Nektar++
ExpList1DHomogeneous2D.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File ExpList1DHomogeneous2D.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: An ExpList1D which is homogeneous in 2 directions and so
32 // uses much of the functionality from a ExpList2D and its daughters
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 #include <boost/core/ignore_unused.hpp>
37 
39 
40 using namespace std;
41 
42 namespace Nektar
43 {
44 namespace MultiRegions
45 {
46 // Forward declaration for typedefs
47 ExpList1DHomogeneous2D::ExpList1DHomogeneous2D() : ExpListHomogeneous2D(eNoType)
48 {
49 }
50 
51 // Constructor for ExpList1DHomogeneous2D to act as a Explist1D field
54  const LibUtilities::BasisKey &HomoBasis_y,
55  const LibUtilities::BasisKey &HomoBasis_z, const NekDouble lhom_y,
56  const NekDouble lhom_z, const bool useFFT, const bool dealiasing,
57  const Array<OneD, ExpListSharedPtr> &points)
58  : ExpListHomogeneous2D(eNoType, pSession, HomoBasis_y, HomoBasis_z, lhom_y,
59  lhom_z, useFFT, dealiasing)
60 {
61  int n;
62 
63  ASSERTL1(m_ny * m_nz == points.size(),
64  "Size of basis number of points and number of lines are "
65  "not the same");
66 
67  for (n = 0; n < points.size(); ++n)
68  {
69  m_lines[n] = points[n];
70  (*m_exp).push_back(points[n]->GetExp(0));
71  }
72 
73  SetCoeffPhys();
74 }
75 
76 /**
77  * @param In ExpList1DHomogeneous2D object to copy.
78  */
81 {
82  for (int n = 0; n < m_lines.size(); ++n)
83  {
84  m_lines[n] = In.m_lines[n];
85  }
86 
87  SetCoeffPhys();
88 }
89 
90 /**
91  * Destructor
92  */
94 {
95 }
96 
98 {
99  int i, n, cnt;
100  int ncoeffs_per_line = m_lines[0]->GetNcoeffs();
101  int npoints_per_line = m_lines[0]->GetTotPoints();
102 
103  int nyzlines = m_lines.size();
104 
105  // Set total coefficients and points
106  m_ncoeffs = ncoeffs_per_line * nyzlines;
107  m_npoints = npoints_per_line * nyzlines;
108 
109  m_coeffs = Array<OneD, NekDouble>{size_t(m_ncoeffs), 0.0};
110  m_phys = Array<OneD, NekDouble>{size_t(m_npoints), 0.0};
111 
112  int nel = m_lines[0]->GetExpSize();
113  m_coeff_offset = Array<OneD, int>(nel * nyzlines);
114  m_phys_offset = Array<OneD, int>(nel * nyzlines);
115  Array<OneD, NekDouble> tmparray;
116 
117  for (cnt = n = 0; n < nyzlines; ++n)
118  {
119  m_lines[n]->SetCoeffsArray(tmparray = m_coeffs + ncoeffs_per_line * n);
120  m_lines[n]->SetPhysArray(tmparray = m_phys + npoints_per_line * n);
121 
122  for (i = 0; i < nel; ++i)
123  {
124  m_coeff_offset[cnt] =
125  m_lines[n]->GetCoeff_Offset(i) + n * ncoeffs_per_line;
126  m_phys_offset[cnt++] =
127  m_lines[n]->GetPhys_Offset(i) + n * npoints_per_line;
128  }
129  }
130 }
131 
136 {
137  boost::ignore_unused(eid);
138 
139  int n, m, j;
140  Array<OneD, NekDouble> tmp_xc;
141  int nylines = m_homogeneousBasis_y->GetNumPoints();
142  int nzlines = m_homogeneousBasis_z->GetNumPoints();
143  int npoints = 1;
144 
145  // Fill x-y-z-direction
148 
149  Array<OneD, NekDouble> x(npoints);
150  Array<OneD, NekDouble> y(nylines);
151  Array<OneD, NekDouble> z(nzlines);
152 
153  Vmath::Smul(nylines, m_lhom_y / 2.0, pts_y, 1, y, 1);
154  Vmath::Sadd(nylines, m_lhom_y / 2.0, y, 1, y, 1);
155 
156  Vmath::Smul(nzlines, m_lhom_z / 2.0, pts_z, 1, z, 1);
157  Vmath::Sadd(nzlines, m_lhom_z / 2.0, z, 1, z, 1);
158 
159  m_lines[0]->GetCoords(x);
160 
161  for (m = 0; m < nzlines; ++m)
162  {
163  for (j = 0; j < nylines; ++j)
164  {
165  for (n = 0; n < npoints; ++n)
166  {
167  Vmath::Fill(1, x[n],
168  tmp_xc = xc0 + n + (j * npoints) +
169  (m * npoints * nylines),
170  1);
171  Vmath::Fill(1, y[j],
172  tmp_xc = xc1 + n + (j * npoints) +
173  (m * npoints * nylines),
174  1);
175  Vmath::Fill(1, z[m],
176  tmp_xc = xc2 + n + (j * npoints) +
177  (m * npoints * nylines),
178  1);
179  }
180  }
181  }
182 }
183 
184 /**
185  * The operation calls the 2D plane coordinates through the
186  * function ExpList#GetCoords and then evaluated the third
187  * coordinate using the member \a m_lhom
188  *
189  * @param coord_0 After calculation, the \f$x_1\f$ coordinate
190  * will be stored in this array.
