Nektar++
Public Member Functions | Protected Member Functions | List of all members
Nektar::StdRegions::StdSegExp Class Reference

Class representing a segment element in reference space. More...

#include <StdSegExp.h>

Inheritance diagram for Nektar::StdRegions::StdSegExp:
[legend]

Public Member Functions

 StdSegExp ()
 Default constructor. More...
 
 StdSegExp (const LibUtilities::BasisKey &Ba)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 StdSegExp (const StdSegExp &T)
 Copy Constructor. More...
 
 ~StdSegExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion1D
 StdExpansion1D ()
 
 StdExpansion1D (int numcoeffs, const LibUtilities::BasisKey &Ba)
 
 StdExpansion1D (const StdExpansion1D &T)
 
virtual ~StdExpansion1D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp (void) const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceNumModes (const int fid, const Orientation faceOrient, int &numModes0, int &numModes1)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const std::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const std::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const std::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
void NegateVertexNormal (const int vertex)
 
bool VertexNormalNegated (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region and return the value. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray. More...
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return in outarray. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 Inner product of inarray over region with respect to expansion basis base and return in outarray. More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &Lcoords, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
virtual void v_ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_0, Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual int v_GetNverts () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return Shape of region, using ShapeType enum list. i.e. Segment. More...
 
virtual DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion1D
std::map< int, NormalVectorm_vertexNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_IndexMapManager
 

Detailed Description

Class representing a segment element in reference space.

All interface of this class sits in StdExpansion class

Definition at line 53 of file StdSegExp.h.

Constructor & Destructor Documentation

◆ StdSegExp() [1/3]

Nektar::StdRegions::StdSegExp::StdSegExp ( )

Default constructor.

Definition at line 50 of file StdSegExp.cpp.

51  {
52  }

◆ StdSegExp() [2/3]

Nektar::StdRegions::StdSegExp::StdSegExp ( const LibUtilities::BasisKey Ba)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasisKey class definition containing order and quadrature points.

Definition at line 62 of file StdSegExp.cpp.

62  :
63  StdExpansion(Ba.GetNumModes(), 1, Ba),
64  StdExpansion1D(Ba.GetNumModes(),Ba)
65  {
66  }
StdExpansion()
Default Constructor.

◆ StdSegExp() [3/3]

Nektar::StdRegions::StdSegExp::StdSegExp ( const StdSegExp T)

Copy Constructor.

Definition at line 71 of file StdSegExp.cpp.

71  :
72  StdExpansion(T),
74  {
75  }
StdExpansion()
Default Constructor.

◆ ~StdSegExp()

Nektar::StdRegions::StdSegExp::~StdSegExp ( )

Definition at line 78 of file StdSegExp.cpp.

79  {
80  }

Member Function Documentation

◆ v_BwdTrans()

void Nektar::StdRegions::StdSegExp::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray.

Operation can be evaluated as \( u(\xi_{1i}) = \sum_{p=0}^{order-1} \hat{u}_p \phi_p(\xi_{1i}) \) or equivalently \( {\bf u} = {\bf B}^T {\bf \hat{u}} \) where \({\bf B}[i][j] = \phi_i(\xi_{1j}), \mbox{\_coeffs}[p] = {\bf \hat{u}}[p] \)

The function takes the coefficient array inarray as input for the transformation

Parameters
inarraythe coeffficients of the expansion
outarraythe resulting array of the values of the function at the physical quadrature points will be stored in the array outarray

Implements Nektar::StdRegions::StdExpansion.

Definition at line 223 of file StdSegExp.cpp.

References Blas::Dgemv(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by v_BwdTrans_SumFac(), v_HelmholtzMatrixOp(), and v_LaplacianMatrixOp().

226  {
227  int nquad = m_base[0]->GetNumPoints();
228 
229  if(m_base[0]->Collocation())
230  {
231  Vmath::Vcopy(nquad, inarray, 1, outarray, 1);
232  }
233  else
234  {
235 
236  Blas::Dgemv('N',nquad,m_base[0]->GetNumModes(),1.0,
237  (m_base[0]->GetBdata()).get(),
238  nquad,&inarray[0],1,0.0,&outarray[0],1);
239 
240  }
241  }
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_BwdTrans_SumFac()

void Nektar::StdRegions::StdSegExp::v_BwdTrans_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 393 of file StdSegExp.cpp.

