Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion3D Class Referenceabstract

#include <StdExpansion3D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion3D:
[legend]

Public Member Functions

 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp (void) const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 

Private Member Functions

virtual int v_GetShapeDimension () const
 
virtual int v_GetCoordim (void)
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 51 of file StdExpansion3D.h.

Constructor & Destructor Documentation

◆ StdExpansion3D() [1/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( )

Definition at line 49 of file StdExpansion3D.cpp.

50  {
51  }

◆ StdExpansion3D() [2/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 53 of file StdExpansion3D.cpp.

56  :
57  StdExpansion(numcoeffs,3,Ba,Bb,Bc)
58  {
59  }
StdExpansion()
Default Constructor.

◆ StdExpansion3D() [3/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( const StdExpansion3D T)

Definition at line 61 of file StdExpansion3D.cpp.

61  :
62  StdExpansion(T)
63  {
64  }

◆ ~StdExpansion3D()

Nektar::StdRegions::StdExpansion3D::~StdExpansion3D ( )
virtual

Definition at line 66 of file StdExpansion3D.cpp.

67  {
68  }

Member Function Documentation

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 114 of file StdExpansion3D.cpp.

124  {
125  v_BwdTrans_SumFacKernel(base0, base1, base2, inarray, outarray, wsp, doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
126  }
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdHexExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdPrismExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
inline

Definition at line 148 of file StdExpansion3D.h.

153  {
154  v_GetEdgeInteriorToElementMap(tid,maparray,signarray,traceOrient);
155  }
virtual void v_GetEdgeInteriorToElementMap(const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)

References v_GetEdgeInteriorToElementMap().

◆ GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::GetEdgeNcoeffs ( const int  i) const
inline

This function returns the number of expansion coefficients belonging to the i-th edge.

This function is a wrapper around the virtual function v_GetEdgeNcoeffs()

Parameters
ispecifies which edge
Returns
returns the number of expansion coefficients belonging to the i-th edge

Definition at line 143 of file StdExpansion3D.h.

144  {
145  return v_GetEdgeNcoeffs(i);
146  }
virtual int v_GetEdgeNcoeffs(const int i) const

References v_GetEdgeNcoeffs().

Referenced by Nektar::MultiRegions::PreconditionerLowEnergy::v_BuildPreconditioner(), and Nektar::StdRegions::StdHexExp::v_GetEdgeInteriorToElementMap().

◆ GetNedges()

int Nektar::StdRegions::StdExpansion3D::GetNedges ( ) const
inline

return the number of edges in 3D expansion

Definition at line 128 of file StdExpansion3D.h.

129  {
130  return v_GetNedges();
131  }
virtual int v_GetNedges(void) const

References v_GetNedges().

Referenced by Nektar::MultiRegions::PreconditionerLowEnergy::v_BuildPreconditioner().

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 128 of file StdExpansion3D.cpp.

138  {
139  v_IProductWRTBase_SumFacKernel(base0, base1, base2, inarray, outarray, wsp, doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
140  }
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_IProductWRTBase_SumFacKernel().

Referenced by Nektar::LocalRegions::HexExp::IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::HexExp::IProductWRTDirectionalDerivBase_SumFac(), v_GenStdMatBwdDeriv(), v_HelmholtzMatrixOp_MatFree(), Nektar::StdRegions::StdHexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase(), Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdHexExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel(), Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp_MatFree_Kernel(), Nektar::LocalRegions::PyrExp::v_LaplacianMatrixOp_MatFree_Kernel(), and Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp_MatFree_Kernel().

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d1,
Array< OneD, NekDouble > &  outarray_d2,
Array< OneD, NekDouble > &  outarray_d3 
)

Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
  • \( \frac{d}{d\eta_3} \rightarrow {\bf D_2 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d1the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d1 as output of the function
outarray_d2the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d2 as output of the function
outarray_d3the resulting array of derivative in the \(\eta_3\) direction will be stored in outarray_d3 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Hexahedral} & -1 \leq \xi_1,\xi_2, \xi_3 \leq 1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2, \eta_3 = \xi_3 \\ \mbox{Tetrahedral} & -1 \leq \xi_1,\xi_2,\xi_3; \xi_1+\xi_2 +\xi_3 \leq -1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{-\xi_2 -\xi_3}-1, \eta_2 = \frac{2(1+\xi_2)}{1 - \xi_3}-1, \eta_3 = \xi_3 \\ \end{array} \)

Definition at line 69 of file StdExpansion3D.cpp.

