firstNonDirGraphVertId, nExtraDirichlet,
290  bottomUpGraph, extraDir, false, 4);
291  */
292 
293  /**
294  * STEP 2a: Set the mean pressure modes to edges depending on
295  * type of direct solver technique;
296  */
297 
298  // determine which edge to add mean pressure dof based on
299  // ensuring that at least one pressure dof from an internal
300  // patch is associated with its boundary system
301  if(m_session->MatchSolverInfoAsEnum("GlobalSysSoln", MultiRegions::eDirectMultiLevelStaticCond))
302  {
303 
304 
305  FindEdgeIdToAddMeanPressure(ReorderedGraphVertId,
306  nel, locExpVector,
307  edgeId, vertId, firstNonDirGraphVertId, IsDirEdgeDof,
308  bottomUpGraph,
309  AddMeanPressureToEdgeId);
310  }
311 
312  // Set unset elmts to non-Dirichlet edges.
313  // special case of singular problem - need to fix one
314  // pressure dof to a dirichlet edge
315  for(i = 0; i < nel; ++i)
316  {
317  for(j = 0; j < locExpVector[i]->GetNverts(); ++j)
318  {
319  edgeId = (locExpVector[i]->as<LocalRegions::Expansion2D>()
320  ->GetGeom2D())->GetEid(j);
321 
322  if(IsDirEdgeDof.count(edgeId) == 0) // interior edge
323  {
324  // setup AddMeanPressureToEdgeId to decide where to
325  // put pressure
326  if(AddMeanPressureToEdgeId[i] == -1)
327  {
328  AddMeanPressureToEdgeId[i] = edgeId;
329  }
330  }
331  }
332  ASSERTL0((AddMeanPressureToEdgeId[i] != -1),"Did not determine "
333  "an edge to attach mean pressure dof");
334  // Add the mean pressure degree of freedom to this edge
335  Dofs[1][AddMeanPressureToEdgeId[i]] += nz_loc;
336  }
337 
338  map<int,int> pressureEdgeOffset;
339 
340  /**
341  * STEP 2: Count out the number of Dirichlet vertices and edges first
342  */
343  for(i = 0; i < bndCondExp.num_elements(); i++)
344  {
345  for(j = 0; j < bndCondExp[i]->GetNumElmts(); j++)
346  {
347  bndSegExp = bndCondExp[i]->GetExp(j)
348  ->as<LocalRegions::SegExp>();
349  for(k = 0; k < nvel; ++k)
350  {
351  if(bndConditionsVec[k][i]->GetBoundaryConditionType()==SpatialDomains::eDirichlet)
352  {
353  nLocDirBndCondDofs += bndSegExp->GetNcoeffs()*nz_loc;
354  }
355 
356  if (bndConditionsVec[k][i]->GetBoundaryConditionType()!=SpatialDomains::ePeriodic)
357  {
358  nLocBndCondDofs += bndSegExp->GetNcoeffs()*nz_loc;
359  }
360  }
361  }
362  }
363 
364  if(m_systemSingular)
365  {
366  m_numLocalDirBndCoeffs = nLocDirBndCondDofs+nExtraDirichlet+nz_loc;
367  }
368  else
369  {
370  m_numLocalDirBndCoeffs = nLocDirBndCondDofs+nExtraDirichlet;
371  }
372 
373  /**
374  * STEP 3: Set up an array which contains the offset information of
375  * the different graph vertices.
376  *
377  * This basically means to identify how many global degrees of
378  * freedom the individual graph vertices correspond. Obviously,
379  * the graph vertices corresponding to the mesh-vertices account
380  * for a single global DOF. However, the graph vertices
381  * corresponding to the element edges correspond to 2*(N-2) global DOF
382  * where N is equal to the number of boundary modes on this edge.
