Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
Nektar::MultiRegions::ContField Class Reference

This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations. More...

#include <ContField.h>

Inheritance diagram for Nektar::MultiRegions::ContField:
[legend]

Public Member Functions

 ContField ()
 The default constructor. More...
 
 ContField (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable="DefaultVar", const bool DeclareCoeffPhysArrays=true, const bool CheckIfSingularSystem=false, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 This constructor sets up global continuous field based on an input mesh and boundary conditions. More...
 
 ContField (const ContField &In, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable, const bool DeclareCoeffPhysArrays=true, const bool CheckIfSingularSystem=false)
 Construct a global continuous field with solution type based on another field but using a separate input mesh and boundary conditions. More...
 
 ContField (const ContField &In, bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
 ContField (const LibUtilities::SessionReaderSharedPtr &pSession, const ExpList &In)
 Copy constructor. More...
 
virtual ~ContField ()
 The default destructor. More...
 
void Assemble ()
 Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void Assemble (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) const
 Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
const AssemblyMapCGSharedPtrGetLocalToGlobalMap () const
 Returns the map from local to global level. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Performs the global forward transformation of a function \(f(\boldsymbol{x})\), subject to the boundary conditions specified. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Multiply a solution by the inverse mass matrix. More...
 
void LaplaceSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const Array< OneD, Array< OneD, NekDouble >> &variablecoeffs=NullNekDoubleArrayOfArray, NekDouble time=0.0)
 Solves the two-dimensional Laplace equation, subject to the boundary conditions specified. More...
 
void LinearAdvectionEigs (const NekDouble ax, const NekDouble ay, Array< OneD, NekDouble > &Real, Array< OneD, NekDouble > &Imag, Array< OneD, NekDouble > &Evecs=NullNekDouble1DArray)
 Compute the eigenvalues of the linear advection operator. More...
 
const Array< OneD, const MultiRegions::ExpListSharedPtr > & GetBndCondExpansions ()
 Returns the boundary conditions expansion. More...
 
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions ()
 Returns the boundary conditions. More...
 
int GetGlobalMatrixNnz (const GlobalMatrixKey &gkey)
 
void GlobalSolve (const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solves the linear system specified by the key key. More...
 
const GJPStabilisationSharedPtr GetGJPForcing ()
 
void SetGJPForcing (const GJPStabilisationSharedPtr &GJPData)
 
- Public Member Functions inherited from Nektar::MultiRegions::DisContField
 DisContField ()
 Default constructor. More...
 
 DisContField (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph, const std::string &variable, const bool SetUpJustDG=true, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType, const std::string bcvariable="NotSet")
 Constructs a 1D discontinuous field based on a mesh and boundary conditions. More...
 
 DisContField (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const SpatialDomains::BoundaryConditions &Allbcs, const std::string &variable, const LibUtilities::CommSharedPtr &comm, bool SetToOneSpaceDimensions=false, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor for a DisContField from a List of subdomains New Constructor for arterial network. More...
 
 DisContField (const DisContField &In, const bool DeclareCoeffPhysArrays=true)
 Constructs a 1D discontinuous field based on an existing field. More...
 
 DisContField (const DisContField &In, const SpatialDomains::MeshGraphSharedPtr &graph, const std::string &variable, const bool SetUpJustDG=false, const bool DeclareCoeffPhysArrays=true)
 
 DisContField (const ExpList &In)
 Constructs a 1D discontinuous field based on an existing field. (needed in order to use ContField( const ExpList &In) constructor. More...
 
virtual ~DisContField ()
 Destructor. More...
 
