Nektar++
DisContField3DHomogeneous2D.cpp
Go to the documentation of this file.
1 //////////////////////////////////////////////////////////////////////////////
2 //
3 // File DisContField3DHomogeneous2D.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Field definition for 3D domain with boundary
32 // conditions using LDG flux and a 2D homogeneous directions
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 #include <boost/core/ignore_unused.hpp>
37 
41 
42 namespace Nektar
43 {
44 namespace MultiRegions
45 {
46 
48  : ExpList3DHomogeneous2D(), m_bndCondExpansions(), m_bndCondBndWeight(),
49  m_bndConditions()
50 {
51 }
52 
55  const LibUtilities::BasisKey &HomoBasis_y,
56  const LibUtilities::BasisKey &HomoBasis_z, const NekDouble lhom_y,
57  const NekDouble lhom_z, const bool useFFT, const bool dealiasing,
58  const Collections::ImplementationType ImpType)
59  : ExpList3DHomogeneous2D(pSession, HomoBasis_y, HomoBasis_z, lhom_y, lhom_z,
60  useFFT, dealiasing, ImpType),
61  m_bndCondExpansions(), m_bndCondBndWeight(), m_bndConditions()
62 {
63 }
64 
66  const DisContField3DHomogeneous2D &In, const bool DeclareLinesSetCoeffPhys)
67  : ExpList3DHomogeneous2D(In, false),
68  m_bndCondExpansions(In.m_bndCondExpansions),
69  m_bndCondBndWeight(In.m_bndCondBndWeight),
70  m_bndConditions(In.m_bndConditions)
71 {
72  if (DeclareLinesSetCoeffPhys)
73  {
74  DisContFieldSharedPtr zero_line =
75  std::dynamic_pointer_cast<DisContField>(In.m_lines[0]);
76 
77  for (int n = 0; n < m_lines.size(); ++n)
78  {
79  m_lines[n] =
81  }
82 
83  SetCoeffPhys();
84  }
85 }
86 
89  const LibUtilities::BasisKey &HomoBasis_y,
90  const LibUtilities::BasisKey &HomoBasis_z, const NekDouble lhom_y,
91  const NekDouble lhom_z, const bool useFFT, const bool dealiasing,
93  const std::string &variable, const Collections::ImplementationType ImpType)
94  : ExpList3DHomogeneous2D(pSession, HomoBasis_y, HomoBasis_z, lhom_y, lhom_z,
95  useFFT, dealiasing, ImpType),
96  m_bndCondExpansions(), m_bndCondBndWeight(), m_bndConditions()
97 {
98  int i, n, nel;
99  DisContFieldSharedPtr line_zero;
100  SpatialDomains::BoundaryConditions bcs(pSession, graph1D);
101 
102  //
104  pSession, graph1D, variable, ImpType);
105 
107  nel = m_lines[0]->GetExpSize();
108 
109  for (i = 0; i < nel; ++i)
110  {
111  (*m_exp).push_back(m_lines[0]->GetExp(i));
112  }
113 
114  int nylines = m_homogeneousBasis_y->GetNumPoints();
115  int nzlines = m_homogeneousBasis_z->GetNumPoints();
116 
117  for (n = 1; n < nylines * nzlines; ++n)
118  {
120  pSession, graph1D, variable, ImpType);
121  for (i = 0; i < nel; ++i)
122  {
123  (*m_exp).push_back((*m_exp)[i]);
124  }
125  }
126 
127  // Setup Default optimisation information.
128  nel = GetExpSize();
129 
130  SetCoeffPhys();
131 
132  SetupBoundaryConditions(HomoBasis_y, HomoBasis_z, lhom_y, lhom_z, bcs);
133 }
134 
136 {
137 }
138 
140  const LibUtilities::BasisKey &HomoBasis_y,
141  const LibUtilities::BasisKey &HomoBasis_z, const NekDouble lhom_y,
143 {
144  // Setup an ExpList1DHomogeneous2D expansion for boundary
145  // conditions and link to class declared in m_lines.
