Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::MultiRegions::ContField1D Class Reference

Abstraction of a global continuous one-dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations. More...

#include <ContField1D.h>

Inheritance diagram for Nektar::MultiRegions::ContField1D:
[legend]

Public Member Functions

 ContField1D ()
 Default constructor. More...
 
 ContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const std::string &variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Set up global continuous field based on an input mesh and boundary conditions. More...
 
 ContField1D (const ContField1D &In)
 Copy constructor. More...
 
 ContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const ExpList1D &In)
 Copy constructor. More...
 
virtual ~ContField1D ()
 Destructor. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Perform global forward transformation of a function \(f(x)\),. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function performs the backward transformation of the spectral/hp element expansion. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
const Array< OneD, const MultiRegions::ExpListSharedPtr > & GetBndCondExpansions ()
 Return the boundary conditions expansion. More...
 
const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & GetBndConditions ()
 
void Assemble ()
 Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void Assemble (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
const AssemblyMapCGSharedPtrGetLocalToGlobalMap () const
 Returns the map from local to global level. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Calculates the inner product of a function \(f(x)\) with respect to all global expansion modes \(\phi_n^e(x)\). More...
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::DisContField1D
 DisContField1D ()
 Default constructor. More...
 
 DisContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const std::string &variable, const bool SetUpJustDG=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructs a 1D discontinuous field based on a mesh and boundary conditions. More...
 
 DisContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const SpatialDomains::BoundaryConditions &Allbcs, const std::string &variable, bool SetToOneSpaceDimensions=false, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor for a DisContField1D from a List of subdomains New Constructor for arterial network. More...
 
 DisContField1D (const DisContField1D &In)
 Constructs a 1D discontinuous field based on an existing field. More...
 
 DisContField1D (const ExpList1D &In)
 Constructs a 1D discontinuous field based on an existing field. (needed in order to use ContField( const ExpList1D &In) constructor. More...
 
virtual ~DisContField1D ()
 Destructor. More...
 
GlobalLinSysSharedPtr GetGlobalBndLinSys (const GlobalLinSysKey &mkey)
 For a given key, returns the associated global linear system. More...
 
std::vector< bool > & GetNegatedFluxNormal (void)
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList1D
 ExpList1D ()
 The default constructor. More...
 
 ExpList1D (const ExpList1D &In, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
 ExpList1D (const ExpList1D &In, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor copying only elements defined in eIds. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &Ba, const SpatialDomains::MeshGraphSharedPtr &graph1D, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct an ExpList1D from a given graph. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 This constructor sets up a list of local expansions based on an input graph1D. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const bool DeclareCoeffPhysArrays=true, const std::string var="DefaultVar", bool SetToOneSpaceDimension=false, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 This constructor sets up a list of local expansions based on an input compositeMap. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph2D, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const LibUtilities::CommSharedPtr comm=LibUtilities::CommSharedPtr(), const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Specialised constructor for Neumann boundary conditions in DisContField2D and ContField2D. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph1D, int i, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, const ExpListSharedPtr > &bndConstraint, const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > &bndCond, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph2D, const PeriodicMap &periodicEdges, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Specialised constructor for trace expansions. More...
 
virtual ~ExpList1D ()
 Destructor. More...
 
void PostProcess (LibUtilities::KernelSharedPtr kernel, Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray, NekDouble h, int elmId=0)
 Performs the post-processing on a specified element. More...
 
void PeriodicEval (Array< OneD, NekDouble > &inarray1, Array< OneD, NekDouble > &inarray2, NekDouble h, int nmodes, Array< OneD, NekDouble > &outarray)
 Evaluates the global spectral/hp expansion at some arbitray set of points. More...
 
void ParNormalSign (Array< OneD, NekDouble > &normsign)
 Set up the normals on each expansion. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor. More...
 
 ExpList (const ExpList &in, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true)
 Constructor copying only elements defined in eIds. More...
 
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
virtual ~ExpList ()
 The default destructor. More...
 
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom \(N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m\). More...
 
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid. More...
 
ExpansionType GetExpType (void)
 Returns the type of the expansion. More...
 
void SetExpType (ExpansionType Type)
 Returns the type of the expansion. More...
 
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements. More...
 
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements. More...
 
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More...
 
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element \(=Q_{\mathrm{tot}}\). More...
 
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More...
 
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction. More...
 
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false. More...
 
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis. More...
 
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val. More...
 
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More...
 
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys. More...
 
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys. More...
 
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More...
 
bool GetPhysState (void) const
 This function indicates whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More...
 
NekDouble PhysIntegral (void)
 This function integrates a function \(f(\boldsymbol{x})\) over the domain consisting of all the elements of the expansion. More...
 
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function \(f(\boldsymbol{x})\) over the domain consisting of all the elements of the expansion. More...
 
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all local expansion modes \(\phi_n^e(\boldsymbol{x})\). More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative (in direction. More...
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Directional derivative along a given direction. More...
 
void IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative (in direction. More...
 
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function \(u(\boldsymbol{x})\) onto the global spectral/hp expansion. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements. More...
 
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const MultiRegions::VarFactorsMap &varfactors=MultiRegions::NullVarFactorsMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const bool PhysSpaceForcing=true)
 Solve helmholtz problem. More...
 