383  */
384  Array<OneD, int> graphVertOffset(nvel*nz_loc*(ReorderedGraphVertId[0].size() + ReorderedGraphVertId[1].size()),0);
385  graphVertOffset[0] = 0;
386 
387  m_signChange = false;
388 
389  for(i = 0; i < nel; ++i)
390  {
391  locExpansion = locExpVector[i]->as<StdRegions::StdExpansion2D>();
392 
393  for(j = 0; j < locExpansion->GetNedges(); ++j)
394  {
395  nEdgeCoeffs = locExpansion->GetEdgeNcoeffs(j);
396  meshEdgeId = (locExpansion->as<LocalRegions::Expansion2D>()
397  ->GetGeom2D())->GetEid(j);
398  meshVertId = (locExpansion->as<LocalRegions::Expansion2D>()
399  ->GetGeom2D())->GetVid(j);
400 
401  for(k = 0; k < nvel*nz_loc; ++k)
402  {
403  graphVertOffset[ReorderedGraphVertId[0][meshVertId]*nvel*nz_loc+k] = 1;
404  graphVertOffset[ReorderedGraphVertId[1][meshEdgeId]*nvel*nz_loc+k] = (nEdgeCoeffs-2);
405  }
406 
407  bType = locExpansion->GetEdgeBasisType(j);
408  // need a sign vector for modal expansions if nEdgeCoeffs >=4
409  if( (nEdgeCoeffs >= 4)&&
410  ( (bType == LibUtilities::eModified_A)||
411  (bType == LibUtilities::eModified_B) ) )
412  {
413  m_signChange = true;
414  }
415  }
416  }
417 
418  // Add mean pressure modes;
419  for(i = 0; i < nel; ++i)
420  {
421  graphVertOffset[(ReorderedGraphVertId[1][AddMeanPressureToEdgeId[i]]+1)*nvel*nz_loc-1] += nz_loc;
422  //graphVertOffset[(ReorderedGraphVertId[1][AddMeanPressureToEdgeId[i]])*nvel*nz_loc] += nz_loc;
423  }
424 
425  // Negate the vertices and edges with only a partial
426  // Dirichlet conditon. Essentially we check to see if an edge
427  // has a mixed Dirichlet with Neumann/Robin Condition and if
428  // so negate the offset associated with this vertex.
429 
430  map<int,int> DirVertChk;
431 
432  for(i = 0; i < bndConditionsVec[0].num_elements(); ++i)
433  {
434  cnt = 0;
435  for(j = 0; j < nvel; ++j)
436  {
437  if(bndConditionsVec[j][i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
438  {
439  cnt ++;
440  }
441  }
442 
443  // Case where partial Dirichlet boundary condition
444  if((cnt > 0)&&(cnt < nvel))
445  {
446  for(j = 0; j < nvel; ++j)
447  {
448  if(bndConditionsVec[j][i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
449  {
450  //negate graph offsets which should be
451  //Dirichlet conditions
452  for(k = 0; k < bndCondExp[i]->GetNumElmts(); ++k)
453  {
454  // vertices with mix condition;
455  id = bndCondExp[i]->GetExp(k)
457  ->GetGeom1D()->GetVid(0);
458  if(DirVertChk.count(id*nvel+j) == 0)
459  {
460  DirVertChk[id*nvel+j] = 1;
461  for(n = 0; n < nz_loc; ++n)
462  {
463  graphVertOffset[ReorderedGraphVertId[0][id]*nvel*nz_loc+j*nz_loc + n] *= -1;
464  }
465  }
466 
467  id = bndCondExp[i]->GetExp(k)
469  ->GetGeom1D()->GetVid(1);
470  if(DirVertChk.count(id*nvel+j) == 0)
471  {
472  DirVertChk[id*nvel+j] = 1;
473  for(n = 0; n < nz_loc; ++n)
474  {
475  graphVertOffset[ReorderedGraphVertId[0][id]*nvel*nz_loc+j*nz_loc+n] *= -1;
476  }
477  }
478 
479  // edges with mixed id;
480  id = bndCondExp[i]->GetExp(k)
482  ->GetGeom1D()->GetGlobalID();
483  for(n = 0; n < nz_loc; ++n)
484  {
485  graphVertOffset[ReorderedGraphVertId[1][id]*nvel*nz_loc+j*nz_loc +n] *= -1;
486  }
487  }
488  }
489  }
490  }
491  }
492 
493 
494  cnt = 0;
495  // assemble accumulative list of full Dirichlet values.
