35 #include <boost/core/ignore_unused.hpp> 49 namespace LocalRegions
54 StdExpansion (Ba.GetNumModes()*Bb.GetNumModes(),2,Ba,Bb),
55 StdExpansion2D(Ba.GetNumModes()*Bb.GetNumModes(),Ba,Bb),
60 std::bind(&
QuadExp::CreateMatrix, this,
std::placeholders::_1),
61 std::string(
"QuadExpMatrix")),
62 m_staticCondMatrixManager(
63 std::bind(&
QuadExp::CreateStaticCondMatrix, this,
std::placeholders::_1),
64 std::string(
"QuadExpStaticCondMatrix"))
90 int nquad0 =
m_base[0]->GetNumPoints();
91 int nquad1 =
m_base[1]->GetNumPoints();
99 Vmath::Vmul(nquad0*nquad1, jac, 1, inarray, 1, tmp, 1);
103 Vmath::Smul(nquad0*nquad1, jac[0], inarray, 1, tmp, 1);
107 ival = StdQuadExp::v_Integral(tmp);
117 int nquad0 =
m_base[0]->GetNumPoints();
118 int nquad1 =
m_base[1]->GetNumPoints();
119 int nqtot = nquad0*nquad1;
124 StdQuadExp::v_PhysDeriv(inarray, diff0, diff1);
128 if (out_d0.num_elements())
130 Vmath::Vmul (nqtot, df[0], 1, diff0, 1, out_d0, 1);
135 if(out_d1.num_elements())
138 Vmath::Vvtvp (nqtot,df[3],1,diff1,1, out_d1, 1, out_d1,1);
141 if (out_d2.num_elements())
144 Vmath::Vvtvp (nqtot,df[5],1,diff1,1, out_d2, 1, out_d2,1);
149 if (out_d0.num_elements())
151 Vmath::Smul (nqtot, df[0][0], diff0, 1, out_d0, 1);
152 Blas::Daxpy (nqtot, df[1][0], diff1, 1, out_d0, 1);
155 if (out_d1.num_elements())
157 Vmath::Smul (nqtot, df[2][0], diff0, 1, out_d1, 1);
158 Blas::Daxpy (nqtot, df[3][0], diff1, 1, out_d1, 1);
161 if (out_d2.num_elements())
163 Vmath::Smul (nqtot, df[4][0], diff0, 1, out_d2, 1);
164 Blas::Daxpy (nqtot, df[5][0], diff1, 1, out_d2, 1);
197 ASSERTL1(
false,
"input dir is out of range");
209 int nquad0 =
m_base[0]->GetNumPoints();
210 int nquad1 =
m_base[1]->GetNumPoints();
211 int nqtot = nquad0*nquad1;
218 StdQuadExp::v_PhysDeriv(inarray, diff0, diff1);
225 for (
int i=0; i< 2; ++i)
228 for (
int k=0; k<(
m_geom->GetCoordim()); ++k)
232 &direction[k*nqtot], 1,
239 if (out.num_elements())
265 if ((
m_base[0]->Collocation())&&(
m_base[1]->Collocation()))
291 if ((
m_base[0]->Collocation())&&(
m_base[1]->Collocation()))
298 int npoints[2] = {
m_base[0]->GetNumPoints(),
299 m_base[1]->GetNumPoints()};
300 int nmodes[2] = {
m_base[0]->GetNumModes(),
301 m_base[1]->GetNumModes()};
303 fill(outarray.get(), outarray.get()+
m_ncoeffs, 0.0 );
305 if(nmodes[0] == 1 && nmodes[1] == 1)
307 outarray[0] = inarray[0];
314 for (i = 0; i < 4; i++)
321 for (i = 0; i < npoints[0]; i++)
323 physEdge[0][i] = inarray[i];
324 physEdge[2][i] = inarray[npoints[0]*(npoints[1]-1)+i];
327 for (i = 0; i < npoints[1]; i++)
330 inarray[npoints[0]-1+i*npoints[0]];
332 inarray[i*npoints[0]];
335 for (i = 0; i < 4; i++)
339 reverse((physEdge[i]).