References v_BwdTrans().

395  {
396  v_BwdTrans(inarray, outarray);
397  }
virtual void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Backward transform from coefficient space given in inarray and evaluate at the physical quadrature po...
Definition: StdSegExp.cpp:223

◆ v_CalcNumberOfCoefficients()

int Nektar::StdRegions::StdSegExp::v_CalcNumberOfCoefficients ( const std::vector< unsigned int > &  nummodes,
int &  modes_offset 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 704 of file StdSegExp.cpp.

707  {
708  int nmodes = nummodes[modes_offset];
709  modes_offset += 1;
710 
711  return nmodes;
712  }

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::StdRegions::StdSegExp::v_CreateStdMatrix ( const StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 784 of file StdSegExp.cpp.

References v_GenMatrix().

785  {
786  return v_GenMatrix(mkey);
787  }
virtual DNekMatSharedPtr v_GenMatrix(const StdMatrixKey &mkey)
Definition: StdSegExp.cpp:718

◆ v_DetShapeType()

LibUtilities::ShapeType Nektar::StdRegions::StdSegExp::v_DetShapeType ( ) const
protectedvirtual

Return Shape of region, using ShapeType enum list. i.e. Segment.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 85 of file StdSegExp.cpp.

References Nektar::LibUtilities::eSegment.

Referenced by v_FwdTrans(), v_FwdTrans_BndConstrained(), and v_GenMatrix().

◆ v_ExponentialFilter()

void Nektar::StdRegions::StdSegExp::v_ExponentialFilter ( Array< OneD, NekDouble > &  array,
const NekDouble  alpha,
const NekDouble  exponent,
const NekDouble  cutoff 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 618 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::m_base, and class_topology::P.

623  {
624  // Generate an orthogonal expansion
625  int nq = m_base[0]->GetNumPoints();
626  int nmodes = m_base[0]->GetNumModes();
627  int P = nmodes - 1;
628  // Declare orthogonal basis.
629  LibUtilities::PointsKey pKey(nq,m_base[0]->GetPointsType());
630 
631  LibUtilities::BasisKey B(LibUtilities::eOrtho_A, nmodes, pKey);
632  StdSegExp OrthoExp(B);
633 
634  // Cutoff
635  int Pcut = cutoff*P;
636 
637  // Project onto orthogonal space.
638  Array<OneD, NekDouble> orthocoeffs(OrthoExp.GetNcoeffs());
639  OrthoExp.FwdTrans(array,orthocoeffs);
640 
641  //
642  NekDouble fac;
643  for(int j = 0; j < nmodes; ++j)
644  {
645  //to filter out only the "high-modes"
646  if(j > Pcut)
647  {
648  fac = (NekDouble) (j - Pcut) / ( (NekDouble) (P - Pcut) );
649  fac = pow(fac, exponent);
650  orthocoeffs[j] *= exp(-alpha*fac);
651  }
652  }
653 
654  // backward transform to physical space
655  OrthoExp.BwdTrans(orthocoeffs,array);
656  }
StdSegExp()
Default constructor.
Definition: StdSegExp.cpp:50
Principle Orthogonal Functions .
Definition: BasisType.h:45
double NekDouble
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:215
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_FillMode()

void Nektar::StdRegions::StdSegExp::v_FillMode ( const int  mode,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 516 of file StdSegExp.cpp.

References ASSERTL2, Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

517  {
518  int nquad = m_base[0]->GetNumPoints();
519  const NekDouble * base = m_base[0]->GetBdata().get();
520 
521  ASSERTL2(mode <= m_ncoeffs,
522  "calling argument mode is larger than total expansion order");
523 
524  Vmath::Vcopy(nquad,(NekDouble *)base+mode*nquad,1, &outarray[0],1);
525  }
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:274
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_FwdTrans()

void Nektar::StdRegions::StdSegExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.

Perform a forward transform using a Galerkin projection by taking the inner product of the physical points and multiplying by the inverse of the mass matrix using the Solve method of the standard matrix container holding the local mass matrix, i.e. \( {\bf \hat{u}} = {\bf M}^{-1} {\bf I} \) where \( {\bf I}[p] = \int^1_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 \)

This function stores the expansion coefficients calculated by the transformation in the coefficient space array outarray

Parameters
inarrayarray of physical quadrature points to be transformed
outarraythe coeffficients of the expansion

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 297 of file StdSegExp.cpp.

References Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_DetShapeType(), v_IProductWRTBase(), and Vmath::Vcopy().

Referenced by v_FwdTrans_BndConstrained().

299  {
300  if(m_base[0]->Collocation())
301  {
302  Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
303  }
304  else
305  {
306  v_IProductWRTBase(inarray,outarray);
307 
308  // get Mass matrix inverse
309  StdMatrixKey masskey(eInvMass,v_DetShapeType(),*this);
310  DNekMatSharedPtr matsys = GetStdMatrix(masskey);
311 
312  NekVector<NekDouble> in(m_ncoeffs,outarray,eCopy);
313  NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
314 
315  out = (*matsys)*in;
316  }
317  }
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:714
virtual LibUtilities::ShapeType v_DetShapeType() const
Return Shape of region, using ShapeType enum list. i.e. Segment.
Definition: StdSegExp.cpp:85
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return...
Definition: StdSegExp.cpp:468
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_FwdTrans_BndConstrained()

void Nektar::StdRegions::StdSegExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 319 of file StdSegExp.cpp.

References ASSERTL0, Blas::Dgemv(), Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::eMass, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetVertexMap(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::m_stdStaticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), v_DetShapeType(), v_FwdTrans(), v_IProductWRTBase(), Vmath::Vcopy(), and Vmath::Vsub().

322  {
323  if(m_base[0]->Collocation())
324  {
325  Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
326  }
327  else
328  {
329  int nInteriorDofs = m_ncoeffs-2;
330  int offset = 0;
331 
332  switch(m_base[0]->GetBasisType())
333  {
335  {
336  offset = 1;
337  }
338  break;
340  {
341  nInteriorDofs = m_ncoeffs;
342  offset = 0;
343  }
344  break;
347  {
348  offset = 2;
349  }
350  break;
351  default:
352  ASSERTL0(false,"This type of FwdTrans is not defined for this expansion type");
353  }
354 
355  fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
356 
358  {
359  outarray[GetVertexMap(0)] = inarray[0];
360  outarray[GetVertexMap(1)] = inarray[m_base[0]->GetNumPoints()-1];
361 
362  if(m_ncoeffs>2)
363  {
364  // ideally, we would like to have tmp0 to be replaced by
365  // outarray (currently MassMatrixOp does not allow aliasing)
366  Array<OneD, NekDouble> tmp0(m_ncoeffs);
367  Array<OneD, NekDouble> tmp1(m_ncoeffs);
368 
369  StdMatrixKey masskey(eMass,v_DetShapeType(),*this);
370  MassMatrixOp(outarray,tmp0,masskey);
371  v_IProductWRTBase(inarray,tmp1);
372 
373  Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
374 
375  // get Mass matrix inverse (only of interior DOF)
376  DNekMatSharedPtr matsys =
377  (m_stdStaticCondMatrixManager[masskey])-> GetBlock(1,1);
378 
379  Blas::Dgemv('N',nInteriorDofs,nInteriorDofs,1.0,
380  &(matsys->GetPtr())[0],nInteriorDofs,tmp1.get()
381  +offset,1,0.0,outarray.get()+offset,1);
382  }
383  }
384  else
385  {
386  StdSegExp::v_FwdTrans(inarray, outarray);
387  }
388  }
389 
390  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:974
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: StdSegExp.cpp:297
Principle Modified Functions .
Definition: BasisType.h:48
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:55
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLess > m_stdStaticCondMatrixManager
virtual LibUtilities::ShapeType v_DetShapeType() const
Return Shape of region, using ShapeType enum list. i.e. Segment.
Definition: StdSegExp.cpp:85
int GetVertexMap(const int localVertexId, bool useCoeffPacking=false)
Definition: StdExpansion.h:822
Principle Modified Functions .
Definition: BasisType.h:49
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return...
Definition: StdSegExp.cpp:468
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:346
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Lagrange for SEM basis .
Definition: BasisType.h:54
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::StdRegions::StdSegExp::v_GenMatrix ( const StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 718 of file StdSegExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::CreateGeneralMatrix(), Nektar::StdRegions::eFactorConst, Nektar::LibUtilities::eFourier, Nektar::StdRegions::eFwdTrans, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eMass, Nektar::StdRegions::ePhysInterpToEquiSpaced, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::LibUtilities::StdSegData::getNumberOfCoefficients(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_DetShapeType(), and Vmath::Vcopy().