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points \(\boldsymbol{x}_i\). More...
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
 
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
void ApplyGeomInfo ()
 Apply geometry information to each expansion. More...
 
void Reset ()
 Reset geometry information and reset matrices. More...
 
void WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
void WriteTecplotZone (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotField (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1)
 
void WriteVtkHeader (std::ostream &outfile)
 
void WriteVtkFooter (std::ostream &outfile)
 
void WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0)
 
void WriteVtkPieceFooter (std::ostream &outfile, int expansion)
 
void WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v")
 
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid. More...
 
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray. More...
 
int GetShapeDimension ()
 This function returns the dimension of the shape of the element eid. More...
 
const Array< OneD, const NekDouble > & GetCoeffs () const
 This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More...
 
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array. More...
 
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion. More...
 
void FillBndCondFromField (const int nreg)
 Fill Bnd Condition expansion in nreg from the values stored in expansion. More...
 
void LocalToGlobal (bool useComm=true)
 Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm=true)
 
void GlobalToLocal (void)
 Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
const Array< OneD, const NekDouble > & GetPhys () const
 This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More...
 
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the \(L_\infty\) error of the global spectral/hp element approximation. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the \(L_2\) error with respect to soln of the global spectral/hp element approximation. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the \(H^1\) error of the global spectral/hp element approximation. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More...
 
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More...
 
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion. More...
 
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
void SetHomoLen (const NekDouble lhom)
 This function sets the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
int GetExpSize (void)
 This function returns the number of elements in the expansion. More...
 
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More...
 
const std::shared_ptr< LocalRegions::ExpansionVectorGetExp () const
 This function returns the vector of elements in the expansion. More...
 
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the \(n^{\mathrm{th}}\) element. More...
 
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &phys)
 
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n. More...
 
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n. More...
 
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More...
 
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More...
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 This function discretely evaluates the derivative of a function \(f(\boldsymbol{x})\) on the domain consisting of all elements of the expansion. More...
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
const Array< OneD, const std::shared_ptr< ExpList > > & GetBndCondExpansions ()
 
std::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
 
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
std::shared_ptr< ExpList > & GetTrace ()
 
std::shared_ptr< AssemblyMapDG > & GetTraceMap (void)
 
const Array< OneD, const int > & GetTraceBndMap (void)
 
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
const std::vector< bool > & GetLeftAdjacentFaces (void) const
 
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions ()
 
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & UpdateBndConditions ()
 
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More...
 
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SetUpPhysNormals ()
 
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
void GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays=true)
 
void ExtractElmtToBndPhys (int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
void ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
void ExtractPhysToBnd (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
void GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, bool homoStrips=false, std::vector< unsigned int > &HomoSIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
 
const NekOptimize::GlobalOptParamSharedPtrGetGlobalOptParam (void)
 
std::map< int, RobinBCInfoSharedPtrGetRobinBCInfo ()
 
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
 
std::vector< LibUtilities::FieldDefinitionsSharedPtrGetFieldDefinitions ()
 
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs. More...
 
void GenerateElementVector (const int ElementID, const NekDouble scalar1, const NekDouble scalar2, Array< OneD, NekDouble > &outarray)
 Generate vector v such that v[i] = scalar1 if i is in the element < ElementID. Otherwise, v[i] = scalar2. More...
 
std::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
std::shared_ptr< LibUtilities::SessionReaderGetSession () const
 Returns the session object. More...
 
std::shared_ptr< LibUtilities::CommGetComm ()
 Returns the comm object. More...
 
SpatialDomains::MeshGraphSharedPtr GetGraph ()
 
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
 
std::shared_ptr< ExpList > & GetPlane (int n)
 
void CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct collections of elements containing a single element type and polynomial order from the list of expansions. More...
 
void ClearGlobalLinSysManager (void)
 

Protected Attributes

AssemblyMapCGSharedPtr m_locToGloMap
 (A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom. More...
 
CoeffState m_coeffState
 A enum list declaring how to interpret coeffs, i.e. eLocal, eHybrid or eGlobal. More...
 
GlobalMatrixMapShPtr m_globalMat
 (A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once. More...
 
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSysm_globalLinSysManager
 A manager which collects all the global linear systems being assembled, such that they should be constructed only once. More...
 
- Protected Attributes inherited from Nektar::MultiRegions::DisContField1D
int m_numDirBndCondExpansions
 The number of boundary segments on which Dirichlet boundary conditions are imposed. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_bndCondExpansions
 Discretised boundary conditions. More...
 
Array< OneD, SpatialDomains::BoundaryConditionShPtrm_bndConditions
 An array which contains the information about the boundary condition on the different boundary regions. More...
 
GlobalLinSysMapShPtr m_globalBndMat
 Global boundary matrix. More...
 
ExpListSharedPtr m_trace
 Trace space storage for points between elements. More...
 
AssemblyMapDGSharedPtr m_traceMap
 Local to global DG mapping for trace space. More...
 
std::set< int > m_boundaryVerts
 A set storing the global IDs of any boundary edges. More...
 
PeriodicMap m_periodicVerts
 A map which identifies groups of periodic vertices. More...
 
std::vector< int > m_periodicFwdCopy
 A vector indicating degress of freedom which need to be copied from forwards to backwards space in case of a periodic boundary condition. More...
 
std::vector< int > m_periodicBwdCopy
 
std::vector< bool > m_leftAdjacentVerts
 
- Protected Attributes inherited from Nektar::MultiRegions::ExpList
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Mesh associated with this expansion list. More...
 
int m_ncoeffs
 The total number of local degrees of freedom. m_ncoeffs \(=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l\). More...
 
int m_npoints
 
Array< OneD, NekDoublem_coeffs
 Concatenation of all local expansion coefficients. More...
 