get(),
340 (physEdge[i]).
get() + npoints[i%2] );
345 for (i = 0; i < 4; i++)
356 for (i = 0; i < 4; i++)
358 segexp[i%2]->FwdTrans_BndConstrained(
359 physEdge[i],coeffEdge[i]);
362 for (j=0; j < nmodes[i%2]; j++)
365 outarray[ mapArray[j] ] = sign * coeffEdge[i][j];
370 int nInteriorDofs =
m_ncoeffs - nBoundaryDofs;
372 if (nInteriorDofs > 0) {
396 for (i = 0; i < nInteriorDofs; i++)
398 rhs[i] = tmp1[ mapArray[i] ];
403 &((matsys->GetOwnedMatrix())->GetPtr())[0],
404 nInteriorDofs,rhs.get(),1,0.0,result.get(),1);
406 for (i = 0; i < nInteriorDofs; i++)
408 outarray[ mapArray[i] ] = result[i];
420 if (
m_base[0]->Collocation() &&
m_base[1]->Collocation())
443 bool multiplybyweights)
445 int nquad0 =
m_base[0]->GetNumPoints();
446 int nquad1 =
m_base[1]->GetNumPoints();
447 int order0 =
m_base[0]->GetNumModes();
449 if(multiplybyweights)
455 StdQuadExp::IProductWRTBase_SumFacKernel(
m_base[0]->GetBdata(),
457 tmp,outarray,wsp,
true,
true);
463 StdQuadExp::IProductWRTBase_SumFacKernel(
m_base[0]->GetBdata(),
465 inarray,outarray,wsp,
true,
true);
480 (iprodmat->GetOwnedMatrix())->GetPtr().get(),
481 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
491 ASSERTL1((dir==0) || (dir==1) || (dir==2),
492 "Invalid direction.");
494 "Invalid direction.");
496 int nquad0 =
m_base[0]->GetNumPoints();
497 int nquad1 =
m_base[1]->GetNumPoints();
498 int nqtot = nquad0*nquad1;
499 int nmodes0 =
m_base[0]->GetNumModes();
522 df[2*dir][0], inarray.get(), 1,
525 df[2*dir+1][0], inarray.get(), 1,
534 tmp1, tmp3, tmp4,
false,
true);
537 tmp2, outarray, tmp4,
true,
false);
569 ASSERTL1(
false,
"input dir is out of range");
578 (iprodmat->GetOwnedMatrix())->GetPtr().get(),
579 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
589 int nq =
m_base[0]->GetNumPoints()*
m_base[1]->GetNumPoints();
599 &normals[1][0],1,&Fy[0],1,&Fn[0],1);
600 Vmath::Vvtvp (nq,&normals[2][0],1,&Fz[0],1,&Fn[0],1,&Fn[0],1);
605 normals[1][0],&Fy[0],1,&Fn[0],1);
606 Vmath::Svtvp (nq,normals[2][0],&Fz[0],1,&Fn[0],1,&Fn[0],1);
623 m_base[1]->GetBasisKey());
630 2,
m_base[0]->GetPointsKey());
632 2,
m_base[1]->GetPointsKey());
652 ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[1] <= 1.0 &&
653 Lcoords[1] >= -1.0 && Lcoords[1] <=1.0,
654 "Local coordinates are not in region [-1,1]");
657 for (i = 0; i <
m_geom->GetCoordim(); ++i)
659 coords[i] =
m_geom->GetCoord(i,Lcoords);
675 return StdQuadExp::v_PhysEvaluate(Lcoord,physvals);
685 m_geom->GetLocCoords(coord,Lcoord);
687 return StdQuadExp::v_PhysEvaluate(Lcoord, physvals);
699 int nquad0 =
m_base[0]->GetNumPoints();
700 int nquad1 =
m_base[1]->GetNumPoints();
725 -nquad0, &(outarray[0]),1);
744 -nquad0,&(outarray[0]),1);
753 ASSERTL0(
false,
"edge value (< 3) is out of range");
766 boost::ignore_unused(orient);
777 int nquad0 =