Referenced by v_CreateStdMatrix().

719  {
720  DNekMatSharedPtr Mat;
721  MatrixType mattype;
722 
723  switch(mattype = mkey.GetMatrixType())
724  {
726  {
727  int nq = m_base[0]->GetNumPoints();
728 
729  // take definition from key
730  if(mkey.ConstFactorExists(eFactorConst))
731  {
732  nq = (int) mkey.GetConstFactor(eFactorConst);
733  }
734 
737  Array<OneD, NekDouble > coords (1);
738  DNekMatSharedPtr I ;
740  AllocateSharedPtr(neq, nq);
741 
742  for(int i = 0; i < neq; ++i)
743  {
744  coords[0] = -1.0 + 2*i/(NekDouble)(neq-1);
745  I = m_base[0]->GetI(coords);
746  Vmath::Vcopy(nq, I->GetRawPtr(), 1,
747  Mat->GetRawPtr()+i,neq);
748  }
749  }
750  break;
751  case eFwdTrans:
752  {
754  StdMatrixKey iprodkey(eIProductWRTBase,v_DetShapeType(),*this);
755  DNekMat &Iprod = *GetStdMatrix(iprodkey);
756  StdMatrixKey imasskey(eInvMass,v_DetShapeType(),*this);
757  DNekMat &Imass = *GetStdMatrix(imasskey);
758 
759  (*Mat) = Imass*Iprod;
760  }
761  break;
762  default:
763  {
765 
766  if(mattype == eMass)
767  {
768  // For Fourier basis set the imaginary component
769  // of mean mode to have a unit diagonal component
770  // in mass matrix
772  {
773  (*Mat)(1,1) = 1.0;
774  }
775  }
776  }
777  break;
778  }
779 
780  return Mat;
781  }
Fourier Expansion .
Definition: BasisType.h:53
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:714
virtual LibUtilities::ShapeType v_DetShapeType() const
Return Shape of region, using ShapeType enum list. i.e. Segment.
Definition: StdSegExp.cpp:85
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
DNekMatSharedPtr CreateGeneralMatrix(const StdMatrixKey &mkey)
this function generates the mass matrix
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:51
double NekDouble
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_GetBoundaryMap()

void Nektar::StdRegions::StdSegExp::v_GetBoundaryMap ( Array< OneD, unsigned int > &  outarray)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 794 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eChebyshev, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

795  {
796  if(outarray.num_elements() != NumBndryCoeffs())
797  {
798  outarray = Array<OneD, unsigned int>(NumBndryCoeffs());
799  }
800  const LibUtilities::BasisType Btype = GetBasisType(0);
801  int nummodes = m_base[0]->GetNumModes();
802 
803  outarray[0] = 0;
804 
805  switch(Btype)
806  {
811  outarray[1]= nummodes-1;
812  break;
815  outarray[1] = 1;
816  break;
817  default:
818  ASSERTL0(0,"Mapping array is not defined for this expansion");
819  break;
820  }
821  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
Principle Modified Functions .
Definition: BasisType.h:48
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:55
Fourier Expansion .
Definition: BasisType.h:53
Chebyshev Polynomials .
Definition: BasisType.h:57
Principle Modified Functions .
Definition: BasisType.h:49
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Lagrange for SEM basis .
Definition: BasisType.h:54
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_GetCoords()

void Nektar::StdRegions::StdSegExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_0,
Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 671 of file StdSegExp.cpp.

References Blas::Dcopy(), Nektar::StdRegions::StdExpansion::GetNumPoints(), and Nektar::StdRegions::StdExpansion::m_base.