GlobalLinSysSharedPtr GetGlobalBndLinSys (const GlobalLinSysKey &mkey)
 For a given key, returns the associated global linear system. More...
 
bool SameTypeOfBoundaryConditions (const DisContField &In)
 Check to see if expansion has the same BCs as In. More...
 
std::vector< bool > & GetNegatedFluxNormal (void)
 
NekDouble L2_DGDeriv (const int dir, const Array< OneD, const NekDouble > &soln)
 Calculate the \( L^2 \) error of the \( Q_{\rm dir} \) derivative using the consistent DG evaluation of \( Q_{\rm dir} \). More...
 
void EvaluateHDGPostProcessing (Array< OneD, NekDouble > &outarray)
 Evaluate HDG post-processing to increase polynomial order of solution. More...
 
void GetLocTraceToTraceMap (LocTraceToTraceMapSharedPtr &LocTraceToTraceMap)
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList (const ExpansionType Type=eNoType)
 The default constructor using a type. More...
 
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
 ExpList (const ExpList &in, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor copying only elements defined in eIds. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph, const bool DeclareCoeffPhysArrays=true, const std::string &var="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Generate an ExpList from a meshgraph graph and session file. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::ExpansionInfoMap &expansions, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Sets up a list of local expansions based on an expansion Map. More...
 
 ExpList (const SpatialDomains::PointGeomSharedPtr &geom)
 Specialised constructors for 0D Expansions Wrapper around LocalRegion::PointExp - used in PrePacing.cpp. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, const ExpListSharedPtr > &bndConstraint, const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > &bndCond, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph, const LibUtilities::CommSharedPtr &comm, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Generate expansions for the trace space expansions used in DisContField. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph, const bool DeclareCoeffPhysArrays, const std::string variable, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Generate an trace ExpList from a meshgraph graph and session file. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", bool SetToOneSpaceDimension=false, const LibUtilities::CommSharedPtr comm=LibUtilities::CommSharedPtr(), const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor based on domain information only for 1D & 2D boundary conditions. More...
 
virtual ~ExpList ()
 The default destructor. More...
 
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom \(N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m\). More...
 
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid. More...
 
ExpansionType GetExpType (void)
 Returns the type of the expansion. More...
 
void SetExpType (ExpansionType Type)
 Returns the type of the expansion. More...
 
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements. More...
 
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements. More...
 
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More...
 
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element \(=Q_{\mathrm{tot}}\). More...
 
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More...
 
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction. More...
 
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false. More...
 
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis. More...
 
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val. More...
 
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More...
 
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys. More...
 
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys. More...
 
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More...
 
bool GetPhysState (void) const
 This function indicates whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More...
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 multiply the metric jacobi and quadrature weights More...
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all local expansion modes \(\phi_n^e(\boldsymbol{x})\). More...
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative (in direction. More...
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Directional derivative along a given direction. More...
 
void IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative of all local expansion modes \(\phi_n^e(\boldsymbol{x})\). More...
 
void FwdTransLocalElmt (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function \(u(\boldsymbol{x})\) onto the global spectral/hp expansion. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements. More...
 
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const MultiRegions::VarFactorsMap &varfactors=MultiRegions::NullVarFactorsMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const bool PhysSpaceForcing=true)
 Solve helmholtz problem. More...
 
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble >> &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble >> &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More...
 
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points \(\boldsymbol{x}_i\). More...
 
void GetCoords (const int eid, Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray)
 
void DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble >> &inarray1, const Array< OneD, Array< OneD, NekDouble >> &inarray2, Array< OneD, Array< OneD, NekDouble >> &outarray)
 
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble >> &V, Array< OneD, NekDouble > &outarray)
 
void ApplyGeomInfo ()
 Apply geometry information to each expansion. More...
 
void Reset ()
 Reset geometry information and reset matrices. More...
 
void WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
void WriteTecplotZone (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotField (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1)
 
void WriteVtkHeader (std::ostream &outfile)
 
void WriteVtkFooter (std::ostream &outfile)
 
void WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0)
 
void WriteVtkPieceFooter (std::ostream &outfile, int expansion)
 
void WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v")
 
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid. More...
 
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray. More...
 
int GetShapeDimension ()
 This function returns the dimension of the shape of the element eid. More...
 
const Array< OneD, const NekDouble > & GetCoeffs () const
 This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More...
 