496  for(i = 0; i < firstNonDirGraphVertId*nvel*nz_loc; ++i)
497  {
498  diff = abs(graphVertOffset[i]);
499  graphVertOffset[i] = cnt;
500  cnt += diff;
501  }
502 
503  // set Dirichlet values with negative values to Dirichlet value
504  for(i = firstNonDirGraphVertId*nvel*nz_loc; i < graphVertOffset.num_elements(); ++i)
505  {
506  if(graphVertOffset[i] < 0)
507  {
508  diff = -graphVertOffset[i];
509  graphVertOffset[i] = -cnt;
510  cnt += diff;
511  }
512  }
513 
514  // Accumulate all interior degrees of freedom with positive values
516 
517  // offset values
518  for(i = firstNonDirGraphVertId*nvel*nz_loc; i < graphVertOffset.num_elements(); ++i)
519  {
520  if(graphVertOffset[i] >= 0)
521  {
522  diff = graphVertOffset[i];
523  graphVertOffset[i] = cnt;
524  cnt += diff;
525  }
526  }
527 
528  // Finally set negative entries (corresponding to Dirichlet
529  // values ) to be positive
530  for(i = firstNonDirGraphVertId*nvel*nz_loc; i < graphVertOffset.num_elements(); ++i)
531  {
532  if(graphVertOffset[i] < 0)
533  {
534  graphVertOffset[i] = -graphVertOffset[i];
535  }
536  }
537 
538 
539  // Allocate the proper amount of space for the class-data and fill
540  // information that is already known
541  cnt = 0;
543  m_numLocalCoeffs = 0;
544 
545  for(i = 0; i < nel; ++i)
546  {
547  m_numLocalBndCoeffs += nz_loc*(nvel*locExpVector[i]->NumBndryCoeffs() + 1);
548  // add these coeffs up separately since
549  // pressure->GetNcoeffs can include the coefficient in
550  // multiple planes.
551  m_numLocalCoeffs += (pressure->GetExp(i)->GetNcoeffs()-1)*nz_loc;
552  }
553 
555 
556 
560 
561 
562  // Set default sign array.
565 
566  m_staticCondLevel = staticCondLevel;
567  m_numPatches = nel;
568 
571 
572  for(i = 0; i < nel; ++i)
573  {
574  m_numLocalBndCoeffsPerPatch[i] = (unsigned int) nz_loc*(nvel*locExpVector[i]->NumBndryCoeffs() + 1);
575  m_numLocalIntCoeffsPerPatch[i] = (unsigned int) nz_loc*(pressure->GetExp(i)->GetNcoeffs()-1);
576  }
577 
578  /**
579  * STEP 4: Now, all ingredients are ready to set up the actual
580  * local to global mapping.
581  *
582  * The remainder of the map consists of the element-interior
583  * degrees of freedom. This leads to the block-diagonal submatrix
584  * as each element-interior mode is globally orthogonal to modes
585  * in all other elements.
586  */
587  cnt = 0;
588  int nv,velnbndry;
590 
591 
592  // Loop over all the elements in the domain in shuffled
593  // ordering (element type consistency)
594  for(i = 0; i < nel; ++i)
595  {
596  locExpansion = locExpVector[i]->as<StdRegions::StdExpansion2D>();
597 
598  velnbndry = locExpansion->NumBndryCoeffs();
599 
600  // require an inverse ordering of the bmap system to store
601  // local numbering system which takes matrix these
602  // matrices. Therefore get hold of elemental bmap and set
603  // up an inverse map
604  map<int,int> inv_bmap;
605  locExpansion->GetBoundaryMap(bmap);
606  for(j = 0; j < bmap.num_elements(); ++j)
607  {
608  inv_bmap[bmap[j]] = j;
609  }
610 
611  // Loop over all edges (and vertices) of element i
612  for(j = 0; j < locExpansion->GetNedges(); ++j)
613  {
614  nEdgeInteriorCoeffs = locExpansion->GetEdgeNcoeffs(j)-2;
615  edgeOrient = (locExpansion->as<LocalRegions::Expansion2D>()
616  ->GetGeom2D())->GetEorient(j);
617  meshEdgeId = (locExpansion->as<LocalRegions::Expansion2D>()
618  ->GetGeom2D())->GetEid(j);
619  meshVertId = (locExpansion->as<LocalRegions::Expansion2D>()
620  ->GetGeom2D())->GetVid(j);
621 
622  auto pIt = periodicEdges.find(meshEdgeId);
623 
624  // See if this edge is periodic. If it is, then we map all
625  // edges to the one with lowest ID, and align all
626  // coefficients to this edge orientation.
