Nektar++
ExpList1DHomogeneous2D.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File ExpList1DHomogeneous2D.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: An ExpList1D which is homogeneous in 2 directions and so
32 // uses much of the functionality from a ExpList2D and its daughters
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 #include <boost/core/ignore_unused.hpp>
37 
39 
40 using namespace std;
41 
42 namespace Nektar
43 {
44  namespace MultiRegions
45  {
46  // Forward declaration for typedefs
47  ExpList1DHomogeneous2D::ExpList1DHomogeneous2D():
49  {
50  }
51 
52  // Constructor for ExpList1DHomogeneous2D to act as a Explist1D field
54  const LibUtilities::BasisKey &HomoBasis_y,
55  const LibUtilities::BasisKey &HomoBasis_z,
56  const NekDouble lhom_y,
57  const NekDouble lhom_z,
58  const bool useFFT,
59  const bool dealiasing,
60  const Array<OneD, ExpListSharedPtr> &points):
61  ExpListHomogeneous2D(eNoType, pSession,HomoBasis_y,HomoBasis_z,lhom_y,lhom_z,useFFT,dealiasing)
62  {
63  int n;
64 
65  ASSERTL1(m_ny*m_nz == points.size(),
66  "Size of basis number of points and number of lines are "
67  "not the same");
68 
69  for(n = 0; n < points.size(); ++n)
70  {
71  m_lines[n] = points[n];
72  (*m_exp).push_back(points[n]->GetExp(0));
73  }
74 
75  SetCoeffPhys();
76  }
77 
78  /**
79  * @param In ExpList1DHomogeneous2D object to copy.
80  */
83  {
84  for(int n = 0; n < m_lines.size(); ++n)
85  {
86  m_lines[n] = In.m_lines[n];
87  }
88 
89  SetCoeffPhys();
90  }
91 
92  /**
93  * Destructor
94  */
96  {
97  }
98 
100  {
101  int i,n,cnt;
102  int ncoeffs_per_line = m_lines[0]->GetNcoeffs();
103  int npoints_per_line = m_lines[0]->GetTotPoints();
104 
105  int nyzlines = m_lines.size();
106 
107  // Set total coefficients and points
108  m_ncoeffs = ncoeffs_per_line*nyzlines;
109  m_npoints = npoints_per_line*nyzlines;
110 
111  m_coeffs = Array<OneD, NekDouble> {size_t(m_ncoeffs), 0.0};
112  m_phys = Array<OneD, NekDouble> {size_t(m_npoints), 0.0};
113 
114  int nel = m_lines[0]->GetExpSize();
115  m_coeff_offset = Array<OneD,int>(nel*nyzlines);
116  m_phys_offset = Array<OneD,int>(nel*nyzlines);
117  Array<OneD, NekDouble> tmparray;
118 
119  for(cnt = n = 0; n < nyzlines; ++n)
120  {
121  m_lines[n]->SetCoeffsArray(tmparray= m_coeffs + ncoeffs_per_line*n);
122  m_lines[n]->SetPhysArray(tmparray = m_phys + npoints_per_line*n);
123 
124  for(i = 0; i < nel; ++i)
125  {
126  m_coeff_offset[cnt] = m_lines[n]->GetCoeff_Offset(i) + n*ncoeffs_per_line;
127  m_phys_offset[cnt++] = m_lines[n]->GetPhys_Offset(i) + n*npoints_per_line;
128  }
129  }
130  }
131 
136  {
137  boost::ignore_unused(eid);
138 
139  int n,m,j;
140  Array<OneD, NekDouble> tmp_xc;
141  int nylines = m_homogeneousBasis_y->GetNumPoints();
142  int nzlines = m_homogeneousBasis_z->GetNumPoints();
143  int npoints = 1;
144 
145  // Fill x-y-z-direction
148 
149  Array<OneD, NekDouble> x(npoints);
150  Array<OneD, NekDouble> y(nylines);
151  Array<OneD, NekDouble> z(nzlines);
152 
153  Vmath::Smul(nylines,m_lhom_y/2.0,pts_y,1,y,1);
154  Vmath::Sadd(nylines,m_lhom_y/2.0,y,1,y,1);
155 
156  Vmath::Smul(nzlines,m_lhom_z/2.0,pts_z,1,z,1);
157  Vmath::Sadd(nzlines,m_lhom_z/2.0,z,1,z,1);
158 
159  m_lines[0]->GetCoords(x);
160 
161 
162  for(m = 0; m < nzlines; ++m)
163  {
164  for(j = 0; j < nylines; ++j)
165  {
166  for(n = 0; n < npoints; ++n)
167  {
168  Vmath::Fill(1,x[n],tmp_xc = xc0 + n +(j*npoints) + (m*npoints*nylines), 1);
169  Vmath::Fill(1,y[j],tmp_xc = xc1 + n +(j*npoints) + (m*npoints*nylines), 1);
170  Vmath::Fill(1,z[m],tmp_xc = xc2 + n +(j*npoints) + (m*npoints*nylines), 1);
171  }
172  }
173  }
174  }
175 
176  /**
177  * The operation calls the 2D plane coordinates through the
178  * function ExpList#GetCoords and then evaluated the third
179  * coordinate using the member \a m_lhom
180  *
181  * @param coord_0 After calculation, the \f$x_1\f$ coordinate
182  * will be stored in this array.