m_base[0]->GetNumPoints();
778 int nquad1 =
m_base[1]->GetNumPoints();
793 nquad0,&(outarray[0]),1);
804 ASSERTL0(
false,
"edge value (< 3) is out of range");
814 if (
m_base[edge%2]->GetPointsKey() !=
815 EdgeExp->GetBasis(0)->GetPointsKey())
822 m_base[edge%2]->GetPointsKey(), outtmp,
823 EdgeExp->GetBasis(0)->GetPointsKey(), outarray);
839 int nq0 =
m_base[0]->GetNumPoints();
840 int nq1 =
m_base[1]->GetNumPoints();
855 for (i = 0; i < nq0; i++)
858 nq1, mat_gauss->GetOwnedMatrix()->GetPtr().get(),
859 1, &inarray[i], nq0);
865 for (i = 0; i < nq1; i++)
868 nq0, mat_gauss->GetOwnedMatrix()->GetPtr().get(),
869 1, &inarray[i * nq0], 1);
875 for (i = 0; i < nq0; i++)
878 nq1, mat_gauss->GetOwnedMatrix()->GetPtr().get(),
879 1, &inarray[i], nq0);
885 for (i = 0; i < nq1; i++)
888 nq0, mat_gauss->GetOwnedMatrix()->GetPtr().get(),
889 1, &inarray[i * nq0], 1);
894 ASSERTL0(
false,
"edge value (< 3) is out of range");
904 int nquad0 =
m_base[0]->GetNumPoints();
905 int nquad1 =
m_base[1]->GetNumPoints();
912 for (
int i = 0; i < nquad0; ++i)
919 for (
int i = 0; i < nquad1; ++i)
921 outarray[i] = (nquad0-1) + i*nquad0;
926 for (
int i = 0; i < nquad0; ++i)
928 outarray[i] = i + nquad0*(nquad1-1);
933 for (
int i = 0; i < nquad1; ++i)
935 outarray[i] = i*nquad0;
939 ASSERTL0(
false,
"edge value (< 3) is out of range");
953 int nquad0 =
m_base[0]->GetNumPoints();
954 int nquad1 =
m_base[1]->GetNumPoints();
971 &&
m_base[1]->GetPointsType() !=
983 for (i = 0; i < nquad0; ++i)
985 outarray[i] = j[i]*sqrt(g1[i]*g1[i]
991 &(df[0][0])+(nquad0-1), nquad0,
995 &(df[2][0])+(nquad0-1), nquad0,
999 &(jac[0])+(nquad0-1), nquad0,
1002 for (i = 0; i < nquad1; ++i)
1004 outarray[i] = j[i]*sqrt(g0[i]*g0[i] +
1011 &(df[1][0])+(nquad0*(nquad1-1)), 1,
1015 &(df[3][0])+(nquad0*(nquad1-1)), 1,
1019 &(jac[0])+(nquad0*(nquad1-1)), 1,
1022 for (i = 0; i < nquad0; ++i)
1025 j[i]*sqrt(g1[i]*g1[i]+ g3[i]*g3[i]);
1034 for (i = 0; i < nquad1; ++i)
1036 outarray[i] = j[i]*sqrt(g0[i]*g0[i] +
1041 ASSERTL0(
false,
"edge value (< 3) is out of range");
1047 int nqtot = nquad0 * nquad1;
1066 edge, tmp_gmat1, g1_edge);
1068 edge, tmp_gmat3, g3_edge);
1070 for (i = 0; i < nquad0; ++i)
1072 outarray[i] = sqrt(g1_edge[i]*g1_edge[i] +
1073 g3_edge[i]*g3_edge[i]);
1081 &(tmp_gmat0[0]), 1);
1088 edge, tmp_gmat0, g0_edge);
1090 edge, tmp_gmat2, g2_edge);
1092 for (i = 0; i < nquad1; ++i)
1094 outarray[i] = sqrt(g0_edge[i]*g0_edge[i]
1095 + g2_edge[i]*g2_edge[i]);
1104 &(tmp_gmat1[0]), 1);
1110 edge, tmp_gmat1, g1_edge);
1112 edge, tmp_gmat3, g3_edge);
1115 for (i = 0; i < nquad0; ++i)
1117 outarray[i] = sqrt(g1_edge[i]*g1_edge[i]
1118 + g3_edge[i]*g3_edge[i]);
1128 &(tmp_gmat0[0]), 1);
1134 edge, tmp_gmat0, g0_edge);
1136 edge, tmp_gmat2, g2_edge);
1139 for (i = 0; i < nquad1; ++i)