74  {
75  const int nquad0 = m_base[0]->GetNumPoints();
76  const int nquad1 = m_base[1]->GetNumPoints();
77  const int nquad2 = m_base[2]->GetNumPoints();
78 
79  Array<OneD, NekDouble> wsp(nquad0*nquad1*nquad2);
80 
81  // copy inarray to wsp in case inarray is used as outarray
82  Vmath::Vcopy(nquad0*nquad1*nquad2, &inarray[0], 1, &wsp[0], 1);
83 
84  if (out_dx.size() > 0)
85  {
86  NekDouble *D0 = &((m_base[0]->GetD())->GetPtr())[0];
87 
88  Blas::Dgemm('N','N', nquad0,nquad1*nquad2,nquad0,1.0,
89  D0,nquad0,&wsp[0],nquad0,0.0,&out_dx[0],nquad0);
90  }
91 
92  if (out_dy.size() > 0)
93  {
94  NekDouble *D1 = &((m_base[1]->GetD())->GetPtr())[0];
95  for (int j = 0; j < nquad2; ++j)
96  {
97  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1,
98  1.0, &wsp[j*nquad0*nquad1], nquad0,
99  D1, nquad1,
100  0.0, &out_dy[j*nquad0*nquad1], nquad0);
101  }
102  }
103 
104  if (out_dz.size() > 0)
105  {
106  NekDouble *D2 = &((m_base[2]->GetD())->GetPtr())[0];
107 
108  Blas::Dgemm('N','T',nquad0*nquad1,nquad2,nquad2,1.0,
109  &wsp[0],nquad0*nquad1,D2,nquad2,0.0,&out_dz[0],
110  nquad0*nquad1);
111  }
112  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:394
double NekDouble
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdHexExp::v_PhysDeriv(), Nektar::StdRegions::StdPrismExp::v_PhysDeriv(), Nektar::StdRegions::StdPyrExp::v_PhysDeriv(), and Nektar::StdRegions::StdTetExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion3D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 142 of file StdExpansion3D.cpp.

145  {
146  ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
147 
148  const int nq0 = m_base[0]->GetNumPoints();
149  const int nq1 = m_base[1]->GetNumPoints();
150  const int nq2 = m_base[2]->GetNumPoints();
151  const int nq = nq0*nq1*nq2;
152  const int nm0 = m_base[0]->GetNumModes();
153  const int nm1 = m_base[1]->GetNumModes();
154 
155  Array<OneD, NekDouble> alloc(4*nq + m_ncoeffs + nm0*nq2*(nq1+nm1),0.0);
156  Array<OneD, NekDouble> tmp1 (alloc); // Quad metric
157  Array<OneD, NekDouble> tmp2 (alloc + nq); // Dir1 metric
158  Array<OneD, NekDouble> tmp3 (alloc + 2*nq); // Dir2 metric
159  Array<OneD, NekDouble> tmp4 (alloc + 3*nq); // Dir3 metric
160  Array<OneD, NekDouble> tmp5 (alloc + 4*nq); // iprod tmp
161  Array<OneD, NekDouble> wsp (tmp5 + m_ncoeffs); // Wsp
162  switch(dir)
163  {
164  case 0:
165  for(int i=0; i<nq;i++)
166  {
167  tmp2[i] = 1.0;
168  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
169  m_base[1]->GetBdata(),
170  m_base[2]->GetBdata(),
171  tmp2,tmp5,wsp,
172  false,true,true);
173 
174  tmp2[i] = 0.0;
175 
176  for(int j=0; j<m_ncoeffs;j++)
177  {
178  (*mat)(j,i) = tmp5[j];
179  }
180  }
181  break;
182  case 1:
183  for(int i=0; i<nq;i++)
184  {
185  tmp2[i] = 1.0;
186  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
187  m_base[1]->GetDbdata(),
188  m_base[2]->GetBdata(),
189  tmp2,tmp5,wsp,
190  true,false,true);
191 
192  tmp2[i] = 0.0;
193 
194  for(int j=0; j<m_ncoeffs;j++)
195  {
196  (*mat)(j,i) = tmp5[j];
197  }
198  }
199  break;
200  case 2:
201  for(int i=0; i<nq;i++)
202  {
203  tmp2[i] = 1.0;
204  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
205  m_base[1]->GetBdata(),
206  m_base[2]->GetDbdata(),
207  tmp2,tmp5,wsp,
208  true,true,false);
209  tmp2[i] = 0.0;
210 
211  for(int j=0; j<m_ncoeffs;j++)
212  {
213  (*mat)(j,i) = tmp5[j];
214  }
215  }
216  break;
217  default:
218  NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
219  break;
220  }
221  }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetCoordim()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetCoordim ( void  )
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, Nektar::LocalRegions::PyrExp, and Nektar::LocalRegions::PrismExp.

Definition at line 243 of file StdExpansion3D.h.

244  {
245  return 3;
246  }

◆ v_GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
protectedvirtual

Reimplemented in Nektar::StdRegions::StdTetExp, Nektar::StdRegions::StdPyrExp, Nektar::StdRegions::StdPrismExp, and Nektar::StdRegions::StdHexExp.