627  if (pIt != periodicEdges.end())
628  {
629  pair<int, StdRegions::Orientation> idOrient =
631  meshEdgeId, edgeOrient, pIt->second);
632  edgeOrient = idOrient.second;
633  }
634 
635  locExpansion->GetEdgeInteriorMap(j,edgeOrient,edgeInteriorMap,edgeInteriorSign);
636  // Set the global DOF for vertex j of element i
637 
638  for(nv = 0; nv < nvel*nz_loc; ++nv)
639  {
640  m_localToGlobalMap[cnt+nv*velnbndry+inv_bmap[locExpansion->GetVertexMap(j)]] = graphVertOffset[ReorderedGraphVertId[0][meshVertId]*nvel*nz_loc+ nv];
641  // Set the global DOF's for the interior modes of edge j
642  for(k = 0; k < nEdgeInteriorCoeffs; ++k)
643  {
644  m_localToGlobalMap[cnt+nv*velnbndry+inv_bmap[edgeInteriorMap[k]]] = graphVertOffset[ReorderedGraphVertId[1][meshEdgeId]*nvel*nz_loc+nv]+k;
645  }
646  }
647 
648  // Fill the sign vector if required
649  if(m_signChange)
650  {
651  for(nv = 0; nv < nvel*nz_loc; ++nv)
652  {
653  for(k = 0; k < nEdgeInteriorCoeffs; ++k)
654  {
655  m_localToGlobalSign[cnt+nv*velnbndry + inv_bmap[edgeInteriorMap[k]]] = (NekDouble) edgeInteriorSign[k];
656  }
657  }
658  }
659  }
660 
661  // use difference between two edges of the AddMeanPressureEdgeId to det nEdgeInteriorCoeffs.
662  nEdgeInteriorCoeffs = graphVertOffset[(ReorderedGraphVertId[1][AddMeanPressureToEdgeId[i]])*nvel*nz_loc+1] - graphVertOffset[(ReorderedGraphVertId[1][AddMeanPressureToEdgeId[i]])*nvel*nz_loc];
663 
664  int psize = pressure->GetExp(i)->GetNcoeffs();
665  for(n = 0; n < nz_loc; ++n)
666  {
667  m_localToGlobalMap[cnt + nz_loc*nvel*velnbndry + n*psize] = graphVertOffset[(ReorderedGraphVertId[1][AddMeanPressureToEdgeId[i]]+1)*nvel*nz_loc-1]+nEdgeInteriorCoeffs + pressureEdgeOffset[AddMeanPressureToEdgeId[i]];
668 
669  pressureEdgeOffset[AddMeanPressureToEdgeId[i]] += 1;
670  }
671 
672  cnt += (velnbndry*nvel+ psize)*nz_loc;
673  }
674 
675  // Set up the mapping for the boundary conditions
676  offset = cnt = 0;
677  for(nv = 0; nv < nvel; ++nv)
678  {
679  for(i = 0; i < bndCondExp.num_elements(); i++)
680  {
681  if (bndConditionsVec[nv][i]->GetBoundaryConditionType()==SpatialDomains::ePeriodic)
682  {
683  continue;
684  }
685 
686  for(n = 0; n < nz_loc; ++n)
687  {
688  int ncoeffcnt = 0;
689  for(j = 0; j < bndCondExp[i]->GetNumElmts(); j++)
690  {
691  bndSegExp = bndCondExp[i]->GetExp(j)
692  ->as<LocalRegions::SegExp>();
693 
694  cnt = offset + bndCondExp[i]->GetCoeff_Offset(j);
695  for(k = 0; k < 2; k++)
696  {
697  meshVertId = (bndSegExp->GetGeom1D())->GetVid(k);
698  m_bndCondCoeffsToGlobalCoeffsMap[cnt+bndSegExp->GetVertexMap(k)] = graphVertOffset[ReorderedGraphVertId[0][meshVertId]*nvel*nz_loc+nv*nz_loc+n];
699  }
700 
701  meshEdgeId = (bndSegExp->GetGeom1D())->GetGlobalID();
702  bndEdgeCnt = 0;
703  nEdgeCoeffs = bndSegExp->GetNcoeffs();
704  for(k = 0; k < nEdgeCoeffs; k++)
705  {
706  if(m_bndCondCoeffsToGlobalCoeffsMap[cnt+k] == -1)