675  {
676  boost::ignore_unused(coords_1, coords_2);
677  Blas::Dcopy(GetNumPoints(0),(m_base[0]->GetZ()).get(),
678  1,&coords_0[0],1);
679  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:228
Array< OneD, LibUtilities::BasisSharedPtr > m_base
static void Dcopy(const int &n, const double *x, const int &incx, double *y, const int &incy)
BLAS level 1: Copy x to y.
Definition: Blas.hpp:103

◆ v_GetInteriorMap()

void Nektar::StdRegions::StdSegExp::v_GetInteriorMap ( Array< OneD, unsigned int > &  outarray)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 823 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eChebyshev, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

824  {
825  int i;
826  if(outarray.num_elements()!=GetNcoeffs()-NumBndryCoeffs())
827  {
828  outarray = Array<OneD, unsigned int>(GetNcoeffs()-NumBndryCoeffs());
829  }
830  const LibUtilities::BasisType Btype = GetBasisType(0);
831 
832  switch(Btype)
833  {
838  for(i = 0 ; i < GetNcoeffs()-2;i++)
839  {
840  outarray[i] = i+1;
841  }
842  break;
845  for(i = 0 ; i < GetNcoeffs()-2;i++)
846  {
847  outarray[i] = i+2;
848  }
849  break;
850  default:
851  ASSERTL0(0,"Mapping array is not defined for this expansion");
852  break;
853  }
854  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
Principle Modified Functions .
Definition: BasisType.h:48
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:55
Fourier Expansion .
Definition: BasisType.h:53
Chebyshev Polynomials .
Definition: BasisType.h:57
Principle Modified Functions .
Definition: BasisType.h:49
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Lagrange for SEM basis .
Definition: BasisType.h:54

◆ v_GetNverts()

int Nektar::StdRegions::StdSegExp::v_GetNverts ( ) const
protectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 689 of file StdSegExp.cpp.

690  {
691  return 2;
692  }

◆ v_GetSimplexEquiSpacedConnectivity()

void Nektar::StdRegions::StdSegExp::v_GetSimplexEquiSpacedConnectivity ( Array< OneD, int > &  conn,
bool  standard = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 872 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

875  {
876  boost::ignore_unused(standard);
877  int np = m_base[0]->GetNumPoints();
878 
879  conn = Array<OneD, int>(2*(np-1));
880  int cnt = 0;
881  for(int i = 0; i < np-1; ++i)
882  {
883  conn[cnt++] = i;
884  conn[cnt++] = i+1;
885  }
886  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_GetVertexMap()

int Nektar::StdRegions::StdSegExp::v_GetVertexMap ( int  localVertexId,
bool  useCoeffPacking = false 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 856 of file StdSegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

857  {
858  boost::ignore_unused(useCoeffPacking);
859  ASSERTL0((localVertexId==0)||(localVertexId==1),"local vertex id"
860  "must be between 0 or 1");
861 
862  int localDOF = localVertexId;
863 
865  (localVertexId==1) )
866  {
867  localDOF = m_base[0]->GetNumModes()-1;
868  }
869  return localDOF;
870  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Lagrange for SEM basis .
Definition: BasisType.h:54
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_HelmholtzMatrixOp()

void Nektar::StdRegions::StdSegExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 555 of file StdSegExp.cpp.

References Blas::Daxpy(), Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_BwdTrans(), v_IProductWRTBase(), and v_PhysDeriv().

559  {
560  int nquad = m_base[0]->GetNumPoints();
561 
562  Array<OneD,NekDouble> physValues(nquad);
563  Array<OneD,NekDouble> dPhysValuesdx(nquad);
564  Array<OneD,NekDouble> wsp(m_ncoeffs);
565 
566  v_BwdTrans(inarray,physValues);
567 
568  // mass matrix operation
569  v_IProductWRTBase((m_base[0]->GetBdata()),physValues,wsp,1);
570 
571  // Laplacian matrix operation
572  v_PhysDeriv(physValues,dPhysValuesdx);
573  v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
574  Blas::Daxpy(m_ncoeffs, mkey.GetConstFactor(eFactorLambda), wsp.get(), 1, outarray.get(), 1);
575  }
virtual void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Backward transform from coefficient space given in inarray and evaluate at the physical quadrature po...
Definition: StdSegExp.cpp:223
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return...
Definition: StdSegExp.cpp:468
Array< OneD, LibUtilities::BasisSharedPtr > m_base
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:110
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
Definition: StdSegExp.cpp:156

◆ v_Integral()

NekDouble Nektar::StdRegions::StdSegExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region and return the value.

Parameters
inarraydefinition of function to be integrated evauluated at quadrature point of expansion.
Returns
returns \(\int^1_{-1} u(\xi_1)d \xi_1 \) where \(inarray[i] = u(\xi_{1i}) \)

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 123 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, Vmath::Vmul(), and Vmath::Vsum().