146 
147  size_t nlines = m_lines.size();
148 
150  bcs.GetBoundaryRegions();
151 
152  size_t nbnd = bregions.size();
153 
156 
157  Array<OneD, MultiRegions::ExpListSharedPtr> LinesBndCondExp(nlines);
158 
159  m_bndConditions = m_lines[0]->UpdateBndConditions();
160 
161  for (int i = 0; i < nbnd; ++i)
162  {
163  for (int n = 0; n < nlines; ++n)
164  {
165  LinesBndCondExp[n] = m_lines[n]->UpdateBndCondExpansion(i);
166  }
167 
170  m_session, HomoBasis_y, HomoBasis_z, lhom_y, lhom_z, m_useFFT,
171  false, LinesBndCondExp);
172  }
173 
175 }
176 
178  const NekDouble time, const std::string varName)
179 {
180  int n, m;
183 
184  for (n = 0; n < m_nz; ++n)
185  {
186  for (m = 0; m < m_ny; ++m)
187  {
189  time, varName, 0.5 * m_lhom_y * (1.0 + y[m]),
190  0.5 * m_lhom_z * (1.0 + z[n]));
191  }
192  }
193 
194  // Fourier transform coefficient space boundary values
195  for (n = 0; n < m_bndCondExpansions.size(); ++n)
196  {
197  if (time == 0.0 || m_bndConditions[n]->IsTimeDependent())
198  {
199  m_bndCondBndWeight[n] = 1.0;
200  m_bndCondExpansions[n]->HomogeneousFwdTrans(
203  }
204  }
205 }
206 
208  const Array<OneD, const NekDouble> &inarray,
209  Array<OneD, NekDouble> &outarray, const StdRegions::ConstFactorMap &factors,
210  const StdRegions::VarCoeffMap &varcoeff,
211  const MultiRegions::VarFactorsMap &varfactors,
212  const Array<OneD, const NekDouble> &dirForcing, const bool PhysSpaceForcing)
213 {
214  int n, m;
215  int cnt = 0;
216  int cnt1 = 0;
217  int nhom_modes_y = m_homogeneousBasis_y->GetNumModes();
218  int nhom_modes_z = m_homogeneousBasis_z->GetNumModes();
219  NekDouble beta_y;
220  NekDouble beta_z;
221  StdRegions::ConstFactorMap new_factors;
222 
224  Array<OneD, NekDouble> fce(inarray.size());
226 
227  // Fourier transform forcing function
228  if (m_WaveSpace)
229  {
230  fce = inarray;
231  }
232  else
233  {
234  HomogeneousFwdTrans(inarray, fce);
235  }
236 
237  for (n = 0; n < nhom_modes_z; ++n)
238  {
239  for (m = 0; m < nhom_modes_y; ++m)
240  {
241  beta_z = 2 * M_PI * (n / 2) / m_lhom_z;
242  beta_y = 2 * M_PI * (m / 2) / m_lhom_y;
243  new_factors = factors;
244  new_factors[StdRegions::eFactorLambda] +=
245  beta_y * beta_y + beta_z * beta_z;
246 
247  wfce = (PhysSpaceForcing) ? fce + cnt : fce + cnt1;
248  m_lines[n]->HelmSolve(wfce, e_out = outarray + cnt1, new_factors,
249  varcoeff, varfactors, dirForcing,
250  PhysSpaceForcing);
251 
252  cnt += m_lines[n]->GetTotPoints();
253  cnt1 += m_lines[n]->GetNcoeffs();
254  }
255  }
256 }
257 
259  const NekDouble time, const std::string varName, const NekDouble x2_in,
260  const NekDouble x3_in)
261 {
262  boost::ignore_unused(x2_in, x3_in);
263  EvaluateBoundaryConditions(time, varName);
264 }
265 
268 {
269  return GetBndCondExpansions();
270 }
271 
274 {
275  return GetBndConditions();
276 }
277 
279  int i)
280 {
281  return UpdateBndCondExpansion(i);
282 }
283 
286 {
287  return UpdateBndConditions();
288 }
289 
291  Array<OneD, int> &EdgeID)
292 {
293  if (m_BCtoElmMap.size() == 0)
294  {
295  Array<OneD, int> ElmtID_tmp;
296  Array<OneD, int> EdgeID_tmp;
297 
298  m_lines[0]->GetBoundaryToElmtMap(ElmtID_tmp, EdgeID_tmp);
299  int nel_per_lines = m_lines[0]->GetExpSize();
300  int nlines = m_lines.size();
301 
302  int MapSize = ElmtID_tmp.size();
303 
304  m_BCtoElmMap = Array<OneD, int>(nlines * MapSize);
305  m_BCtoEdgMap = Array<OneD, int>(nlines * MapSize);
306  if (MapSize > 0)
307  {
308  int i, j, n, cnt;
309  int cntLine = 0;
310  for (cnt = n = 0; n < m_bndCondExpansions.size(); ++n)
311  {
312  int lineExpSize =
313  m_lines[0]->GetBndCondExpansions()[n]->GetExpSize();
314  for (i = 0; i < lineExpSize; ++i, ++cntLine)
315  {
316  for (j = 0; j < nlines; j++)
317  {
318  m_BCtoElmMap[cnt + i + j * lineExpSize] =
319  ElmtID_tmp[cntLine] + j * nel_per_lines;
320  m_BCtoEdgMap[cnt + i + j * lineExpSize] =
321  EdgeID_tmp[cntLine];
322  }
323  }
324  cnt += m_bndCondExpansions[n]->GetExpSize();
325  }
326  }
327  }
328  ElmtID = m_BCtoElmMap;
329  EdgeID = m_BCtoEdgMap;
330 }
331 
333  int i, std::shared_ptr<ExpList> &result, const bool DeclareCoeffPhysArrays)
334 {
335  int n, cnt, nq;
336  int offsetOld, offsetNew;
337 
338  std::vector<unsigned int> eIDs;
339  Array<OneD, int> ElmtID, EdgeID;
340  GetBoundaryToElmtMap(ElmtID, EdgeID);
341 
342  // Skip other boundary regions
343  for (cnt = n = 0; n < i; ++n)
344  {
345  cnt += m_bndCondExpansions[n]->GetExpSize();
346  }
347 
348  // Populate eIDs with information from BoundaryToElmtMap
349  for (n = 0; n < m_bndCondExpansions[i]->GetExpSize(); ++n)
350  {
351  eIDs.push_back(ElmtID[cnt + n]);
352  }
353 
354  // Create expansion list
355  result =
357 
358  // Copy phys and coeffs to new explist