191  *
192  * @param coord_1 After calculation, the \f$x_2\f$ coordinate
193  * will be stored in this array. This
194  * coordinate might be evaluated using the
195  * predefined value \a m_lhom
196  *
197  * @param coord_2 After calculation, the \f$x_3\f$ coordinate
198  * will be stored in this array. This
199  * coordinate is evaluated using the
200  * predefined value \a m_lhom
201  */
205 {
206  int n, m, j;
207  Array<OneD, NekDouble> tmp_xc;
208  int npoints = 1;
209 
210  int nylines = m_homogeneousBasis_y->GetNumPoints();
211  int nzlines = m_homogeneousBasis_z->GetNumPoints();
212 
213  // Fill z-direction
216 
217  Array<OneD, NekDouble> x(npoints);
218  Array<OneD, NekDouble> y(nylines);
219  Array<OneD, NekDouble> z(nzlines);
220 
221  m_lines[0]->GetCoords(x);
222 
223  Vmath::Smul(nylines, m_lhom_y / 2.0, pts_y, 1, y, 1);
224  Vmath::Sadd(nylines, m_lhom_y / 2.0, y, 1, y, 1);
225 
226  Vmath::Smul(nzlines, m_lhom_z / 2.0, pts_z, 1, z, 1);
227  Vmath::Sadd(nzlines, m_lhom_z / 2.0, z, 1, z, 1);
228 
229  for (m = 0; m < nzlines; ++m)
230  {
231  for (j = 0; j < nylines; ++j)
232  {
233  for (n = 0; n < npoints; ++n)
234  {
235  Vmath::Fill(1, x[n],
236  tmp_xc = xc0 + n + (j * npoints) +
237  (m * npoints * nylines),
238  1);
239  Vmath::Fill(1, y[j],
240  tmp_xc = xc1 + n + (j * npoints) +
241  (m * npoints * nylines),
242  1);
243  Vmath::Fill(1, z[m],
244  tmp_xc = xc2 + n + (j * npoints) +
245  (m * npoints * nylines),
246  1);
247  }
248  }
249  }
250 }
251 
252 /**
253  * Perform the 2D Forward transform of a set of points representing a plane of
254  * boundary conditions which are merely the collection of the boundary
255  * conditions coming from each 1D expansion.
256  * @param inarray The value of the BC on each point of the y-z homogeneous
257  * plane.
258  * @param outarray The value of the the coefficient of the 2D Fourier
259  * expansion
260  */
261 // void HomoFwdTrans2D(const Array<OneD, const NekDouble> &inarray, Array<OneD,
262 // NekDouble> &outarray)
263 //{
264 
265 //}
266 
267 /**
268  * Write Tecplot Files Zone
269  * @param outfile Output file name.