124  {
125  NekDouble Int = 0.0;
126  int nquad0 = m_base[0]->GetNumPoints();
127  Array<OneD, NekDouble> tmp(nquad0);
128  Array<OneD, const NekDouble> z = m_base[0]->GetZ();
129  Array<OneD, const NekDouble> w0 = m_base[0]->GetW();
130 
131  // multiply by integration constants
132  Vmath::Vmul(nquad0, inarray, 1, w0, 1, tmp, 1);
133 
134  Int = Vmath::Vsum(nquad0, tmp, 1);
135 
136  return Int;
137  }
double NekDouble
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:740
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_IProductWRTBase() [1/2]

void Nektar::StdRegions::StdSegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return in outarray.

Wrapper call to StdSegExp::IProductWRTBase

Parameters
inarrayarray of function values evaluated at the physical collocation points
outarraythe values of the inner product with respect to each basis over region will be stored in the array outarray as output of the function

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 468 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_FwdTrans(), v_FwdTrans_BndConstrained(), v_HelmholtzMatrixOp(), v_IProductWRTDerivBase(), and v_LaplacianMatrixOp().

470  {
471  v_IProductWRTBase(m_base[0]->GetBdata(),inarray,outarray,1);
472  }
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return...
Definition: StdSegExp.cpp:468
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_IProductWRTBase() [2/2]

void Nektar::StdRegions::StdSegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  base,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
int  coll_check 
)
protectedvirtual

Inner product of inarray over region with respect to expansion basis base and return in outarray.

Calculate \( I[p] = \int^{1}_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 = \sum_{i=0}^{nq-1} \phi_p(\xi_{1i}) u(\xi_{1i}) w_i \) where \( outarray[p] = I[p], inarray[i] = u(\xi_{1i}), base[p*nq+i] = \phi_p(\xi_{1i}) \).

Parameters
basean array defining the local basis for the inner product usually passed from Basis->GetBdata() or Basis->GetDbdata()
inarrayphysical point array of function to be integrated \( u(\xi_1) \)
coll_checkflag to identify when a Basis->Collocation() call should be performed to see if this is a GLL_Lagrange basis with a collocation property. (should be set to 0 if taking the inner product with respect to the derivative of basis)
outarraythe values of the inner product with respect to each basis over region will be stored in the array outarray as output of the function

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 428 of file StdSegExp.cpp.

References Blas::Dgemv(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vmul().

433  {
434  boost::ignore_unused(coll_check);
435 
436  int nquad = m_base[0]->GetNumPoints();
437  Array<OneD, NekDouble> tmp(nquad);
438  Array<OneD, const NekDouble> w = m_base[0]->GetW();
439 
440  Vmath::Vmul(nquad, inarray, 1, w, 1, tmp, 1);
441 
442  /* Comment below was a bug for collocated basis
443  if(coll_check&&m_base[0]->Collocation())
444  {
445  Vmath::Vcopy(nquad, tmp, 1, outarray, 1);
446  }
447  else
448  {
449  Blas::Dgemv('T',nquad,m_ncoeffs,1.0,base.get(),nquad,
450  &tmp[0],1,0.0,outarray.get(),1);
451  }*/
452 
453  // Correct implementation
454  Blas::Dgemv('T',nquad,m_ncoeffs,1.0,base.get(),nquad,
455  &tmp[0],1,0.0,outarray.get(),1);
456  }
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_IProductWRTBase_SumFac()

void Nektar::StdRegions::StdSegExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 484 of file StdSegExp.cpp.

References Blas::Dgemv(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vmul().

488  {
489  int nquad = m_base[0]->GetNumPoints();
490  Array<OneD, NekDouble> tmp(nquad);
491  Array<OneD, const NekDouble> w = m_base[0]->GetW();
492  Array<OneD, const NekDouble> base = m_base[0]->GetBdata();
493 
494  if(multiplybyweights)
495  {
496  Vmath::Vmul(nquad, inarray, 1, w, 1, tmp, 1);
497 
498  Blas::Dgemv('T',nquad,m_ncoeffs,1.0,base.get(),nquad,
499  &tmp[0],1,0.0,outarray.get(),1);
500  }
501  else
502  {
503  Blas::Dgemv('T',nquad,m_ncoeffs,1.0,base.get(),nquad,
504  &inarray[0],1,0.0,outarray.get(),1);
505  }
506  }
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_IProductWRTDerivBase()

void Nektar::StdRegions::StdSegExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 474 of file StdSegExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::m_base, and v_IProductWRTBase().