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array. More...
 
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion. More...
 
void FillBndCondFromField (const int nreg)
 Fill Bnd Condition expansion in nreg from the values stored in expansion. More...
 
void LocalToGlobal (bool useComm=true)
 Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm=true)
 
void GlobalToLocal (void)
 Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
void GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
const Array< OneD, const NekDouble > & GetPhys () const
 This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More...
 
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the \(L_\infty\) error of the global spectral/hp element approximation. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the \(L_2\) error with respect to soln of the global spectral/hp element approximation. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the \(H^1\) error of the global spectral/hp element approximation. More...
 
NekDouble Integral ()
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble >> &inarray)
 
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More...
 
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More...
 
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associated with the homogeneous expansion. More...
 
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associated with the homogeneous expansion. More...
 
void SetHomoLen (const NekDouble lhom)
 This function sets the Width of homogeneous direction associated with the homogeneous expansion. More...
 
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
int GetExpSize (void)
 This function returns the number of elements in the expansion. More...
 
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More...
 
const std::shared_ptr< LocalRegions::ExpansionVectorGetExp () const
 This function returns the vector of elements in the expansion. More...
 
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the \(n^{\mathrm{th}}\) element. More...
 
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false, int cachedId=-1, NekDouble maxDistance=1e6)
 This function returns the index of the local elemental expansion containing the arbitrary point given by gloCoord, within a distance tolerance of tol. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false, int cachedId=-1, NekDouble maxDistance=1e6)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &phys)
 
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n. More...
 
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n. More...
 
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More...
 
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More...
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 This function discretely evaluates the derivative of a function \(f(\boldsymbol{x})\) on the domain consisting of all elements of the expansion. More...
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void CurlCurl (Array< OneD, Array< OneD, NekDouble >> &Vel, Array< OneD, Array< OneD, NekDouble >> &Q)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble >> &outarray)
 
const Array< OneD, const std::shared_ptr< ExpList > > & GetBndCondExpansions ()
 
const Array< OneD, const NekDouble > & GetBndCondBwdWeight ()
 Get the weight value for boundary conditions. More...
 
void SetBndCondBwdWeight (const int index, const NekDouble value)
 Set the weight value for boundary conditions. More...
 
std::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
 
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
void Upwind (const Array< OneD, const Array< OneD, NekDouble >> &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
std::shared_ptr< ExpList > & GetTrace ()
 
std::shared_ptr< AssemblyMapDG > & GetTraceMap (void)
 
const Array< OneD, const int > & GetTraceBndMap (void)
 
void GetNormals (Array< OneD, Array< OneD, NekDouble >> &normals)
 
void GetElmtNormalLength (Array< OneD, NekDouble > &lengthsFwd, Array< OneD, NekDouble > &lengthsBwd)
 Get the length of elements in boundary normal direction. More...
 
void GetBwdWeight (Array< OneD, NekDouble > &weightAver, Array< OneD, NekDouble > &weightJump)
 Get the weight value for boundary conditions for boundary average and jump calculations. More...
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool FillBnd=true, bool PutFwdInBwdOnBCs=false, bool DoExchange=true)
 
void FillBwdWithBoundCond (const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool PutFwdInBwdOnBCs=false)
 
void AddTraceQuadPhysToField (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field)
 Add Fwd and Bwd value to field, a reverse procedure of GetFwdBwdTracePhys. More...
 
void AddTraceQuadPhysToOffDiag (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field)
 
void GetLocTraceFromTracePts (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &locTraceFwd, Array< OneD, NekDouble > &locTraceBwd)
 
void FillBwdWithBwdWeight (Array< OneD, NekDouble > &weightave, Array< OneD, NekDouble > &weightjmp)
 Fill Bwd with boundary conditions. More...
 
void PeriodicBwdCopy (const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 Copy and fill the Periodic boundaries. More...
 
const std::vector< bool > & GetLeftAdjacentFaces (void) const
 
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions ()
 