Array< OneD, NekDoublem_phys
 The global expansion evaluated at the quadrature points. More...
 
bool m_physState
 The state of the array m_phys. More...
 
std::shared_ptr< LocalRegions::ExpansionVectorm_exp
 The list of local expansions. More...
 
Collections::CollectionVector m_collections
 
std::vector< int > m_coll_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
std::vector< int > m_coll_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
Array< OneD, int > m_phys_offset
 Offset of elemental data into the array m_phys. More...
 
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
 
BlockMatrixMapShPtr m_blockMat
 
bool m_WaveSpace
 
std::unordered_map< int, int > m_elmtToExpId
 Mapping from geometry ID of element to index inside m_exp. More...
 

Private Member Functions

GlobalLinSysSharedPtr GetGlobalLinSys (const GlobalLinSysKey &mkey)
 Returns the linear system specified by mkey. More...
 
GlobalLinSysSharedPtr GenGlobalLinSys (const GlobalLinSysKey &mkey)
 
void GlobalSolve (const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve the linear system specified by the key key. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Perform a forward transform. More...
 
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose the Dirichlet Boundary Conditions on outarray. More...
 
virtual void v_GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
virtual void v_GlobalToLocal (void)
 
virtual void v_LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm)
 Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
virtual void v_LocalToGlobal (bool useComm)
 
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const MultiRegions::VarFactorsMap &varfactors, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
 
virtual const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & v_GetBndConditions ()
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray. More...
 
virtual void v_ClearGlobalLinSysManager (void)
 

Additional Inherited Members

- Public Attributes inherited from Nektar::MultiRegions::ExpList
ExpansionType m_expType
 
- Protected Member Functions inherited from Nektar::MultiRegions::DisContField1D
void GenerateBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 Discretises the boundary conditions. More...
 
void FindPeriodicVertices (const SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 Generate a associative map of periodic vertices in a mesh. More...
 
virtual ExpListSharedPtrv_GetTrace ()
 
virtual AssemblyMapDGSharedPtrv_GetTraceMap (void)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 This method extracts the "forward" and "backward" trace data from the array field and puts the data into output vectors Fwd and Bwd. More...
 
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This method extracts the trace (verts in 1D) from the field inarray and puts the values in outarray. More...
 
void SetBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable, Array< OneD, MultiRegions::ExpListSharedPtr > &bndCondExpansions, Array< OneD, SpatialDomains ::BoundaryConditionShPtr > &bndConditions)
 Populates the list of boundary condition expansions. More...
 
void SetMultiDomainBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable, Array< OneD, MultiRegions::ExpListSharedPtr > &bndCondExpansions, Array< OneD, SpatialDomains ::BoundaryConditionShPtr > &bndConditions, int subdomain)
 Populates the list of boundary condition expansions in multidomain case. More...
 
void GenerateFieldBnd1D (SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 
virtual std::map< int, RobinBCInfoSharedPtrv_GetRobinBCInfo ()
 
virtual const Array< OneD, const MultiRegions::ExpListSharedPtr > & v_GetBndCondExpansions ()
 
virtual MultiRegions::ExpListSharedPtrv_UpdateBndCondExpansion (int i)
 
virtual Array< OneD, SpatialDomains::BoundaryConditionShPtr > & v_UpdateBndConditions ()
 
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &VertID)
 
virtual void v_GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays)
 
virtual void v_Reset ()
 Reset this field, so that geometry information can be updated. More...
 
virtual void v_EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
 Evaluate all boundary conditions at a given time.. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList1D
void v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the velocity field given by Vec. More...
 
void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the one- dimensional normal velocity field given by Vn. More...
 
void v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 Populate normals with the normals of all expansions. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
void SetCoeffPhysOffsets ()
 Definition of the total number of degrees of freedom and quadrature points and offsets to access data. More...
 
std::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype. More...
 
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
 
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
std::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map. More...
 
void GlobalEigenSystem (const std::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
 
std::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey. More...
 
std::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More...
 
void ReadGlobalOptimizationParameters ()
 
virtual int v_GetNumElmts (void)
 
virtual const Array< OneD, const int > & v_GetTraceBndMap ()
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
virtual const std::vector< bool > & v_GetLeftAdjacentFaces (void) const
 
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_FillBndCondFromField ()
 
virtual void v_FillBndCondFromField (const int nreg)
 
virtual void v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
 
virtual void v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q)
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractElmtToBndPhys (const int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
virtual void v_ExtractPhysToBndElmt (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
virtual void v_ExtractPhysToBnd (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
virtual void v_GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
virtual std::vector< LibUtilities::FieldDefinitionsSharedPtrv_GetFieldDefinitions (void)
 
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list. More...
 
virtual void v_ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 
virtual void v_WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
virtual void v_WriteTecplotZone (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotField (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotConnectivity (std::ostream &outfile, int expansion)
 
virtual void v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var)
 
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 
virtual Array< OneD, const NekDoublev_HomogeneousEnergy (void)
 
virtual LibUtilities::TranspositionSharedPtr v_GetTransposition (void)
 
virtual NekDouble v_GetHomoLen (void)
 
virtual void v_SetHomoLen (const NekDouble lhom)
 
virtual Array< OneD, const unsigned int > v_GetZIDs (void)
 
virtual Array< OneD, const unsigned int > v_GetYIDs (void)
 
virtual void v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void ExtractFileBCs (const std::string &fileName, LibUtilities::CommSharedPtr comm, const std::string &varName, const std::shared_ptr< ExpList > locExpList)
 
- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static SpatialDomains::BoundaryConditionShPtr GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
 

Detailed Description

Abstraction of a global continuous one-dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations.