1141 outarray[i] = sqrt(g0_edge[i]*g0_edge[i] +
1142 g2_edge[i]*g2_edge[i]);
1151 ASSERTL0(
false,
"edge value (< 3) is out of range");
1165 for (i = 0; i < nquad0; ++i)
1167 outarray[i] = jac[0]*sqrt(df[1][0]*df[1][0] +
1172 for (i = 0; i < nquad1; ++i)
1174 outarray[i] = jac[0]*sqrt(df[0][0]*df[0][0] +
1179 for (i = 0; i < nquad0; ++i)
1181 outarray[i] = jac[0]*sqrt(df[1][0]*df[1][0] +
1186 for (i = 0; i < nquad1; ++i)
1188 outarray[i] = jac[0]*sqrt(df[0][0]*df[0][0] +
1193 ASSERTL0(
false,
"edge value (< 3) is out of range");
1208 for(i = 0; i < ptsKeys.size(); ++i)
1221 if (edge == 0 || edge == 2)
1223 nqe =
m_base[0]->GetNumPoints();
1227 nqe =
m_base[1]->GetNumPoints();
1234 for (i = 0; i < vCoordDim; ++i)
1248 for (i = 0; i < vCoordDim; ++i)
1254 for (i = 0; i < vCoordDim; ++i)
1260 for (i = 0; i < vCoordDim; ++i)
1266 for (i = 0; i < vCoordDim; ++i)
1272 ASSERTL0(
false,
"edge is out of range (edge < 4)");
1277 for (i =0 ; i < vCoordDim; ++i)
1279 fac += normal[i][0]*normal[i][0];
1281 fac = 1.0/sqrt(fac);
1282 for (i = 0; i < vCoordDim; ++i)
1291 int nquad0 = ptsKeys[0].GetNumPoints();
1292 int nquad1 = ptsKeys[1].GetNumPoints();
1312 for (j = 0; j < nquad0; ++j)
1314 edgejac[j] = jac[j];
1315 for (i = 0; i < vCoordDim; ++i)
1317 normals[i*nquad0+j] =
1318 -df[2*i+1][j]*edgejac[j];
1321 from_key = ptsKeys[0];
1324 for (j = 0; j < nquad1; ++j)
1326 edgejac[j] = jac[nquad0*j+nquad0-1];
1327 for (i = 0; i < vCoordDim; ++i)
1329 normals[i*nquad1+j] =
1330 df[2*i][nquad0*j + nquad0-1]
1334 from_key = ptsKeys[1];
1337 for (j = 0; j < nquad0; ++j)
1339 edgejac[j] = jac[nquad0*(nquad1-1)+j];
1340 for (i = 0; i < vCoordDim; ++i)
1342 normals[i*nquad0+j] =
1343 (df[2*i+1][nquad0*(nquad1-1)+j])
1347 from_key = ptsKeys[0];
1350 for (j = 0; j < nquad1; ++j)
1352 edgejac[j] = jac[nquad0*j];
1353 for (i = 0; i < vCoordDim; ++i)
1355 normals[i*nquad1+j] =
1356 -df[2*i][nquad0*j]*edgejac[j];
1359 from_key = ptsKeys[1];
1362 ASSERTL0(
false,
"edge is out of range (edge < 3)");
1367 int nqtot = nquad0 * nquad1;
1374 for (j = 0; j < nquad0; ++j)
1376 for (i = 0; i < vCoordDim; ++i)
1383 edge, tmp_gmat, tmp_gmat_edge);
1384 normals[i*nquad0+j] = -tmp_gmat_edge[j];
1387 from_key = ptsKeys[0];
1390 for (j = 0; j < nquad1; ++j)
1392 for (i = 0; i < vCoordDim; ++i)
1399 edge, tmp_gmat, tmp_gmat_edge);
1400 normals[i*nquad1+j] = tmp_gmat_edge[j];
1403 from_key = ptsKeys[1];
1406 for (j = 0; j < nquad0; ++j)
1408 for (i = 0; i < vCoordDim; ++i)
1415 edge, tmp_gmat, tmp_gmat_edge);
1416 normals[i*nquad0+j] = tmp_gmat_edge[j];
1419 from_key = ptsKeys[0];
1422 for (j = 0; j < nquad1; ++j)
1424 for (i = 0; i < vCoordDim; ++i)
1431 edge, tmp_gmat, tmp_gmat_edge);
1432 normals[i*nquad1+j] = -tmp_gmat_edge[j];
1435 from_key = ptsKeys[1];
1438 ASSERTL0(
false,
"edge is out of range (edge < 3)");