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & UpdateBndConditions ()
 
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More...
 
void SetUpPhysNormals ()
 
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
void GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays=true)
 
void ExtractElmtToBndPhys (int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
void ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
void ExtractPhysToBnd (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
void GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble >> &normals)
 
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, bool homoStrips=false, std::vector< unsigned int > &HomoSIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
 
std::map< int, RobinBCInfoSharedPtrGetRobinBCInfo ()
 
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
 
std::vector< LibUtilities::FieldDefinitionsSharedPtrGetFieldDefinitions ()
 
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs. More...
 
void GenerateElementVector (const int ElementID, const NekDouble scalar1, const NekDouble scalar2, Array< OneD, NekDouble > &outarray)
 Generate vector v such that v[i] = scalar1 if i is in the element < ElementID. Otherwise, v[i] = scalar2. More...
 
std::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
std::shared_ptr< LibUtilities::SessionReaderGetSession () const
 Returns the session object. More...
 
std::shared_ptr< LibUtilities::CommGetComm () const
 Returns the comm object. More...
 
SpatialDomains::MeshGraphSharedPtr GetGraph ()
 
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
 
std::shared_ptr< ExpList > & GetPlane (int n)
 
void CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct collections of elements containing a single element type and polynomial order from the list of expansions. More...
 
void ClearGlobalLinSysManager (void)
 
const Array< OneD, const std::pair< int, int > > & GetCoeffsToElmt () const
 Get m_coeffs to elemental value map. More...
 
void AddTraceJacToElmtJac (const Array< OneD, const DNekMatSharedPtr > &FwdMat, const Array< OneD, const DNekMatSharedPtr > &BwdMat, Array< OneD, DNekMatSharedPtr > &fieldMat)
 inverse process of v_GetFwdBwdTracePhys. Given Trace integration of Fwd and Bwd Jacobian, with dimension NtotalTrace*TraceCoef*TracePhys. return Elemental Jacobian matrix with dimension NtotalElement*ElementCoef*ElementPhys. More...
 
void GetMatIpwrtDeriveBase (const Array< OneD, const Array< OneD, NekDouble >> &inarray, const int nDirctn, Array< OneD, DNekMatSharedPtr > &mtxPerVar)
 
void GetMatIpwrtDeriveBase (const TensorOfArray3D< NekDouble > &inarray, Array< OneD, DNekMatSharedPtr > &mtxPerVar)
 
void GetDiagMatIpwrtBase (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, DNekMatSharedPtr > &mtxPerVar)
 
void AddTraceIntegralToOffDiag (const Array< OneD, const NekDouble > &FwdFlux, const Array< OneD, const NekDouble > &BwdFlux, Array< OneD, NekDouble > &outarray)
 
void AddRightIPTPhysDerivBase (const int dir, const Array< OneD, const DNekMatSharedPtr > ElmtJacQuad, Array< OneD, DNekMatSharedPtr > ElmtJacCoef)
 
void AddRightIPTBaseMatrix (const Array< OneD, const DNekMatSharedPtr > ElmtJacQuad, Array< OneD, DNekMatSharedPtr > ElmtJacCoef)
 
const LocTraceToTraceMapSharedPtrGetLocTraceToTraceMap () const
 
std::vector< bool > & GetLeftAdjacentTraces (void)
 

Protected Member Functions

GlobalMatrixSharedPtr GetGlobalMatrix (const GlobalMatrixKey &mkey)
 Returns the global matrix specified by mkey. More...
 
GlobalLinSysSharedPtr GetGlobalLinSys (const GlobalLinSysKey &mkey)
 Returns the linear system specified by the key mkey. More...
 
GlobalLinSysSharedPtr GenGlobalLinSys (const GlobalLinSysKey &mkey)
 
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose the Dirichlet Boundary Conditions on outarray. More...
 
virtual void v_FillBndCondFromField ()
 
virtual void v_FillBndCondFromField (const int nreg)
 
virtual void v_LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm)
 Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
virtual void v_LocalToGlobal (bool useComm)
 
virtual void v_GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More...
 
virtual void v_GlobalToLocal (void)
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Template method virtual forwarder for FwdTrans(). More...
 