707  {
708  m_bndCondCoeffsToGlobalCoeffsMap[cnt+k] =
709  graphVertOffset[ReorderedGraphVertId[1][meshEdgeId]*nvel*nz_loc+nv*nz_loc+n]+bndEdgeCnt;
710  bndEdgeCnt++;
711  }
712  }
713  ncoeffcnt += nEdgeCoeffs;
714  }
715  // Note: Can not use bndCondExp[i]->GetNcoeffs()
716  // due to homogeneous extension not returning just
717  // the value per plane
718  offset += ncoeffcnt;
719  }
720  }
721  }
722 
723  globalId = Vmath::Vmax(m_numLocalCoeffs,&m_localToGlobalMap[0],1)+1;
724  m_numGlobalBndCoeffs = globalId;
725 
726  /**
727  * STEP 5: The boundary condition mapping is generated from the
728  * same vertex renumbering and fill in a unique interior map.
729  */
730  cnt=0;
731  for(i = 0; i < m_numLocalCoeffs; ++i)
732  {
733  if(m_localToGlobalMap[i] == -1)
734  {
735  m_localToGlobalMap[i] = globalId++;
736  }
737  else
738  {
739  if(m_signChange)
740  {
741  m_localToGlobalBndSign[cnt]=m_localToGlobalSign[i];
742  }
743  m_localToGlobalBndMap[cnt++]=m_localToGlobalMap[i];
744  }
745  }
746  m_numGlobalCoeffs = globalId;
747 
748  // Set up the local to global map for the next level when using
749  // multi-level static condensation
750  if( m_session->MatchSolverInfoAsEnum("GlobalSysSoln", MultiRegions::eDirectMultiLevelStaticCond) )
751  {
752  if (m_staticCondLevel < (bottomUpGraph->GetNlevels()-1))
753  {
754  Array<OneD, int> vwgts_perm(
755  Dofs[0].size()+Dofs[1].size()-firstNonDirGraphVertId);
756  for(i = 0; i < locExpVector.size(); ++i)
757  {
758  locExpansion = locExpVector[i]
760  for(j = 0; j < locExpansion->GetNverts(); ++j)
761  {
762  meshEdgeId = (locExpansion
764  ->GetGeom2D())->GetEid(j);
765  meshVertId = (locExpansion
767  ->GetGeom2D())->GetVid(j);
768 
769  if(ReorderedGraphVertId[0][meshVertId] >=
770  firstNonDirGraphVertId)
771  {
772  vwgts_perm[ReorderedGraphVertId[0][meshVertId]-
773  firstNonDirGraphVertId] =
774  Dofs[0][meshVertId];
775  }
776 
777  if(ReorderedGraphVertId[1][meshEdgeId] >=
778  firstNonDirGraphVertId)
779  {
780  vwgts_perm[ReorderedGraphVertId[1][meshEdgeId]-
781  firstNonDirGraphVertId] =
782  Dofs[1][meshEdgeId];
783  }
784  }
785  }
786 
787  bottomUpGraph->ExpandGraphWithVertexWeights(vwgts_perm);
788 
790  AllocateSharedPtr(this,bottomUpGraph);
791  }
792  }
793  }
794 
795 
796 
797 void CoupledLocalToGlobalC0ContMap::FindEdgeIdToAddMeanPressure(vector<map<int,int> > &ReorderedGraphVertId,
798  int &nel, const LocalRegions::ExpansionVector &locExpVector,
799  int &edgeId, int &vertId, int &firstNonDirGraphVertId, map<int,int> &IsDirEdgeDof,
801  Array<OneD, int> &AddMeanPressureToEdgeId)
802 {
803 
804  int i,j,k;
805 
806  // Make list of homogeneous graph edges to elmt mappings
807  Array<TwoD, int> EdgeIdToElmts(ReorderedGraphVertId[1].size(),2,-1);
808  map<int,int> HomGraphEdgeIdToEdgeId;
809 
810  for(i = 0; i < nel; ++i)
811  {
812  for(j = 0; j < locExpVector[i]->GetNverts(); ++j)