359  if (DeclareCoeffPhysArrays)
360  {
361  Array<OneD, NekDouble> tmp1, tmp2;
362  for (n = 0; n < result->GetExpSize(); ++n)
363  {
364  nq = GetExp(ElmtID[cnt + n])->GetTotPoints();
365  offsetOld = GetPhys_Offset(ElmtID[cnt + n]);
366  offsetNew = result->GetPhys_Offset(n);
367  Vmath::Vcopy(nq, tmp1 = GetPhys() + offsetOld, 1,
368  tmp2 = result->UpdatePhys() + offsetNew, 1);
369 
370  nq = GetExp(ElmtID[cnt + n])->GetNcoeffs();
371  offsetOld = GetCoeff_Offset(ElmtID[cnt + n]);
372  offsetNew = result->GetCoeff_Offset(n);
373  Vmath::Vcopy(nq, tmp1 = GetCoeffs() + offsetOld, 1,
374  tmp2 = result->UpdateCoeffs() + offsetNew, 1);
375  }
376  }
377 
378  // Set wavespace value
379  result->SetWaveSpace(GetWaveSpace());
380 }
381 
382 } // namespace MultiRegions
383 } // namespace Nektar
Describes the specification for a Basis.
Definition: Basis.h:50
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void EvaluateBoundaryConditions(const NekDouble time=0.0, const std::string varName="")
Array< OneD, int > m_BCtoElmMap
Storage space for the boundary to element and boundary to trace map. This member variable is really a...
virtual Array< OneD, SpatialDomains::BoundaryConditionShPtr > & v_UpdateBndConditions()
void GetBoundaryToElmtMap(Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
Set up a list of element ids and edge ids the link to the boundary conditions.
virtual const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & v_GetBndConditions()
virtual void v_GetBndElmtExpansion(int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays)
virtual const Array< OneD, const std::shared_ptr< ExpList > > & v_GetBndCondExpansions(void)
virtual void v_HelmSolve(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const MultiRegions::VarFactorsMap &varfactors, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
virtual void v_EvaluateBoundaryConditions(const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
const Array< OneD, const MultiRegions::ExpListSharedPtr > & GetBndCondExpansions()
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions()
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & UpdateBndConditions()
void SetupBoundaryConditions(const LibUtilities::BasisKey &HomoBasis_y, const LibUtilities::BasisKey &HomoBasis_z, const NekDouble lhom_y, const NekDouble lhom_z, SpatialDomains::BoundaryConditions &bcs)
virtual std::shared_ptr< ExpList > & v_UpdateBndCondExpansion(int i)
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
Abstraction of a one-dimensional multi-elemental expansion which is merely a collection of local expa...
void SetCoeffPhys(void)
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
NekDouble m_lhom_z
Width of homogeneous direction z.
int m_ny
Number of modes = number of poitns in y direction.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true)
Array< OneD, NekDouble > & UpdateCoeffs()
This function returns (a reference to) the array (implemented as m_coeffs) containing all local expa...
Definition: ExpList.h:2251
const Array< OneD, const NekDouble > & GetCoeffs() const
This function returns (a reference to) the array (implemented as m_coeffs) containing all local expa...
Definition: ExpList.h:2100
const Array< OneD, const NekDouble > & GetPhys() const
This function returns (a reference to) the array (implemented as m_phys) containing the function ev...
Definition: ExpList.h:2195
int GetCoeff_Offset(int n) const
Get the start offset position for a global list of m_coeffs correspoinding to element n.
Definition: ExpList.h:2232
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2204
std::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Definition: ExpList.h:1196
const std::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2223
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:1129
bool GetWaveSpace(void) const
This function returns the third direction expansion condition, which can be in wave space (coefficien...
Definition: ExpList.h:1735
int GetPhys_Offset(int n) const
Get the start offset position for a global list of m_phys correspoinding to element n.
Definition: ExpList.h:2240
const BoundaryRegionCollection & GetBoundaryRegions(void) const
Definition: Conditions.h:234
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< DisContField > DisContFieldSharedPtr
Definition: DisContField.h:377
std::map< StdRegions::ConstFactorType, Array< OneD, NekDouble > > VarFactorsMap
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:210
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:172
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:240
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:282
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255