1447 from_key,jac,
m_base[0]->GetPointsKey(), work);
1454 from_key,&normals[i*nq],
1455 m_base[0]->GetPointsKey(),
1457 Vmath::Vmul(nqe, work, 1, normal[i], 1, normal[i], 1);
1476 Vmath::Vmul(nqe, normal[i], 1, work, 1, normal[i], 1);
1481 for (i = 0; i < vCoordDim; ++i)
1499 return m_geom->GetCoordim();
1505 const std::vector<unsigned int > &nummodes,
1508 std::vector<LibUtilities::BasisType> &fromType)
1510 int data_order0 = nummodes[mode_offset];
1511 int fillorder0 = std::min(
m_base[0]->GetNumModes(),data_order0);
1513 int data_order1 = nummodes[mode_offset + 1];
1514 int order1 =
m_base[1]->GetNumModes();
1515 int fillorder1 = min(order1,data_order1);
1526 fromType[0], data_order0,
m_base[0]->GetPointsKey()),
1528 fromType[1], data_order1,
m_base[1]->GetPointsKey()));
1530 m_base[1]->GetBasisKey());
1538 Vmath::Vcopy(tmpOut.num_elements(), &tmpOut[0], 1, coeffs, 1);
1553 "Extraction routine not set up for this basis");
1556 for (i = 0; i < fillorder0; ++i)
1558 Vmath::Vcopy(fillorder1, data + cnt, 1, coeffs +cnt1, 1);
1571 m_base[0]->GetNumModes(),
1574 m_base[1]->GetNumModes(),
1587 m_base[0]->GetNumModes(),
1590 m_base[1]->GetNumModes(),
1597 "basis is either not set up or not hierarchicial");
1604 return m_geom->GetEorient(edge);
1610 ASSERTL1(dir >= 0 &&dir <= 1,
"input dir is out of range");
1636 returnval = StdQuadExp::v_GenMatrix(mkey);
1648 return tmp->GetStdMatrix(mkey);
1658 "Geometric information is not set up");
1747 int rows = deriv0.GetRows();
1748 int cols = deriv1.GetColumns();
1752 (*WeakDeriv) = df[2*dir][0]*deriv0 +
1753 df[2*dir+1][0]*deriv1;
1789 int rows = lap00.GetRows();
1790 int cols = lap00.GetColumns();
1795 (*lap) = gmat[0][0] * lap00 +
1796 gmat[1][0] * (lap01 +
Transpose(lap01)) +
1821 int rows = LapMat.GetRows();
1822 int cols = LapMat.GetColumns();
1828 (*helm) = LapMat + lambda*MassMat;
1895 int rows = stdiprod0.GetRows();
1896 int cols = stdiprod1.GetColumns();
1900 (*mat) = df[2*dir][0]*stdiprod0 +
1901 df[2*dir+1][0]*stdiprod1;
1929 coords[0] = (edge == 0 || edge == 3) ? -1.0 : 1.0;
1931 m_Ix =
m_base[(edge + 1) % 2]->GetI(coords);
1973 "Geometric information is not set up");
1977 unsigned int nint = (
unsigned int)(
m_ncoeffs - nbdry);
1978 unsigned int exp_size[] = {nbdry,nint};
1979 unsigned int nblks = 2;
1994 goto UseLocRegionsMatrix;
1999 goto UseStdRegionsMatrix;
2005 goto UseLocRegionsMatrix;
2007 UseStdRegionsMatrix:
2016 AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
2018 AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
2020 AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
2022 AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
2025 UseLocRegionsMatrix:
2045 for (i = 0; i < nbdry; ++i)
2047 for(j = 0; j < nbdry; ++j)
2049 (*A)(i,j) = mat(bmap[i],bmap[j]);
2052 for(j = 0; j < nint; ++j)