813  {
814  edgeId = (locExpVector[i]->as<LocalRegions::Expansion2D>()
815  ->GetGeom2D())->GetEid(j);
816 
817  // note second condition stops us using mixed boundary condition
818  if((ReorderedGraphVertId[1][edgeId] >= firstNonDirGraphVertId)
819  && (IsDirEdgeDof.count(edgeId) == 0))
820  {
821  HomGraphEdgeIdToEdgeId[ReorderedGraphVertId[1][edgeId]-firstNonDirGraphVertId] = edgeId;
822 
823  if(EdgeIdToElmts[edgeId][0] == -1)
824  {
825  EdgeIdToElmts[edgeId][0] = i;
826  }
827  else
828  {
829  EdgeIdToElmts[edgeId][1] = i;
830  }
831  }
832  }
833  }
834 
835  // Start at second to last level and find edge on boundary
836  // to attach element
837  int nlevels = bottomUpGraph->GetNlevels();
838 
839  // determine a default edge to attach pressure modes to
840  // which is part of the inner solve;
841  int defedge = -1;
842 
843  vector<MultiRegions::SubGraphSharedPtr> bndgraphs = bottomUpGraph->GetInteriorBlocks(nlevels);
844  for(i = 0; i < bndgraphs.size(); ++i)
845  {
846  int GlobIdOffset = bndgraphs[i]->GetIdOffset();
847 
848  for(j = 0; j < bndgraphs[i]->GetNverts(); ++j)
849  {
850  // find edge in graph vert list
851  if(HomGraphEdgeIdToEdgeId.count(GlobIdOffset+j) != 0)
852  {
853  edgeId = HomGraphEdgeIdToEdgeId[GlobIdOffset+j];
854 
855  if(defedge == -1)
856  {
857  defedge = edgeId;
858  break;
859  }
860  }
861  }
862  if(defedge != -1)
863  {
864  break;
865  }
866  }
867 
868  for(int n = 1; n < nlevels; ++n)
869  {
870  // produce a map with a key that is the element id
871  // that contains which next level patch it belongs to
872  vector<MultiRegions::SubGraphSharedPtr> bndgraphs = bottomUpGraph->GetInteriorBlocks(n+1);
873 
874  // Fill next level graph of adjacent elements and their level
875  map<int,int> ElmtInBndry;
876 
877  for(i = 0; i < bndgraphs.size(); ++i)
878  {
879  int GlobIdOffset = bndgraphs[i]->GetIdOffset();
880 
881  for(j = 0; j < bndgraphs[i]->GetNverts(); ++j)
882  {
883  // find edge in graph vert list
884  if(HomGraphEdgeIdToEdgeId.count(GlobIdOffset+j) != 0)
885  {
886  edgeId = HomGraphEdgeIdToEdgeId[GlobIdOffset+j];
887 
888  if(EdgeIdToElmts[edgeId][0] != -1)
889  {
890  ElmtInBndry[EdgeIdToElmts[edgeId][0]] = i;
891  }
892  if(EdgeIdToElmts[edgeId][1] != -1)
893  {
894  ElmtInBndry[EdgeIdToElmts[edgeId][1]] = i;
895  }
896  }
897  }
898  }
899 
900  // Now search interior patches in this level for edges
901  // that share the same element as a boundary edge and
902  // assign this elmt that boundary edge
903  vector<MultiRegions::SubGraphSharedPtr> intgraphs = bottomUpGraph->GetInteriorBlocks(n);
904  for(i = 0; i < intgraphs.size(); ++i)
905  {
906  int GlobIdOffset = intgraphs[i]->GetIdOffset();
907  bool SetEdge = false;
908  int elmtid = 0;
909  for(j = 0; j < intgraphs[i]->GetNverts(); ++j)
910  {
911  // Check to see if graph vert is an edge