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
 Template method virtual forwarded for SmoothField(). More...
 
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Template method virtual forwarder for MultiplyByInvMassMatrix(). More...
 
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const MultiRegions::VarFactorsMap &varfactors, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
 Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified. More...
 
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble >> &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble >> &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & v_GetBndConditions ()
 Template method virtual forwarder for GetBndConditions(). More...
 
virtual void v_ClearGlobalLinSysManager (void)
 
- Protected Member Functions inherited from Nektar::MultiRegions::DisContField
void GenerateBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable, const bool DeclareCoeffPhysArrays=true)
 Discretises the boundary conditions. More...
 
void FindPeriodicTraces (const SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 Generate a associative map of periodic vertices in a mesh. More...
 
virtual ExpListSharedPtrv_GetTrace ()
 
virtual AssemblyMapDGSharedPtrv_GetTraceMap (void)
 
virtual const LocTraceToTraceMapSharedPtrv_GetLocTraceToTraceMap (void) const
 
virtual std::vector< bool > & v_GetLeftAdjacentTraces (void)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 Add trace contributions into elemental coefficient spaces. More...
 
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 Add trace contributions into elemental coefficient spaces. More...
 
virtual void v_AddTraceQuadPhysToField (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field)
 
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This method extracts the trace (verts in 1D) from the field inarray and puts the values in outarray. More...
 
virtual void v_GetLocTraceFromTracePts (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &locTraceFwd, Array< OneD, NekDouble > &locTraceBwd)
 
void GenerateFieldBnd1D (SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 
virtual std::map< int, RobinBCInfoSharedPtrv_GetRobinBCInfo ()
 
virtual const Array< OneD, const MultiRegions::ExpListSharedPtr > & v_GetBndCondExpansions ()
 
virtual MultiRegions::ExpListSharedPtrv_UpdateBndCondExpansion (int i)
 
virtual Array< OneD, SpatialDomains::BoundaryConditionShPtr > & v_UpdateBndConditions ()
 
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &TraceID)
 
virtual void v_GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays)
 
virtual void v_Reset ()
 Reset this field, so that geometry information can be updated. More...
 
virtual void v_EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
 Evaluate all boundary conditions at a given time.. More...
 
virtual void v_PeriodicBwdCopy (const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_FillBwdWithBwdWeight (Array< OneD, NekDouble > &weightave, Array< OneD, NekDouble > &weightjmp)
 Fill the weight with m_bndCondBndWeight. More...
 
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool FillBnd=true, bool PutFwdInBwdOnBCs=false, bool DoExchange=true)
 This method extracts the "forward" and "backward" trace data from the array field and puts the data into output vectors Fwd and Bwd. More...
 
virtual void v_FillBwdWithBoundCond (const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool PutFwdInBwdOnBCs)
 
virtual const Array< OneD, const NekDouble > & v_GetBndCondBwdWeight ()
 
virtual void v_SetBndCondBwdWeight (const int index, const NekDouble value)
 
void SetUpDG (const std::string="DefaultVar")
 Set up all DG member variables and maps. More...
 
bool IsLeftAdjacentTrace (const int n, const int e)
 This routine determines if an element is to the "left" of the adjacent trace, which arises from the idea there is a local normal direction between two elements (i.e. on the trace) and one elements would then be the left. More...
 
virtual void v_GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces)
 Obtain a copy of the periodic edges and vertices for this field. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
std::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype. More...
 