478  {
479  boost::ignore_unused(dir);
480  ASSERTL1(dir >= 0 && dir < 1,"input dir is out of range");
481  v_IProductWRTBase(m_base[0]->GetDbdata(),inarray,outarray,1);
482  }
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return...
Definition: StdSegExp.cpp:468
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_IsBoundaryInteriorExpansion()

bool Nektar::StdRegions::StdSegExp::v_IsBoundaryInteriorExpansion ( )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 90 of file StdSegExp.cpp.

References Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

91  {
92 
93  bool returnval = false;
94 
96  {
97  returnval = true;
98  }
99 
101  {
102  returnval = true;
103  }
104 
105  return returnval;
106  }
Principle Modified Functions .
Definition: BasisType.h:48
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Lagrange for SEM basis .
Definition: BasisType.h:54
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_LaplacianMatrixOp()

void Nektar::StdRegions::StdSegExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 535 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, v_BwdTrans(), v_IProductWRTBase(), and v_PhysDeriv().

539  {
540  boost::ignore_unused(mkey);
541 
542  int nquad = m_base[0]->GetNumPoints();
543 
544  Array<OneD,NekDouble> physValues(nquad);
545  Array<OneD,NekDouble> dPhysValuesdx(nquad);
546 
547  v_BwdTrans(inarray,physValues);
548 
549  // Laplacian matrix operation
550  v_PhysDeriv(physValues,dPhysValuesdx);
551  v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
552  }
virtual void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Backward transform from coefficient space given in inarray and evaluate at the physical quadrature po...
Definition: StdSegExp.cpp:223
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->m_base[0] and return...
Definition: StdSegExp.cpp:468
Array< OneD, LibUtilities::BasisSharedPtr > m_base
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
Definition: StdSegExp.cpp:156

◆ v_MultiplyByStdQuadratureMetric()

void Nektar::StdRegions::StdSegExp::v_MultiplyByStdQuadratureMetric ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 659 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vmul().

662  {
663  int nquad0 = m_base[0]->GetNumPoints();
664 
665  const Array<OneD, const NekDouble>& w0 = m_base[0]->GetW();
666 
667  Vmath::Vmul(nquad0, inarray.get(),1,
668  w0.get(),1,outarray.get(),1);
669  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_NumBndryCoeffs()

int Nektar::StdRegions::StdSegExp::v_NumBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 694 of file StdSegExp.cpp.

695  {
696  return 2;
697  }

◆ v_NumDGBndryCoeffs()

int Nektar::StdRegions::StdSegExp::v_NumDGBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 699 of file StdSegExp.cpp.

700  {
701  return 2;
702  }

◆ v_PhysDeriv() [1/2]

void Nektar::StdRegions::StdSegExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Evaluate the derivative \( d/d{\xi_1} \) at the physical quadrature points given by inarray and return in outarray.

This is a wrapper around StdExpansion1D::Tensor_Deriv

Parameters
inarrayarray of a function evaluated at the quadrature points
outarraythe resulting array of the derivative \( du/d_{\xi_1}|_{\xi_{1i}} \) will be stored in the array outarra

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 156 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

Referenced by v_HelmholtzMatrixOp(), and v_LaplacianMatrixOp().

160  {
161  boost::ignore_unused(out_d1, out_d2);
162  PhysTensorDeriv(inarray,out_d0);
163  }
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...

◆ v_PhysDeriv() [2/2]

void Nektar::StdRegions::StdSegExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 166 of file StdSegExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

169  {
170  boost::ignore_unused(dir);
171  ASSERTL1(dir==0,"input dir is out of range");
172  PhysTensorDeriv(inarray,outarray);
173  // PhysDeriv(inarray, outarray);
174  }
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ v_PhysEvaluate()

NekDouble Nektar::StdRegions::StdSegExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion1D.

Reimplemented in Nektar::LocalRegions::SegExp.

Definition at line 528 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion1D::v_PhysEvaluate().