912  if(HomGraphEdgeIdToEdgeId.count(GlobIdOffset+j) != 0)
913  {
914  edgeId = HomGraphEdgeIdToEdgeId[GlobIdOffset+j];
915 
916  for(k = 0; k < 2; ++k)
917  {
918  // relevant edge id
919  elmtid = EdgeIdToElmts[edgeId][k];
920 
921  if(elmtid != -1)
922  {
923  auto mapIt = ElmtInBndry.find(elmtid);
924 
925  if(mapIt != ElmtInBndry.end())
926  {
927  // now find a edge in the next level boundary graph
928  int GlobIdOffset1 = bndgraphs[mapIt->second]->GetIdOffset();
929  for(int l = 0; l < bndgraphs[mapIt->second]->GetNverts(); ++l)
930  {
931  // find edge in graph vert list
932  if(HomGraphEdgeIdToEdgeId.count(GlobIdOffset1+l) != 0)
933  {
934  //June 2012: commenting this condition apparently
935  //solved the bug caused by the edge reordering procedure
936 
937  //if(AddMeanPressureToEdgeId[elmtid] == -1)
938  //{
939 
940  //AddMeanPressureToEdgeId[elmtid] = HomGraphEdgeIdToEdgeId[GlobIdOffset1+l];
941  AddMeanPressureToEdgeId[elmtid] = defedge;
942 
943  //}
944  SetEdge = true;
945  break;
946  }
947  }
948  }
949  }
950  }
951  }
952  }
953 
954 
955  // if we have failed to find matching edge in next
956  // level patch boundary then set last found elmt
957  // associated to this interior patch to the
958  // default edget value
959  if(SetEdge == false)
960  {
961  if(elmtid == -1) // find an elmtid in patch
962  {
963  for(j = 0; j < intgraphs[i]->GetNverts(); ++j)
964  {
965  if(HomGraphEdgeIdToEdgeId.count(GlobIdOffset+j) != 0)
966  {
967  edgeId = HomGraphEdgeIdToEdgeId[GlobIdOffset+j];
968  for(k = 0; k < 2; ++k)
969  {
970  // relevant edge id
971  elmtid = EdgeIdToElmts[edgeId][k];
972  if(elmtid != -1)
973  {
974  break;
975  }
976  }
977  }
978  if(elmtid != -1)
979  {
980  break;
981  }
982  }
983  }
984  if(AddMeanPressureToEdgeId[elmtid] == -1)
985  {
986  AddMeanPressureToEdgeId[elmtid] = defedge;
987  }
988  }
989  }
990  }
991 
992 }
993 
994 
995 
996 
997 }
998 
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:163
bool m_systemSingular
Flag indicating if the system is singular or not.
Definition: AssemblyMap.h:321
bool m_signChange
Flag indicating if modes require sign reversal.
Definition: AssemblyMap.h:346
int m_numGlobalBndCoeffs
Total number of global boundary coefficients.
Definition: AssemblyMap.h:315
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:782
std::shared_ptr< BoundaryConditions > BoundaryConditionsSharedPtr
Definition: Conditions.h:289
int CreateGraph(const ExpList &locExp, const BndCondExp &bndCondExp, const Array< OneD, const BndCond > &bndConditions, const bool checkIfSystemSingular, const PeriodicMap &periodicVerts, const PeriodicMap &periodicEdges, const PeriodicMap &periodicFaces, DofGraph &graph, BottomUpSubStructuredGraphSharedPtr &bottomUpGraph, std::set< int > &extraDirVerts, std::set< int > &extraDirEdges, int &firstNonDirGraphVertId, int &nExtraDirichlet, int mdswitch=1)
Principle Modified Functions .