183  *
184  * @param coord_1 After calculation, the \f$x_2\f$ coordinate
185  * will be stored in this array. This
186  * coordinate might be evaluated using the
187  * predefined value \a m_lhom
188  *
189  * @param coord_2 After calculation, the \f$x_3\f$ coordinate
190  * will be stored in this array. This
191  * coordinate is evaluated using the
192  * predefined value \a m_lhom
193  */
197  {
198  int n,m,j;
199  Array<OneD, NekDouble> tmp_xc;
200  int npoints = 1;
201 
202  int nylines = m_homogeneousBasis_y->GetNumPoints();
203  int nzlines = m_homogeneousBasis_z->GetNumPoints();
204 
205  // Fill z-direction
208 
209  Array<OneD, NekDouble> x(npoints);
210  Array<OneD, NekDouble> y(nylines);
211  Array<OneD, NekDouble> z(nzlines);
212 
213  m_lines[0]->GetCoords(x);
214 
215  Vmath::Smul(nylines,m_lhom_y/2.0,pts_y,1,y,1);
216  Vmath::Sadd(nylines,m_lhom_y/2.0,y,1,y,1);
217 
218  Vmath::Smul(nzlines,m_lhom_z/2.0,pts_z,1,z,1);
219  Vmath::Sadd(nzlines,m_lhom_z/2.0,z,1,z,1);
220 
221  for(m = 0; m < nzlines; ++m)
222  {
223  for(j = 0; j < nylines; ++j)
224  {
225  for(n = 0; n < npoints; ++n)
226  {
227  Vmath::Fill(1,x[n],tmp_xc = xc0 + n +(j*npoints) + (m*npoints*nylines), 1);
228  Vmath::Fill(1,y[j],tmp_xc = xc1 + n +(j*npoints) + (m*npoints*nylines), 1);
229  Vmath::Fill(1,z[m],tmp_xc = xc2 + n +(j*npoints) + (m*npoints*nylines), 1);
230  }
231  }
232  }
233  }
234 
235 
236  /**
237  * Perform the 2D Forward transform of a set of points representing a plane of
238  * boundary conditions which are merely the collection of the boundary conditions
239  * coming from each 1D expansion.
240  * @param inarray The value of the BC on each point of the y-z homogeneous plane.
241  * @param outarray The value of the the coefficient of the 2D Fourier expansion
242  */
243  //void HomoFwdTrans2D(const Array<OneD, const NekDouble> &inarray, Array<OneD, NekDouble> &outarray)
244  //{
245 
246 
247  //}
248 
249  /**
250  * Write Tecplot Files Zone
251  * @param outfile Output file name.