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
 
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
std::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map. More...
 
void GlobalEigenSystem (const std::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
 
std::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey. More...
 
std::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More...
 
virtual int v_GetNumElmts (void)
 
virtual void v_Upwind (const Array< OneD, const Array< OneD, NekDouble >> &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
virtual void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
virtual const Array< OneD, const int > & v_GetTraceBndMap ()
 
virtual void v_GetNormals (Array< OneD, Array< OneD, NekDouble >> &normals)
 Populate normals with the normals of all expansions. More...
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddTraceQuadPhysToOffDiag (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field)
 
virtual const std::vector< bool > & v_GetLeftAdjacentFaces (void) const
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTransLocalElmt (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
virtual void v_GetCoords (const int eid, Array< OneD, NekDouble > &xc0, Array< OneD, NekDouble > &xc1, Array< OneD, NekDouble > &xc2)
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_CurlCurl (Array< OneD, Array< OneD, NekDouble >> &Vel, Array< OneD, Array< OneD, NekDouble >> &Q)
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble >> &outarray)
 
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true)
 
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true)
 
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray)
 
virtual void v_DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble >> &inarray1, const Array< OneD, Array< OneD, NekDouble >> &inarray2, Array< OneD, Array< OneD, NekDouble >> &outarray)
 
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble >> &V, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetUpPhysNormals ()
 : Set up a normal along the trace elements between two elements at elemental level More...
 
virtual void v_ExtractElmtToBndPhys (const int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
virtual void v_ExtractPhysToBndElmt (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
virtual void v_ExtractPhysToBnd (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
virtual void v_GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble >> &normals)
 
virtual std::vector< LibUtilities::FieldDefinitionsSharedPtrv_GetFieldDefinitions (void)
 
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list. More...
 
virtual void v_ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 
virtual void v_WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
virtual void v_WriteTecplotZone (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotField (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotConnectivity (std::ostream &outfile, int expansion)
 
virtual void v_WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip)
 
virtual void v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var)
 
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble >> &inarray)
 
virtual Array< OneD, const NekDoublev_HomogeneousEnergy (void)
 
virtual LibUtilities::TranspositionSharedPtr v_GetTransposition (void)
 
virtual NekDouble v_GetHomoLen (void)
 
virtual void v_SetHomoLen (const NekDouble lhom)
 
virtual Array< OneD, const unsigned int > v_GetZIDs (void)
 
virtual Array< OneD, const unsigned int > v_GetYIDs (void)
 
virtual void v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void ExtractFileBCs (const std::string &fileName, LibUtilities::CommSharedPtr comm, const std::string &varName, const std::shared_ptr< ExpList > locExpList)
 

Protected Attributes

AssemblyMapCGSharedPtr m_locToGloMap
 (A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom. More...
 
GlobalMatrixMapShPtr m_globalMat
 (A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once. More...
 
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSysm_globalLinSysManager
 A manager which collects all the global linear systems being assembled, such that they should be constructed only once. More...
 
GJPStabilisationSharedPtr m_GJPData
 Data for Gradient Jump Penalisation (GJP) stabilisaiton. More...
 
- Protected Attributes inherited from Nektar::MultiRegions::DisContField
int m_numDirBndCondExpansions
 The number of boundary segments on which Dirichlet boundary conditions are imposed. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_bndCondExpansions
 An object which contains the discretised boundary conditions. More...
 
Array< OneD, NekDoublem_bndCondBndWeight
 
Array< OneD, SpatialDomains::BoundaryConditionShPtrm_bndConditions
 An array which contains the information about the boundary condition on the different boundary regions. More...
 
GlobalLinSysMapShPtr m_globalBndMat
 Global boundary matrix. More...
 
ExpListSharedPtr m_trace
 Trace space storage for points between elements. More...
 
AssemblyMapDGSharedPtr m_traceMap
 Local to global DG mapping for trace space. More...
 
std::set< int > m_boundaryTraces
 A set storing the global IDs of any boundary Verts. More...
 
PeriodicMap m_periodicVerts
 A map which identifies groups of periodic vertices. More...
 
PeriodicMap m_periodicEdges
 A map which identifies pairs of periodic edges. More...
 