As opposed to the class #ContExpList1D, the class ContField1D is able to incorporate the boundary conditions imposed to the problem to be solved. Therefore, the class is equipped with three additional data members:

The first data structure, m_bndCondExpansions, contains the point Expansion on the boundary, #m_bndTypes stores information about the type of boundary condition on the different parts of the boundary while #m_bndCondEquations holds the equation of the imposed boundary conditions.

Furthermore, in case of Dirichlet boundary conditions, this class is capable of lifting a known solution satisfying these boundary conditions. If we denote the unknown solution by \(u^{\mathcal{H}}(\boldsymbol{x})\) and the known Dirichlet boundary conditions by \(u^{\mathcal{D}}(\boldsymbol{x})\), the expansion then can be decomposed as

\[ u^{\delta}(\boldsymbol{x}_i)=u^{\mathcal{D}}(\boldsymbol{x}_i)+ u^{\mathcal{H}}(\boldsymbol{x}_i)=\sum_{n=0}^{N^{\mathcal{D}}-1} \hat{u}_n^{\mathcal{D}}\Phi_n(\boldsymbol{x}_i)+ \sum_{n={N^{\mathcal{D}}}}^{N_{\mathrm{dof}} -1}\hat{u}_n^{\mathcal{H}} \Phi_n(\boldsymbol{x}_i).\]

This lifting is accomplished by ordering the known global degrees of freedom, prescribed by the Dirichlet boundary conditions, first in the global array \(\boldsymbol{\hat{u}}\), that is,

\[\boldsymbol{\hat{u}}=\left[ \begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array} \right].\]

Such kind of expansions are also referred to as continuoous fields. This class should be used when solving 2D problems using a standard Galerkin approach.

Definition at line 55 of file ContField1D.h.

Constructor & Destructor Documentation

◆ ContField1D() [1/4]

Nektar::MultiRegions::ContField1D::ContField1D ( )

Default constructor.

Constructs an empty 1D continuous field.

Definition at line 85 of file ContField1D.cpp.

85  :
87  m_locToGloMap(),
89  std::bind(&ContField1D::GenGlobalLinSys, this, std::placeholders::_1),
90  std::string("GlobalLinSys"))
91  {
92  }
DisContField1D()
Default constructor.
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:155
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ ContField1D() [2/4]

Nektar::MultiRegions::ContField1D::ContField1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr graph1D,
const std::string &  variable = "DefaultVar",
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

Set up global continuous field based on an input mesh and boundary conditions.

Given a mesh graph1D, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\). The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.

Parameters
graph1DA 1D mesh, containing information about the domain and the spectral/hp element expansion.
bcsThe boundary conditions.
variableAn optional parameter to indicate for which variable the field should be constructed.

Definition at line 116 of file ContField1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField1D::m_bndCondExpansions, Nektar::MultiRegions::DisContField1D::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField1D::m_periodicVerts, and Nektar::MultiRegions::ExpList::m_session.

120  :
121  DisContField1D(pSession,graph1D,variable,false,ImpType),
122  m_locToGloMap(),
124  std::bind(&ContField1D::GenGlobalLinSys, this, std::placeholders::_1),
125  std::string("GlobalLinSys"))
126  {
127  SpatialDomains::BoundaryConditions bcs(pSession, graph1D);
128 
133  false,
134  variable,
136  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
DisContField1D()
Default constructor.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:155
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:1023
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
PeriodicMap m_periodicVerts
A map which identifies groups of periodic vertices.
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ ContField1D() [3/4]

Nektar::MultiRegions::ContField1D::ContField1D ( const ContField1D In)

Copy constructor.

Constructs a 1D continuous field as a copy of an existing field including all boundary conditions.

Parameters
InExisting continuous field to duplicate.

Definition at line 144 of file ContField1D.cpp.

144  :
145  DisContField1D(In),
146  m_locToGloMap(In.m_locToGloMap),
148  std::bind(&ContField1D::GenGlobalLinSys, this, std::placeholders::_1),
149  std::string("GlobalLinSys"))
150  {
151  }
DisContField1D()
Default constructor.
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:155
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ ContField1D() [4/4]

Nektar::MultiRegions::ContField1D::ContField1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const ExpList1D In 
)

Copy constructor.

Constructs a 1D continuous field as a copy of an existing explist 1D field and adding all the boundary conditions.

Parameters
InExisting explist1D field .

Definition at line 158 of file ContField1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

158  :
159  DisContField1D(In),
160  m_locToGloMap(),
162  std::bind(&ContField1D::GenGlobalLinSys, this, std::placeholders::_1),
163  std::string("GlobalLinSys"))
164  {
166  ::AllocateSharedPtr(pSession, m_ncoeffs, In);
167 
168  }
DisContField1D()
Default constructor.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:155
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ ~ContField1D()

Nektar::MultiRegions::ContField1D::~ContField1D ( )
virtual

Destructor.

Definition at line 173 of file ContField1D.cpp.

174  {
175  }

Member Function Documentation

◆ Assemble() [1/2]

void Nektar::MultiRegions::ContField1D::Assemble ( )
inline

Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Definition at line 276 of file ContField1D.h.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

Referenced by IProductWRTBase(), MultiplyByInvMassMatrix(), v_GeneralMatrixOp(), and v_HelmSolve().