252  * @param expansion Expansion that is considered
253  */
254  void ExpList1DHomogeneous2D::v_WriteTecplotZone(std::ostream &outfile, int expansion)
255  {
256  int i,j;
257 
258  int nquad0 = 1;
259  int nquad1 = m_homogeneousBasis_y->GetNumPoints();
260  int nquad2 = m_homogeneousBasis_z->GetNumPoints();
261 
262  Array<OneD,NekDouble> coords[3];
263 
264  coords[0] = Array<OneD,NekDouble>(3*nquad0*nquad1*nquad2);
265  coords[1] = coords[0] + nquad0*nquad1*nquad2;
266  coords[2] = coords[1] + nquad0*nquad1*nquad2;
267 
268  GetCoords(expansion,coords[0],coords[1],coords[2]);
269 
270  outfile << "Zone, I=" << nquad1 << ", J=" << nquad0*nquad2
271  << ", F=Block" << std::endl;
272 
273  for(j = 0; j < nquad1; ++j)
274  {
275  for(i = 0; i < nquad2*GetCoordim(0)+1; ++i)
276  {
277  outfile << coords[j][i] << " ";
278  }
279  outfile << std::endl;
280  }
281  }
282 
283 
284  void ExpList1DHomogeneous2D::v_WriteVtkPieceHeader(std::ostream &outfile, int expansion, int istrip)
285  {
286  boost::ignore_unused(istrip);
287 
288  int i,j;
289 
290  int nquad0 = 1;
291  int nquad1 = m_homogeneousBasis_y->GetNumPoints();
292  int nquad2 = m_homogeneousBasis_z->GetNumPoints();
293 
294  int ntot = nquad0*nquad1*nquad2;
295  int ntotminus = (nquad0)*(nquad1-1)*(nquad2-1);
296 
297  Array<OneD,NekDouble> coords[3];
298  coords[0] = Array<OneD,NekDouble>(ntot);
299  coords[1] = Array<OneD,NekDouble>(ntot);
300  coords[2] = Array<OneD,NekDouble>(ntot);
301  GetCoords(expansion,coords[0],coords[1],coords[2]);
302 
303  outfile << " <Piece NumberOfPoints=\""
304  << ntot << "\" NumberOfCells=\""
305  << ntotminus << "\">" << endl;
306  outfile << " <Points>" << endl;
307  outfile << " <DataArray type=\"Float32\" "
308  << "NumberOfComponents=\"3\" format=\"ascii\">" << endl;
309  outfile << " ";
310  for (i = 0; i < ntot; ++i)
311  {
312  for (j = 0; j < 3; ++j)
313  {
314  outfile << coords[j][i] << " ";
315  }
316  outfile << endl;
317  }
318  outfile << endl;
319  outfile << " </DataArray>" << endl;
320  outfile << " </Points>" << endl;
321  outfile << " <Cells>" << endl;
322  outfile << " <DataArray type=\"Int32\" "
323  << "Name=\"connectivity\" format=\"ascii\">" << endl;
324  for (i = 0; i < nquad0; ++i)
325  {
326  for (j = 0; j < nquad1-1; ++j)
327  {
328  outfile << j*nquad0 + i << " "
329  << j*nquad0 + i + 1 << " "
330  << (j+1)*nquad0 + i + 1 << " "
331  << (j+1)*nquad0 + i << endl;
332  }
333  }
334  outfile << endl;
335  outfile << " </DataArray>" << endl;
336  outfile << " <DataArray type=\"Int32\" "
337  << "Name=\"offsets\" format=\"ascii\">" << endl;
338  for (i = 0; i < ntotminus; ++i)
339  {
340  outfile << i*4+4 << " ";
341  }
342  outfile << endl;
343  outfile << " </DataArray>" << endl;
344  outfile << " <DataArray type=\"UInt8\" "
345  << "Name=\"types\" format=\"ascii\">" << endl;
346  for (i = 0; i < ntotminus; ++i)
347  {
348  outfile << "9 ";
349  }
350  outfile << endl;
351  outfile << " </DataArray>" << endl;
352  outfile << " </Cells>" << endl;
353  outfile << " <PointData>" << endl;
354  }
355 
356 
357  } //end of namespace
358 } //end of namespace
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
Describes the specification for a Basis.
Definition: Basis.h:50
Abstraction of a one-dimensional multi-elemental expansion which is merely a collection of local expa...
virtual void v_WriteTecplotZone(std::ostream &outfile, int expansion)
void GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
This function calculates the coordinates of all the elemental quadrature points .
virtual void v_WriteVtkPieceHeader(std::ostream &outfile, int expansion, int istrip)
virtual void v_GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2)
void SetCoeffPhys(void)
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expa...
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
NekDouble m_lhom_z
Width of homogeneous direction z.
int m_ny
Number of modes = number of poitns in y direction.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1252
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:1304
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1230
const std::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2422
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1307
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1269
int GetCoordim(int eid)
This function returns the dimension of the coordinates of the element eid.
Definition: ExpList.h:2244
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:225
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha - x.
Definition: Vmath.cpp:341