PeriodicMap m_periodicFaces
 A map which identifies pairs of periodic faces. More...
 
std::vector< int > m_periodicFwdCopy
 A vector indicating degress of freedom which need to be copied from forwards to backwards space in case of a periodic boundary condition. More...
 
std::vector< int > m_periodicBwdCopy
 
std::vector< bool > m_leftAdjacentTraces
 
LocTraceToTraceMapSharedPtr m_locTraceToTraceMap
 
- Protected Attributes inherited from Nektar::MultiRegions::ExpList
ExpansionType m_expType
 Exapnsion type. More...
 
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Mesh associated with this expansion list. More...
 
int m_ncoeffs
 The total number of local degrees of freedom. m_ncoeffs \(=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l\). More...
 
int m_npoints
 
Array< OneD, NekDoublem_coeffs
 Concatenation of all local expansion coefficients. More...
 
Array< OneD, NekDoublem_phys
 The global expansion evaluated at the quadrature points. More...
 
bool m_physState
 The state of the array m_phys. More...
 
std::shared_ptr< LocalRegions::ExpansionVectorm_exp
 The list of local expansions. More...
 
Collections::CollectionVector m_collections
 
std::vector< bool > m_collectionsDoInit
 Vector of bools to act as an initialise on first call flag. More...
 
std::vector< int > m_coll_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
std::vector< int > m_coll_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
Array< OneD, int > m_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, std::pair< int, int > > m_coeffsToElmt
 m_coeffs to elemental value map More...
 
BlockMatrixMapShPtr m_blockMat
 
bool m_WaveSpace
 
std::unordered_map< int, int > m_elmtToExpId
 Mapping from geometry ID of element to index inside m_exp. More...
 

Additional Inherited Members

- Public Attributes inherited from Nektar::MultiRegions::DisContField
Array< OneD, int > m_BCtoElmMap
 
Array< OneD, int > m_BCtoTraceMap
 
- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static SpatialDomains::BoundaryConditionShPtr GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
 

Detailed Description

This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations.

The class ContField is able to incorporate the boundary conditions imposed to the problem to be solved. Therefore, the class is equipped with three additional data members:

The first data structure, m_bndCondExpansions, contains the one-dimensional spectral/hp expansion on the boundary, #m_bndTypes stores information about the type of boundary condition on the different parts of the boundary while #m_bndCondEquations holds the equation of the imposed boundary conditions.

Furthermore, in case of Dirichlet boundary conditions, this class is capable of lifting a known solution satisfying these boundary conditions. If we denote the unknown solution by \(u^{\mathcal{H}}(\boldsymbol{x})\) and the known Dirichlet boundary conditions by \(u^{\mathcal{D}}(\boldsymbol{x})\), the expansion then can be decomposed as

\[ u^{\delta}(\boldsymbol{x}_i)=u^{\mathcal{D}}(\boldsymbol{x}_i)+ u^{\mathcal{H}}(\boldsymbol{x}_i)=\sum_{n=0}^{N^{\mathcal{D}}-1} \hat{u}_n^{\mathcal{D}}\Phi_n(\boldsymbol{x}_i)+ \sum_{n={N^{\mathcal{D}}}}^{N_{\mathrm{dof}}-1} \hat{u}_n^{\mathcal{H}} \Phi_n(\boldsymbol{x}_i).\]

This lifting is accomplished by ordering the known global degrees of freedom, prescribed by the Dirichlet boundary conditions, first in the global array \(\boldsymbol{\hat{u}}\), that is,

\[\boldsymbol{\hat{u}}=\left[ \begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array} \right].\]

Such kind of expansions are also referred to as continuous fields. This class should be used when solving 2D problems using a standard Galerkin approach.

Definition at line 56 of file ContField.h.

Constructor & Destructor Documentation

◆ ContField() [1/5]

Nektar::MultiRegions::ContField::ContField ( )

The default constructor.

Definition at line 89 of file ContField.cpp.