Definition: BasisType.h:48
STL namespace.
int m_numLocalCoeffs
Total number of local coefficients.
Definition: AssemblyMap.h:332
std::shared_ptr< StdExpansion2D > StdExpansion2DSharedPtr
std::vector< ExpansionSharedPtr > ExpansionVector
Definition: Expansion.h:67
Array< OneD, int > m_localToGlobalMap
Integer map of local coeffs to global space.
AssemblyMapSharedPtr m_nextLevelLocalToGlobalMap
Map from the patches of the previous level to the patches of the current level.
Definition: AssemblyMap.h:396
int GetEdgeNcoeffs(const int i) const
This function returns the number of expansion coefficients belonging to the i-th edge.
Definition: StdExpansion.h:286
static const NekDouble kNekZeroTol
int GetVertexMap(const int localVertexId, bool useCoeffPacking=false)
Definition: StdExpansion.h:822
Array< OneD, unsigned int > m_numLocalBndCoeffsPerPatch
The number of bnd dofs per patch.
Definition: AssemblyMap.h:389
int m_numGlobalDirBndCoeffs
Number of Global Dirichlet Boundary Coefficients.
Definition: AssemblyMap.h:319
Principle Modified Functions .
Definition: BasisType.h:49
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
double NekDouble
Array< OneD, unsigned int > m_numLocalIntCoeffsPerPatch
The number of int dofs per patch.
Definition: AssemblyMap.h:391
std::map< int, std::vector< PeriodicEntity > > PeriodicMap
Array< OneD, int > m_localToGlobalBndMap
Integer map of local boundary coeffs to global space.
Definition: AssemblyMap.h:349
int m_numLocalDirBndCoeffs
Number of Local Dirichlet Boundary Coefficients.
Definition: AssemblyMap.h:317
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
Array< OneD, int > m_bndCondCoeffsToGlobalCoeffsMap
Integer map of bnd cond coeffs to global coefficients.
Definition: AssemblyMap.h:353
int m_numLocalBndCoeffs
Number of local boundary coefficients.
Definition: AssemblyMap.h:313
int m_staticCondLevel
The level of recursion in the case of multi-level static condensation.
Definition: AssemblyMap.h:385
Array< OneD, NekDouble > m_localToGlobalBndSign
Integer sign of local boundary coeffs to global space.
Definition: AssemblyMap.h:351
Array< OneD, NekDouble > m_localToGlobalSign
Integer sign of local coeffs to global space.
std::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:266
LibUtilities::SessionReaderSharedPtr m_session
Session object.
Definition: AssemblyMap.h:304
std::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry.h:63
void FindEdgeIdToAddMeanPressure(std::vector< std::map< int, int > > &ReorderedGraphVertId, int &nel, const LocalRegions::ExpansionVector &locExpVector, int &edgeId, int &vertId, int &firstNonDirGraphVertId, std::map< int, int > &IsDirEdgeDof, MultiRegions::BottomUpSubStructuredGraphSharedPtr &bottomUpGraph, Array< OneD, int > &AddMeanPressureToEdgeId)
Constructs mappings for the C0 scalar continuous Galerkin formulation.
Definition: AssemblyMapCG.h:70
int m_numGlobalCoeffs
Total number of global coefficients.
Definition: AssemblyMap.h:343
pair< int, StdRegions::Orientation > DeterminePeriodicEdgeOrientId(int meshEdgeId, StdRegions::Orientation edgeOrient, const vector< PeriodicEntity > &periodicEdges)
Determine orientation of an edge to its periodic equivalents, as well as the ID of the representative...
std::shared_ptr< Expansion1D > Expansion1DSharedPtr
Definition: Expansion1D.h:51
std::shared_ptr< BottomUpSubStructuredGraph > BottomUpSubStructuredGraphSharedPtr
std::shared_ptr< SessionReader > SessionReaderSharedPtr
int m_numPatches
The number of patches (~elements) in the current level.
Definition: AssemblyMap.h:387