277  {
278  m_locToGloMap->Assemble(m_coeffs,m_coeffs);
279  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ Assemble() [2/2]

void Nektar::MultiRegions::ContField1D::Assemble ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
inline

Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Parameters
inarrayAn array of size \(N_\mathrm{eof}\) containing the local degrees of freedom \(\boldsymbol{x}_l\).
outarrayThe resulting global degrees of freedom \(\boldsymbol{x}_g\) will be stored in this array of size \(N_\mathrm{dof}\).

Definition at line 308 of file ContField1D.h.

References m_locToGloMap.

311  {
312  m_locToGloMap->Assemble(inarray,outarray);
313  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ BwdTrans()

void Nektar::MultiRegions::ContField1D::BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

This function performs the backward transformation of the spectral/hp element expansion.

Given the coefficients of an expansion, this function evaluates the spectral/hp expansion \(u^{\delta}(x)\) at the quadrature points \(x_i\). This operation is evaluated locally by the function ExpList::BwdTrans.

The coefficients of the expansion should be contained in the variable m_coeffs of the ExpList object In. The resulting physical values at the quadrature points \(u^{\delta}(x_i)\) are stored in the array m_phys.

Parameters
InAn ExpList, containing the local coefficients \(\hat{u}_n^e\) in its array m_coeffs.

Definition at line 229 of file ContField1D.cpp.

References Nektar::MultiRegions::ExpList::BwdTrans_IterPerExp(), Nektar::MultiRegions::eLocal, and Nektar::MultiRegions::ExpList::GlobalToLocal().

Referenced by v_BwdTrans().

233  {
234  Array<OneD, NekDouble> tmpinarray;
235  if(coeffstate != eLocal)
236  {
237  tmpinarray = Array<OneD, NekDouble>(inarray);
238  GlobalToLocal(inarray,tmpinarray);
239  }
240  else
241  {
242  tmpinarray = inarray;
243  }
244 
245  BwdTrans_IterPerExp(tmpinarray,outarray);
246  }
Local coefficients.
void BwdTrans_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function elementally evaluates the backward transformation of the global spectral/hp element exp...
Definition: ExpList.h:1786
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ FwdTrans()

void Nektar::MultiRegions::ContField1D::FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Perform global forward transformation of a function \(f(x)\),.

Given a function \(f(x)\) defined at the quadrature points, this function determines the unknown global coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) employing a discrete Galerkin projection from physical space to coefficient space. The operation is evaluated by the function GlobalSolve using the global mass matrix.

The values of the function \(f(x)\) evaluated at the quadrature points \(x_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\hat{u}_g\) are stored in the array m_coeffs.

Parameters
inarrayDiscrete \(f(x)\).
outarrayStorage for result.
coeffstate

Definition at line 195 of file ContField1D.cpp.

References Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::eLocal, Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by v_FwdTrans().

198  {
199  // Inner product of forcing
200  Array<OneD,NekDouble> wsp(m_ncoeffs);
201  IProductWRTBase(inarray,wsp,eGlobal);
202 
203  // Solve the system
204  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
205 
206  GlobalSolve(key,wsp,outarray);
207  if(coeffstate == eLocal)
208  {
209  GlobalToLocal(outarray,outarray);
210  }
211  }
Local coefficients.
Global coefficients.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solve the linear system specified by the key key.
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ GeneralMatrixOp()

void Nektar::MultiRegions::ContField1D::GeneralMatrixOp ( const GlobalMatrixKey gkey,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray.

◆ GenGlobalLinSys()

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField1D::GenGlobalLinSys ( const GlobalLinSysKey mkey)
private

Definition at line 372 of file ContField1D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalLinSys(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_locToGloMap.

374  {
375  ASSERTL1(mkey.LocToGloMapIsDefined(),
376  "To use method must have a AssemblyMap "
377  "attached to key");
379  }
std::shared_ptr< GlobalLinSys > GenGlobalLinSys(const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
This operation constructs the global linear system of type mkey.
Definition: ExpList.cpp:1362
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ GetBndCondExpansions()

const Array< OneD, const MultiRegions::ExpListSharedPtr > & Nektar::MultiRegions::ContField1D::GetBndCondExpansions ( )
inline

Return the boundary conditions expansion.

Definition at line 243 of file ContField1D.h.

References Nektar::MultiRegions::DisContField1D::m_bndCondExpansions.

244  {
245  return m_bndCondExpansions;
246  }
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.

◆ GetBndConditions()

const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField1D::GetBndConditions ( )
inline

Definition at line 249 of file ContField1D.h.

References Nektar::MultiRegions::DisContField1D::m_bndConditions.

Referenced by v_GetBndConditions().

250  {
251  return m_bndConditions;
252  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...

◆ GetGlobalLinSys()

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField1D::GetGlobalLinSys ( const GlobalLinSysKey mkey)
private

Returns the linear system specified by mkey.

The function searches the map #m_globalLinSys to see if the global matrix has been created before. If not, it calls the function #GenglobalLinSys to generate the requested global system.

Parameters
mkeyKey specifying the linear system.
Returns
Pointer to the required linear system.

Definition at line 366 of file ContField1D.cpp.

References m_globalLinSysManager.

Referenced by GlobalSolve().

368  {
369  return m_globalLinSysManager[mkey];
370  }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:155

◆ GetLocalToGlobalMap()

const AssemblyMapCGSharedPtr & Nektar::MultiRegions::ContField1D::GetLocalToGlobalMap ( ) const
inline

Returns the map from local to global level.