531  {
532  return StdExpansion1D::v_PhysEvaluate(coords, physvals);
533  }
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)

◆ v_ReduceOrderCoeffs()

void Nektar::StdRegions::StdSegExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 243 of file StdSegExp.cpp.

References Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::InterpCoeff1D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Vcopy(), and Vmath::Zero().

247  {
248  int n_coeffs = inarray.num_elements();
249 
250  Array<OneD, NekDouble> coeff(n_coeffs);
251  Array<OneD, NekDouble> coeff_tmp(n_coeffs,0.0);
252  Array<OneD, NekDouble> tmp;
253  Array<OneD, NekDouble> tmp2;
254 
255  int nmodes0 = m_base[0]->GetNumModes();
256 
257  Vmath::Vcopy(n_coeffs,inarray,1,coeff_tmp,1);
258 
259  const LibUtilities::PointsKey Pkey0(
261 
262  LibUtilities::BasisKey b0(m_base[0]->GetBasisType(),nmodes0,Pkey0);
263 
264  LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A,nmodes0,Pkey0);
265 
267  b0, coeff_tmp, bortho0, coeff);
268 
269  Vmath::Zero(n_coeffs,coeff_tmp,1);
270 
271  Vmath::Vcopy(numMin,
272  tmp = coeff,1,
273  tmp2 = coeff_tmp,1);
274 
276  bortho0, coeff_tmp, b0, outarray);
277  }
void InterpCoeff1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
Definition: InterpCoeff.cpp:46
Principle Orthogonal Functions .
Definition: BasisType.h:45
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:376
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51

◆ v_StdPhysDeriv() [1/2]

void Nektar::StdRegions::StdSegExp::v_StdPhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 176 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

181  {
182  boost::ignore_unused(out_d1, out_d2);
183  PhysTensorDeriv(inarray,out_d0);
184  // PhysDeriv(inarray, out_d0);
185  }
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...

◆ v_StdPhysDeriv() [2/2]

void Nektar::StdRegions::StdSegExp::v_StdPhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 187 of file StdSegExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv().

191  {
192  boost::ignore_unused(dir);
193  ASSERTL1(dir==0,"input dir is out of range");
194  PhysTensorDeriv(inarray,outarray);
195  // PhysDeriv(inarray, outarray);
196  }
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ v_SVVLaplacianFilter()

void Nektar::StdRegions::StdSegExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 577 of file StdSegExp.cpp.

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetPointsType(), and Nektar::StdRegions::StdExpansion::m_base.

579  {
580  // Generate an orthogonal expansion
581  int nq = m_base[0]->GetNumPoints();
582  int nmodes = m_base[0]->GetNumModes();
583  // Declare orthogonal basis.
584  LibUtilities::PointsKey pKey(nq,m_base[0]->GetPointsType());
585 
586  LibUtilities::BasisKey B(LibUtilities::eOrtho_A, nmodes, pKey);
587  StdSegExp OrthoExp(B);
588 
589  //SVV parameters loaded from the .xml case file
590  NekDouble SvvDiffCoeff = mkey.GetConstFactor(eFactorSVVDiffCoeff);
591  int cutoff = (int) (mkey.GetConstFactor(eFactorSVVCutoffRatio))*nmodes;
592 
593  Array<OneD, NekDouble> orthocoeffs(OrthoExp.GetNcoeffs());
594 
595  // project onto modal space.
596  OrthoExp.FwdTrans(array,orthocoeffs);
597 
598  //
599  for(int j = 0; j < nmodes; ++j)
600  {
601  if(j >= cutoff)//to filter out only the "high-modes"
602  {
603  orthocoeffs[j] *=
604  (SvvDiffCoeff*exp(-(j-nmodes)*(j-nmodes)/
605  ((NekDouble)((j-cutoff+1)*
606  (j-cutoff+1)))));
607  }
608  else
609  {
610  orthocoeffs[j] *= 0.0;
611  }
612  }
613 
614  // backward transform to physical space
615  OrthoExp.BwdTrans(orthocoeffs,array);
616  }
StdSegExp()
Default constructor.
Definition: StdSegExp.cpp:50
Principle Orthogonal Functions .
Definition: BasisType.h:45
double NekDouble
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:215
Array< OneD, LibUtilities::BasisSharedPtr > m_base