270  * @param expansion Expansion that is considered
271  */
273  int expansion)
274 {
275  int i, j;
276 
277  int nquad0 = 1;
278  int nquad1 = m_homogeneousBasis_y->GetNumPoints();
279  int nquad2 = m_homogeneousBasis_z->GetNumPoints();
280 
281  Array<OneD, NekDouble> coords[3];
282 
283  coords[0] = Array<OneD, NekDouble>(3 * nquad0 * nquad1 * nquad2);
284  coords[1] = coords[0] + nquad0 * nquad1 * nquad2;
285  coords[2] = coords[1] + nquad0 * nquad1 * nquad2;
286 
287  GetCoords(expansion, coords[0], coords[1], coords[2]);
288 
289  outfile << "Zone, I=" << nquad1 << ", J=" << nquad0 * nquad2 << ", F=Block"
290  << std::endl;
291 
292  for (j = 0; j < nquad1; ++j)
293  {
294  for (i = 0; i < nquad2 * GetCoordim(0) + 1; ++i)
295  {
296  outfile << coords[j][i] << " ";
297  }
298  outfile << std::endl;
299  }
300 }
301 
303  int expansion, int istrip)
304 {
305  boost::ignore_unused(istrip);
306 
307  int i, j;
308 
309  int nquad0 = 1;
310  int nquad1 = m_homogeneousBasis_y->GetNumPoints();
311  int nquad2 = m_homogeneousBasis_z->GetNumPoints();
312 
313  int ntot = nquad0 * nquad1 * nquad2;
314  int ntotminus = (nquad0) * (nquad1 - 1) * (nquad2 - 1);
315 
316  Array<OneD, NekDouble> coords[3];
317  coords[0] = Array<OneD, NekDouble>(ntot);
318  coords[1] = Array<OneD, NekDouble>(ntot);
319  coords[2] = Array<OneD, NekDouble>(ntot);
320  GetCoords(expansion, coords[0], coords[1], coords[2]);
321 
322  outfile << " <Piece NumberOfPoints=\"" << ntot << "\" NumberOfCells=\""
323  << ntotminus << "\">" << endl;
324  outfile << " <Points>" << endl;
325  outfile << " <DataArray type=\"Float32\" "
326  << "NumberOfComponents=\"3\" format=\"ascii\">" << endl;
327  outfile << " ";
328  for (i = 0; i < ntot; ++i)
329  {
330  for (j = 0; j < 3; ++j)
331  {
332  outfile << coords[j][i] << " ";
333  }
334  outfile << endl;
335  }
336  outfile << endl;
337  outfile << " </DataArray>" << endl;
338  outfile << " </Points>" << endl;
339  outfile << " <Cells>" << endl;
340  outfile << " <DataArray type=\"Int32\" "
341  << "Name=\"connectivity\" format=\"ascii\">" << endl;
342  for (i = 0; i < nquad0; ++i)
343  {
344  for (j = 0; j < nquad1 - 1; ++j)
345  {
346  outfile << j * nquad0 + i << " " << j * nquad0 + i + 1 << " "
347  << (j + 1) * nquad0 + i + 1 << " " << (j + 1) * nquad0 + i
348  << endl;
349  }
350  }
351  outfile << endl;
352  outfile << " </DataArray>" << endl;
353  outfile << " <DataArray type=\"Int32\" "
354  << "Name=\"offsets\" format=\"ascii\">" << endl;
355  for (i = 0; i < ntotminus; ++i)
356  {
357  outfile << i * 4 + 4 << " ";
358  }
359  outfile << endl;
360  outfile << " </DataArray>" << endl;
361  outfile << " <DataArray type=\"UInt8\" "
362  << "Name=\"types\" format=\"ascii\">" << endl;
363  for (i = 0; i < ntotminus; ++i)
364  {
365  outfile << "9 ";
366  }
367  outfile << endl;
368  outfile << " </DataArray>" << endl;
369  outfile << " </Cells>" << endl;
370  outfile << " <PointData>" << endl;
371 }
372 
373 } // namespace MultiRegions
374 } // namespace Nektar
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Describes the specification for a Basis.
Definition: Basis.h:50
Abstraction of a one-dimensional multi-elemental expansion which is merely a collection of local expa...
virtual void v_WriteTecplotZone(std::ostream &outfile, int expansion)
void GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
This function calculates the coordinates of all the elemental quadrature points .
virtual void v_WriteVtkPieceHeader(std::ostream &outfile, int expansion, int istrip)
virtual void v_GetCoords(Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2)
void SetCoeffPhys(void)
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expa...
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
NekDouble m_lhom_z
Width of homogeneous direction z.
int m_ny
Number of modes = number of poitns in y direction.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1158
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:1210
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1136
const std::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2223
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1213
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1175
int GetCoordim(int eid)
This function returns the dimension of the coordinates of the element eid.
Definition: ExpList.h:2054
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha - x.
Definition: Vmath.cpp:384