Definition at line 316 of file ContField1D.h.

References m_locToGloMap.

317  {
318  return m_locToGloMap;
319  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ GlobalSolve()

void Nektar::MultiRegions::ContField1D::GlobalSolve ( const GlobalLinSysKey key,
const Array< OneD, const NekDouble > &  rhs,
Array< OneD, NekDouble > &  inout,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
private

Solve the linear system specified by the key key.

Given a linear system specified by the key key,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}},\]

this function solves this linear system taking into account the boundary conditions specified in the data member m_bndCondExpansions. Therefore, it adds an array \(\boldsymbol{\hat{g}}\) which represents the non-zero surface integral resulting from the weak boundary conditions (e.g. Neumann boundary conditions) to the right hand side, that is,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}+ \boldsymbol{\hat{g}}.\]

Furthermore, it lifts the known degrees of freedom which are prescribed by the Dirichlet boundary conditions. As these known coefficients \(\boldsymbol{\hat{u}}^{\mathcal{D}}\) are numbered first in the global coefficient array \(\boldsymbol{\hat{u}}_g\), the linear system can be decomposed as,

\[\left[\begin{array}{cc} \boldsymbol{M}^{\mathcal{DD}}&\boldsymbol{M}^{\mathcal{DH}}\\ \boldsymbol{M}^{\mathcal{HD}}&\boldsymbol{M}^{\mathcal{HH}} \end{array}\right] \left[\begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array}\right]= \left[\begin{array}{c} \boldsymbol{\hat{f}}^{\mathcal{D}}\\ \boldsymbol{\hat{f}}^{\mathcal{H}} \end{array}\right]+ \left[\begin{array}{c} \boldsymbol{\hat{g}}^{\mathcal{D}}\\ \boldsymbol{\hat{g}}^{\mathcal{H}} \end{array}\right] \]

which will then be solved for the unknown coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) as,

\[ \boldsymbol{M}^{\mathcal{HH}}\boldsymbol{\hat{u}}^{\mathcal{H}} = \boldsymbol{\hat{f}}^{\mathcal{H}} +\boldsymbol{\hat{g}}^{\mathcal{H}} -\boldsymbol{M}^{\mathcal{HD}}\boldsymbol{\hat{u}}^{\mathcal{D}}\]

Parameters
keySpecifes the linear system to solve.
rhsForcing term \(\boldsymbol{f}\).
inoutSolution vector \(\boldsymbol{\hat{u}}\).
dirForcing.

Definition at line 337 of file ContField1D.cpp.

References GetGlobalLinSys(), m_locToGloMap, and v_ImposeDirichletConditions().

Referenced by FwdTrans(), MultiplyByInvMassMatrix(), and v_HelmSolve().

341  {
342  int NumDirBcs = m_locToGloMap->GetNumGlobalDirBndCoeffs();
343  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
344 
345  // STEP 1: SET THE DIRICHLET DOFS TO THE RIGHT VALUE
346  // IN THE SOLUTION ARRAY
348 
349  // STEP 2: CALCULATE THE HOMOGENEOUS COEFFICIENTS
350  if(contNcoeffs - NumDirBcs > 0)
351  {
353  LinSys->Solve(rhs,inout,m_locToGloMap,dirForcing);
354  }
355  }
std::shared_ptr< GlobalLinSys > GlobalLinSysSharedPtr
Pointer to a GlobalLinSys object.
Definition: GlobalLinSys.h:50
GlobalLinSysSharedPtr GetGlobalLinSys(const GlobalLinSysKey &mkey)
Returns the linear system specified by mkey.
virtual void v_ImposeDirichletConditions(Array< OneD, NekDouble > &outarray)
Impose the Dirichlet Boundary Conditions on outarray.
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ IProductWRTBase()

void Nektar::MultiRegions::ContField1D::IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Calculates the inner product of a function \(f(x)\) with respect to all global expansion modes \(\phi_n^e(x)\).

The operation is evaluated locally (i.e. with respect to all local expansion modes) by the function ExpList::IProductWRTBase. The inner product with respect to the global expansion modes is than obtained by a global assembly operation.

The values of the function \(f(x)\) evaluated at the quadrature points \(x_i\) should be contained in the variable m_phys of the ExpList object in. The result is stored in the array m_coeffs.

Parameters
InAn ExpList, containing the discrete evaluation of \(f(x)\) at the quadrature points in its array m_phys.

Definition at line 397 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::ExpList::IProductWRTBase_IterPerExp(), and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by FwdTrans(), v_HelmSolve(), and v_IProductWRTBase().

401  {
402  if(coeffstate == eGlobal)
403  {
404  Array<OneD, NekDouble> wsp(m_ncoeffs);
405  IProductWRTBase_IterPerExp(inarray,wsp);
406  Assemble(wsp,outarray);
407  }
408  else
409  {
410  IProductWRTBase_IterPerExp(inarray,outarray);
411  }
412  }
Global coefficients.
void IProductWRTBase_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function calculates the inner product of a function with respect to all local expansion modes ...
Definition: ExpList.h:1725
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:276

◆ MultiplyByInvMassMatrix()

void Nektar::MultiRegions::ContField1D::MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Definition at line 252 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by v_MultiplyByInvMassMatrix().