2054 (*B)(i,j) = mat(bmap[i],imap[j]);
2058 for (i = 0; i < nint; ++i)
2060 for(j = 0; j < nbdry; ++j)
2062 (*C)(i,j) = mat(imap[i],bmap[j]);
2065 for(j = 0; j < nint; ++j)
2067 (*D)(i,j) = mat(imap[i],imap[j]);
2076 (*A) = (*A) - (*B)*(*C);
2082 AllocateSharedPtr(factor, A));
2084 AllocateSharedPtr(one, B));
2086 AllocateSharedPtr(factor, C));
2088 AllocateSharedPtr(invfactor, D));
2119 StdExpansion::MassMatrixOp_MatFree(inarray, outarray, mkey);
2139 StdExpansion::LaplacianMatrixOp_MatFree(
2140 k1, k2, inarray, outarray, mkey);
2150 StdExpansion::WeakDerivMatrixOp_MatFree(i, inarray, outarray, mkey);
2159 StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(
2160 inarray, outarray, mkey);
2169 StdExpansion::MassLevelCurvatureMatrixOp_MatFree(
2170 inarray, outarray, mkey);
2191 if (inarray.get() == outarray.get())
2197 (mat->GetOwnedMatrix())->GetPtr().get(),
m_ncoeffs,
2198 tmp.get(), 1, 0.0, outarray.get(), 1);
2203 (mat->GetOwnedMatrix())->GetPtr().get(),
m_ncoeffs,
2204 inarray.get(), 1, 0.0, outarray.get(), 1);
2213 int n_coeffs = inarray.num_elements();
2219 int nmodes0 =
m_base[0]->GetNumModes();
2220 int nmodes1 =
m_base[1]->GetNumModes();
2221 int numMax = nmodes0;
2239 b0, b1, coeff_tmp, bortho0, bortho1, coeff);
2244 for (
int i = 0; i < numMin+1; ++i)
2248 tmp2 = coeff_tmp+cnt,1);
2254 bortho0, bortho1, coeff_tmp,
2268 int nquad0 =
m_base[0]->GetNumPoints();
2269 int nquad1 =
m_base[1]->GetNumPoints();
2270 int nqtot = nquad0*nquad1;
2271 int nmodes0 =
m_base[0]->GetNumModes();
2272 int nmodes1 =
m_base[1]->GetNumModes();
2273 int wspsize = max(max(max(nqtot,
m_ncoeffs),nquad1*nmodes0),nquad0*nmodes1);
2275 ASSERTL1(wsp.num_elements() >= 3*wspsize,
2276 "Workspace is of insufficient size.");
2291 StdExpansion2D::PhysTensorDeriv(inarray,wsp1,wsp2);
2297 Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp1[0],1,&metric01[0],1,&wsp2[0],1,&wsp0[0],1);
2298 Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp1[0],1,&metric11[0],1,&wsp2[0],1,&wsp2[0],1);
2319 const unsigned int dim = 2;
2327 for (
unsigned int i = 0; i < dim; ++i)
2329 for (
unsigned int j = i; j < dim; ++j)
2372 StdQuadExp::v_SVVLaplacianFilter( array, mkey);
int GetLeftAdjacentElementFace() const
void ComputeLaplacianMetric()
virtual void v_ReduceOrderCoeffs(int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
const VarCoeffMap & GetVarCoeffs() const
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
#define ASSERTL0(condition, msg)
virtual void v_MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
std::vector< PointsKey > PointsKeyVector
Expansion3DSharedPtr GetLeftAdjacentElementExp() const
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculate the inner product of inarray with respect to the basis B=base0*base1 and put into outarray...