Definition at line 431 of file StdExpansion3D.cpp.

436  {
437  boost::ignore_unused(tid,maparray,signarray,traceOrient);
438  NEKERROR(ErrorUtil::efatal,"Method does not exist for this shape" );
439  }

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeInteriorToElementMap().

◆ v_GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::v_GetEdgeNcoeffs ( const int  i) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdTetExp, Nektar::StdRegions::StdPyrExp, Nektar::StdRegions::StdPrismExp, and Nektar::StdRegions::StdHexExp.

Definition at line 424 of file StdExpansion3D.cpp.

425  {
426  boost::ignore_unused(i);
427  NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
428  return 0;
429  }

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeNcoeffs().

◆ v_GetNedges()

int Nektar::StdRegions::StdExpansion3D::v_GetNedges ( void  ) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdTetExp, Nektar::StdRegions::StdPyrExp, Nektar::StdRegions::StdPrismExp, and Nektar::StdRegions::StdHexExp.

Definition at line 418 of file StdExpansion3D.cpp.

419  {
420  NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
421  return 0;
422  }

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetNedges().

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetShapeDimension ( ) const
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 238 of file StdExpansion3D.h.

239  {
240  return 3;
241  }

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 347 of file StdExpansion3D.cpp.

351  {
352  if(mkey.GetNVarCoeff() == 0 && !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00))
353  {
354  using std::max;
355 
356  int nquad0 = m_base[0]->GetNumPoints();
357  int nquad1 = m_base[1]->GetNumPoints();
358  int nquad2 = m_base[2]->GetNumPoints();
359  int nmodes0 = m_base[0]->GetNumModes();
360  int nmodes1 = m_base[1]->GetNumModes();
361  int nmodes2 = m_base[2]->GetNumModes();
362  int wspsize = max(nquad0*nmodes2*(nmodes1+nquad1),
363  nquad0*nquad1*(nquad2+nmodes0)+
364  nmodes0*nmodes1*nquad2);
365 
366  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
367 
368  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata ();
369  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata ();
370  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata ();
371  Array<OneD,NekDouble> wsp0(8*wspsize);
372  Array<OneD,NekDouble> wsp1(wsp0+1*wspsize);
373  Array<OneD,NekDouble> wsp2(wsp0+2*wspsize);
374 
375  if(!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
376  m_base[2]->Collocation()))
377  {
378  // MASS MATRIX OPERATION
379  // The following is being calculated:
380  // wsp0 = B * u_hat = u
381  // wsp1 = W * wsp0
382  // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
383  BwdTrans_SumFacKernel (base0,base1,base2,inarray,
384  wsp0,wsp2,true,true,true);
385  MultiplyByQuadratureMetric (wsp0,wsp1);
386  IProductWRTBase_SumFacKernel (base0,base1,base2,wsp1,
387  outarray,wsp2,true,true,true);
388  LaplacianMatrixOp_MatFree_Kernel(wsp0,wsp1,wsp2);
389  }
390  else
391  {
392  // specialised implementation for the classical spectral
393  // element method
394  MultiplyByQuadratureMetric (inarray,outarray);
395  LaplacianMatrixOp_MatFree_Kernel(inarray,wsp1,wsp2);
396  }
397 
398  // outarray = lambda * outarray + wsp1
399  // = (lambda * M + L ) * u_hat
400  Vmath::Svtvp(m_ncoeffs,lambda,&outarray[0],1,&wsp1[0],1,
401  &outarray[0],1);
402  }
403  else
404  {
406  }
407  }
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:733
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:565

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdHexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::PrismExp::v_HelmholtzMatrixOp(), and Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp().

◆ v_Integral()

NekDouble Nektar::StdRegions::StdExpansion3D::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, Nektar::LocalRegions::PyrExp, Nektar::LocalRegions::PrismExp, and Nektar::LocalRegions::HexExp.

Definition at line 409 of file StdExpansion3D.cpp.

411  {
412  const int nqtot = GetTotPoints();
413  Array<OneD, NekDouble> tmp(GetTotPoints());
414  v_MultiplyByStdQuadratureMetric(inarray, tmp);
415  return Vmath::Vsum(nqtot, tmp, 1);
416  }
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
virtual void v_MultiplyByStdQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:846

References Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::v_MultiplyByStdQuadratureMetric(), and Vmath::Vsum().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual
Parameters
inarrayInput coefficients.
outputOutput coefficients.
mkeyMatrix key

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 305 of file StdExpansion3D.cpp.