256  {
257  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
258  if(coeffstate == eGlobal)
259  {
260  if(inarray.data() == outarray.data())
261  {
262  Array<OneD, NekDouble> tmp(inarray);
263  GlobalSolve(key,tmp,outarray);
264  }
265  else
266  {
267  GlobalSolve(key,inarray,outarray);
268  }
269  }
270  else
271  {
272  Array<OneD, NekDouble> globaltmp(m_ncoeffs,0.0);
273 
274  if(inarray.data() == outarray.data())
275  {
276  Array<OneD,NekDouble> tmp(inarray);
277  Assemble(tmp,outarray);
278  }
279  else
280  {
281  Assemble(inarray,outarray);
282  }
283 
284  GlobalSolve(key,outarray,globaltmp);
285  GlobalToLocal(globaltmp,outarray);
286  }
287  }
Global coefficients.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solve the linear system specified by the key key.
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:276
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_BwdTrans()

void Nektar::MultiRegions::ContField1D::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 599 of file ContField1D.cpp.

References BwdTrans().

603  {
604  BwdTrans(inarray,outarray,coeffstate);
605  }
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
This function performs the backward transformation of the spectral/hp element expansion.

◆ v_ClearGlobalLinSysManager()

void Nektar::MultiRegions::ContField1D::v_ClearGlobalLinSysManager ( void  )
privatevirtual

Reset the GlobalLinSys Manager

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 656 of file ContField1D.cpp.

References m_globalLinSysManager.

657  {
658  m_globalLinSysManager.ClearManager("GlobalLinSys");
659  }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:155

◆ v_FwdTrans()

void Nektar::MultiRegions::ContField1D::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Perform a forward transform.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 415 of file ContField1D.cpp.

References FwdTrans().

419  {
420  FwdTrans(inarray,outarray,coeffstate);
421  }
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Perform global forward transformation of a function ,.

◆ v_GeneralMatrixOp()

void Nektar::MultiRegions::ContField1D::v_GeneralMatrixOp ( const GlobalMatrixKey gkey,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray.

This is equivalent to the operation:

\[\boldsymbol{M\hat{u}}_g\]

where \(\boldsymbol{M}\) is the global matrix of type specified by mkey. After scattering the global array inarray to local level, this operation is evaluated locally by the function ExpList::GeneralMatrixOp. The global result is then obtained by a global assembly procedure.

Parameters
mkeyThis key uniquely defines the type matrix required for the operation.
inarrayThe vector \(\boldsymbol{\hat{u}}_g\) of size \(N_{\mathrm{dof}}\).
outarrayThe resulting vector of size \(N_{\mathrm{dof}}\).

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 631 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::ExpList::GeneralMatrixOp_IterPerExp(), Nektar::MultiRegions::ExpList::GlobalToLocal(), and Nektar::MultiRegions::ExpList::m_ncoeffs.

636  {
637  if(coeffstate == eGlobal)
638  {
639  Array<OneD,NekDouble> tmp1(2*m_ncoeffs);
640  Array<OneD,NekDouble> tmp2(tmp1+m_ncoeffs);
641  GlobalToLocal(inarray,tmp1);
642  GeneralMatrixOp_IterPerExp(gkey,tmp1,tmp2);
643  Assemble(tmp2,outarray);
644  }
645  else
646  {
647  GeneralMatrixOp_IterPerExp(gkey,inarray,outarray);
648  }
649  }
void GeneralMatrixOp_IterPerExp(const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: ExpList.cpp:1019
Global coefficients.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1030
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:276
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096

◆ v_GetBndConditions()

const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField1D::v_GetBndConditions ( void  )
privatevirtual

Reimplemented from Nektar::MultiRegions::DisContField1D.

Definition at line 594 of file ContField1D.cpp.

References GetBndConditions().

595  {
596  return GetBndConditions();
597  }
const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & GetBndConditions()
Definition: ContField1D.h:249

◆ v_GlobalToLocal() [1/2]

void Nektar::MultiRegions::ContField1D::v_GlobalToLocal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
privatevirtual

Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}^{e}[i] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]$ \\ \> \> continue \\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the scatter operation \(\boldsymbol{\hat{u}}_l=\mathcal{A}\boldsymbol{\hat{u}}_g\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 496 of file ContField1D.cpp.

References m_locToGloMap.

499  {
500  m_locToGloMap->GlobalToLocal(inarray, outarray);
501  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_GlobalToLocal() [2/2]

void Nektar::MultiRegions::ContField1D::v_GlobalToLocal ( void  )
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 503 of file ContField1D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

504  {
505  m_locToGloMap->GlobalToLocal(m_coeffs,m_coeffs);
506  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_HelmSolve()

void Nektar::MultiRegions::ContField1D::v_HelmSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const FlagList flags,
const StdRegions::ConstFactorMap factors,
const StdRegions::VarCoeffMap varcoeff,
const MultiRegions::VarFactorsMap varfactors,
const Array< OneD, const NekDouble > &  dirForcing,
const bool  PhysSpaceForcing 
)
privatevirtual

Consider the one dimensional Helmholtz equation,

\[\frac{d^2u}{dx^2}-\lambda u(x) = f(x),\]

supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:

\[\left( \boldsymbol{M}+\lambda\boldsymbol{L}\right) \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]

where \(\boldsymbol{M}\) and \(\boldsymbol{L}\) are the mass and Laplacian matrix respectively. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve.

The values of the function \(f(x)\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object inarray. The resulting global coefficients \(\boldsymbol{\hat{u}}_g\) are stored in the array m_coeffs.

Parameters
inarrayInput containing forcing function \(\boldsymbol{f}\) at the quadrature points.
outarrayOutput containing the coefficients \(\boldsymbol{u}_g\)
lambdaParameter value.
SigmaCoefficients of lambda.
varcoeffVariable diffusivity coefficients.
coeffstate
dirForcingDirichlet Forcing.