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
virtual void v_FwdTrans_BndConstrained(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
static Array< OneD, NekDouble > NullNekDouble1DArray
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
#define sign(a, b)
return the sign(b)*a
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
int NumBndryCoeffs(void) const
SpatialDomains::GeometrySharedPtr GetGeom() const
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void v_DropLocStaticCondMatrix(const MatrixKey &mkey)
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Transform a given function from physical quadrature space to coefficient space.
std::shared_ptr< QuadGeom > QuadGeomSharedPtr
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Principle Modified Functions .
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
std::map< int, StdRegions::NormalVector > m_edgeNormals
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Lagrange Polynomials using the Gauss points .
StdRegions::Orientation GetEorient(int edge)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
virtual void v_GetEdgeInterpVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
std::map< ConstFactorType, NekDouble > ConstFactorMap
virtual void v_GetEdgePhysMap(const int edge, Array< OneD, int > &outarray)
std::shared_ptr< DNekMat > DNekMatSharedPtr
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
SpatialDomains::GeometrySharedPtr m_geom
MatrixType GetMatrixType() const
std::shared_ptr< Basis > BasisSharedPtr
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
virtual void v_PhysDirectionalDeriv(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out)
Physical derivative along a direction vector.
std::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
1D Gauss-Gauss-Legendre quadrature points
virtual void v_GetTracePhysVals(const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
void IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey)
virtual void v_GeneralMatrixOp_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
virtual StdRegions::Orientation v_GetEorient(int edge)
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
virtual const LibUtilities::BasisSharedPtr & v_GetBasis(int dir) const
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray)
Integrates the specified function over the domain.
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
virtual void v_IProductWRTDerivBase_MatOp(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey)
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const
virtual void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Calculate the derivative of the physical points.
Principle Orthogonal Functions .
virtual void v_IProductWRTBase_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
virtual void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
Defines a specification for a set of points.
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
std::shared_ptr< StdQuadExp > StdQuadExpSharedPtr
virtual void v_MassLevelCurvatureMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
virtual void v_WeakDerivMatrixOp(const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
NekDouble GetConstFactor(const ConstFactorType &factor) const
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
const ConstFactorMap & GetConstFactors() const
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
void GetEdgeToElementMap(const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
virtual void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
bool ConstFactorExists(const ConstFactorType &factor) const
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Geometry is straight-sided with constant geometric factors.
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
std::shared_ptr< SegExp > SegExpSharedPtr
void HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
virtual void v_GetEdgeQFactors(const int edge, Array< OneD, NekDouble > &outarray)
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space...
void ComputeQuadratureMetric()
virtual void v_WeakDirectionalDerivMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_ComputeLaplacianMetric()
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
virtual int v_GetNumPoints(const int dir) const
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs
StdExpansion()
Default Constructor.
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
GeomType
Indicates the type of element geometry.
virtual NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
unsigned int GetNumPoints() const
void Zero(int n, T *x, const int incx)
Zero vector.
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void InterpCoeff2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Geometry is curved or has non-constant factors.
virtual const SpatialDomains::GeomFactorsSharedPtr & v_GetMetricInfo() const
LibUtilities::ShapeType GetShapeType() const
virtual int v_GetCoordim()
virtual void v_ComputeEdgeNormal(const int edge)
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey)
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Describes the specification for a Basis.
1D Gauss-Lobatto-Legendre quadrature points
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
virtual void v_GetEdgePhysVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Extract the physical values along edge edge from inarray into outarray following the local edge orien...
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
This function evaluates the expansion at a single (arbitrary) point of the domain.
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space...