309  {
310  if ( mkey.GetNVarCoeff() == 0 && !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
311  !mkey.ConstFactorExists(eFactorSVVCutoffRatio))
312  {
313  // This implementation is only valid when there are no
314  // coefficients associated to the Laplacian operator
315  int nqtot = GetTotPoints();
316 
317  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
318  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
319  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
320 
321  // Allocate temporary storage
322  Array<OneD,NekDouble> wsp0(7*nqtot);
323  Array<OneD,NekDouble> wsp1(wsp0+nqtot);
324 
325  if(!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
326  m_base[2]->Collocation()))
327  {
328  // LAPLACIAN MATRIX OPERATION
329  // wsp0 = u = B * u_hat
330  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
331  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
332  BwdTrans_SumFacKernel(base0,base1,base2,inarray,wsp0,wsp1,true,true,true);
333  LaplacianMatrixOp_MatFree_Kernel(wsp0,outarray,wsp1);
334  }
335  else
336  {
337  LaplacianMatrixOp_MatFree_Kernel(inarray,outarray,wsp1);
338  }
339  }
340  else
341  {
343  }
344  }
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_LaplacianMatrixOp(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp(), and Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, Nektar::LocalRegions::HexExp, Nektar::LocalRegions::PyrExp, and Nektar::LocalRegions::PrismExp.

Definition at line 223 of file StdExpansion3D.cpp.

226  {
227  Array<OneD, NekDouble> eta(3);
228 
229  WARNINGL2(coords[0] >= -1 - NekConstants::kNekZeroTol,
230  "coord[0] < -1");
231  WARNINGL2(coords[0] <= 1 + NekConstants::kNekZeroTol,
232  "coord[0] > 1");
233  WARNINGL2(coords[1] >= -1 - NekConstants::kNekZeroTol,
234  "coord[1] < -1");
235  WARNINGL2(coords[1] <= 1 + NekConstants::kNekZeroTol,
236  "coord[1] > 1");
237  WARNINGL2(coords[2] >= -1 - NekConstants::kNekZeroTol,
238  "coord[2] < -1");
239  WARNINGL2(coords[2] <= 1 + NekConstants::kNekZeroTol,
240  "coord[2] > 1");
241 
242  // Obtain local collapsed corodinate from Cartesian coordinate.
243  LocCoordToLocCollapsed(coords, eta);
244 
245  const int nq0 = m_base[0]->GetNumPoints();
246  const int nq1 = m_base[1]->GetNumPoints();
247  const int nq2 = m_base[2]->GetNumPoints();
248 
249  Array<OneD, NekDouble> wsp1(nq1 * nq2), wsp2(nq2);
250 
251  // Construct the 2D square...
252  const NekDouble *ptr = &physvals[0];
253  for (int i = 0; i < nq1 * nq2; ++i, ptr += nq0)
254  {
255  wsp1[i] = StdExpansion::BaryEvaluate<0>(eta[0], ptr);
256  }
257 
258  for (int i = 0; i < nq2; ++i)
259  {
260  wsp2[i] = StdExpansion::BaryEvaluate<1>(eta[1], &wsp1[i * nq1]);
261  }
262 
263  return StdExpansion::BaryEvaluate<2>(eta[2], &wsp2[0]);
264  }
#define WARNINGL2(condition, msg)
Definition: ErrorUtil.hpp:275
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
Definition: StdExpansion.h:982
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, and WARNINGL2.

Referenced by Nektar::StdRegions::StdNodalPrismExp::GenNBasisTransMatrix(), and Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 266 of file StdExpansion3D.cpp.

269  {
270  NekDouble value;
271 
272  int Qx = m_base[0]->GetNumPoints();
273  int Qy = m_base[1]->GetNumPoints();
274  int Qz = m_base[2]->GetNumPoints();
275 
276  Array<OneD, NekDouble> sumFactorization_qr = Array<OneD, NekDouble>(Qy*Qz);
277  Array<OneD, NekDouble> sumFactorization_r = Array<OneD, NekDouble>(Qz);
278 
279  // Lagrangian interpolation matrix
280  NekDouble *interpolatingNodes = 0;
281 
282  // Interpolate first coordinate direction
283  interpolatingNodes = &I[0]->GetPtr()[0];
284 
285  Blas::Dgemv('T',Qx,Qy*Qz,1.0,&physvals[0],Qx,&interpolatingNodes[0], 1, 0.0, &sumFactorization_qr[0], 1);
286 
287  // Interpolate in second coordinate direction
288  interpolatingNodes = &I[1]->GetPtr()[0];
289 
290  Blas::Dgemv('T',Qy,Qz,1.0,&sumFactorization_qr[0],Qy,&interpolatingNodes[0],1,0.0,&sumFactorization_r[0], 1);
291 
292  // Interpolate in third coordinate direction
293  interpolatingNodes = &I[2]->GetPtr()[0];
294  value = Blas::Ddot(Qz, interpolatingNodes, 1, &sumFactorization_r[0], 1);
295 
296  return value;
297  }
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:265
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:197

References Blas::Ddot(), Blas::Dgemv(), and Nektar::StdRegions::StdExpansion::m_base.