Reimplemented from Nektar::MultiRegions::DisContField1D.

Definition at line 538 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eHelmholtz, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::eUseGlobal, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), Nektar::FlagList::isSet(), Nektar::MultiRegions::DisContField1D::m_bndCondExpansions, Nektar::MultiRegions::DisContField1D::m_bndConditions, m_locToGloMap, and Vmath::Neg().

547  {
548  // Inner product of forcing
549  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
550  Array<OneD,NekDouble> wsp(contNcoeffs);
551  if(PhysSpaceForcing)
552  {
553  IProductWRTBase(inarray,wsp,eGlobal);
554  }
555  else
556  {
557  Assemble(inarray,wsp);
558  }
559  // Note -1.0 term necessary to invert forcing function to
560  // be consistent with matrix definition
561  Vmath::Neg(contNcoeffs, wsp, 1);
562 
563  // Forcing function with weak boundary conditions
564  int i;
565  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
566  {
567  if(m_bndConditions[i]->GetBoundaryConditionType() ==
569  m_bndConditions[i]->GetBoundaryConditionType() ==
571  {
572  wsp[m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap(i)]
573  += m_bndCondExpansions[i]->GetCoeff(0);
574  }
575  }
576 
577  // Solve the system
578  GlobalLinSysKey key(StdRegions::eHelmholtz,
579  m_locToGloMap,factors,varcoeff,varfactors);
580 
581  if(flags.isSet(eUseGlobal))
582  {
583  GlobalSolve(key,wsp,outarray,dirForcing);
584  }
585  else
586  {
587  Array<OneD,NekDouble> tmp(contNcoeffs,0.0);
588  GlobalSolve(key,wsp,tmp,dirForcing);
589  GlobalToLocal(tmp,outarray);
590  }
591  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
Global coefficients.
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solve the linear system specified by the key key.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:276
void GlobalToLocal(void)
Scatters from the global coefficients to the local coefficients .
Definition: ExpList.h:2096
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_ImposeDirichletConditions()

void Nektar::MultiRegions::ContField1D::v_ImposeDirichletConditions ( Array< OneD, NekDouble > &  outarray)
privatevirtual

Impose the Dirichlet Boundary Conditions on outarray.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 431 of file ContField1D.cpp.

References Nektar::SpatialDomains::eDirichlet, Nektar::MultiRegions::DisContField1D::m_bndCondExpansions, Nektar::MultiRegions::DisContField1D::m_bndConditions, and m_locToGloMap.

Referenced by GlobalSolve().

432  {
433  for(int i = 0; i < m_bndCondExpansions.num_elements(); ++i)
434  {
435  if(m_bndConditions[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
436  {
437  outarray[m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap(i)]
438  = m_bndCondExpansions[i]->GetCoeff(0);
439  }
440  }
441  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_IProductWRTBase()

void Nektar::MultiRegions::ContField1D::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 607 of file ContField1D.cpp.

References IProductWRTBase().

611  {
612  IProductWRTBase(inarray,outarray,coeffstate);
613  }
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...

◆ v_LocalToGlobal() [1/2]

void Nektar::MultiRegions::ContField1D::v_LocalToGlobal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  useComm 
)
privatevirtual

Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{-1}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 463 of file ContField1D.cpp.

References m_locToGloMap.

466  {
467  m_locToGloMap->LocalToGlobal(inarray, outarray, useComm);
468  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_LocalToGlobal() [2/2]

void Nektar::MultiRegions::ContField1D::v_LocalToGlobal ( bool  useComm)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 471 of file ContField1D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

472  {
473  m_locToGloMap->LocalToGlobal(m_coeffs,m_coeffs, useComm);
474  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1052
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:140

◆ v_MultiplyByInvMassMatrix()

void Nektar::MultiRegions::ContField1D::v_MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 423 of file ContField1D.cpp.

References MultiplyByInvMassMatrix().

427  {
428  MultiplyByInvMassMatrix(inarray,outarray,coeffstate);
429  }
void MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)

Member Data Documentation

◆ m_coeffState

CoeffState Nektar::MultiRegions::ContField1D::m_coeffState
protected

A enum list declaring how to interpret coeffs, i.e. eLocal, eHybrid or eGlobal.

Definition at line 145 of file ContField1D.h.

◆ m_globalLinSysManager

LibUtilities::NekManager<GlobalLinSysKey, GlobalLinSys> Nektar::MultiRegions::ContField1D::m_globalLinSysManager
protected

A manager which collects all the global linear systems being assembled, such that they should be constructed only once.

Definition at line 155 of file ContField1D.h.

Referenced by GetGlobalLinSys(), and v_ClearGlobalLinSysManager().

◆ m_globalMat

GlobalMatrixMapShPtr Nektar::MultiRegions::ContField1D::m_globalMat
protected

(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.

Definition at line 150 of file ContField1D.h.

◆ m_locToGloMap

AssemblyMapCGSharedPtr Nektar::MultiRegions::ContField1D::m_locToGloMap
protected

(A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom.

Definition at line 140 of file ContField1D.h.

Referenced by Assemble(), ContField1D(), FwdTrans(), GenGlobalLinSys(), GetLocalToGlobalMap(), GlobalSolve(), MultiplyByInvMassMatrix(), v_GlobalToLocal(), v_HelmSolve(), v_ImposeDirichletConditions(), and v_LocalToGlobal().