92  std::bind(&ContField::GenGlobalLinSys, this, std::placeholders::_1),
93  std::string("GlobalLinSys"))
94 {
95 }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField.h:183
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
Definition: ContField.cpp:551
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField.h:172
GlobalMatrixMapShPtr m_globalMat
(A shared pointer to) a list which collects all the global matrices being assembled,...
Definition: ContField.h:177
DisContField()
Default constructor.

◆ ContField() [2/5]

Nektar::MultiRegions::ContField::ContField ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr graph,
const std::string &  variable = "DefaultVar",
const bool  DeclareCoeffPhysArrays = true,
const bool  CheckIfSingularSystem = false,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

This constructor sets up global continuous field based on an input mesh and boundary conditions.

Given a mesh graph, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\) and allocates memory for the array #m_contCoeffs. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.

Parameters
graphA mesh, containing information about the domain and the spectral/hp element expansion.
bcsThe boundary conditions.
variableAn optional parameter to indicate for which variable the field should be constructed.

Definition at line 118 of file ContField.cpp.

124  : DisContField(pSession, graph, variable, false, DeclareCoeffPhysArrays,
125  ImpType),
128  std::bind(&ContField::GenGlobalLinSys, this, std::placeholders::_1),
129  std::string("GlobalLinSys"))
130 {
133  CheckIfSingularSystem, variable, m_periodicVerts, m_periodicEdges,
135 
136  if (m_session->DefinesCmdLineArgument("verbose"))
137  {
138  m_locToGloMap->PrintStats(std::cout, variable);
139  }
140 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
PeriodicMap m_periodicEdges
A map which identifies pairs of periodic edges.
Definition: DisContField.h:173
PeriodicMap m_periodicFaces
A map which identifies pairs of periodic faces.
Definition: DisContField.h:178
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
Definition: DisContField.h:149
PeriodicMap m_periodicVerts
A map which identifies groups of periodic vertices.
Definition: DisContField.h:168
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
An object which contains the discretised boundary conditions.
Definition: DisContField.h:143
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:1136
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:1129

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField::m_periodicEdges, Nektar::MultiRegions::DisContField::m_periodicFaces, Nektar::MultiRegions::DisContField::m_periodicVerts, and Nektar::MultiRegions::ExpList::m_session.

◆ ContField() [3/5]

Nektar::MultiRegions::ContField::ContField ( const ContField In,
const SpatialDomains::MeshGraphSharedPtr graph,
const std::string &  variable,
const bool  DeclareCoeffPhysArrays = true,
const bool  CheckIfSingularSystem = false 
)

Construct a global continuous field with solution type based on another field but using a separate input mesh and boundary conditions.

Given a mesh graph, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\) and allocates memory for the array m_coeffs. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.

Parameters
InExisting ContField object used to provide the local to global mapping information and global solution type.
graphA mesh, containing information about the domain and the spectral/hp element expansion.
bcsThe boundary conditions.
bc_loc

Definition at line 165 of file ContField.cpp.

169  : DisContField(In, graph, variable, false, DeclareCoeffPhysArrays),
172  std::bind(&ContField::GenGlobalLinSys, this, std::placeholders::_1),
173  std::string("GlobalLinSys")),
174  m_GJPData(In.m_GJPData)
175 {
176  if (!SameTypeOfBoundaryConditions(In) || CheckIfSingularSystem)
177  {
180  CheckIfSingularSystem, variable, m_periodicVerts, m_periodicEdges,
182 
183  if (m_session->DefinesCmdLineArgument("verbose"))
184  {
185  m_locToGloMap->PrintStats(std::cout, variable);
186  }
187  }
188  else
189  {
190  m_locToGloMap = In.m_locToGloMap;
191  }
192 }
GJPStabilisationSharedPtr m_GJPData
Data for Gradient Jump Penalisation (GJP) stabilisaiton.
Definition: ContField.h:186
bool SameTypeOfBoundaryConditions(const DisContField &In)
Check to see if expansion has the same BCs as In.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField::m_periodicEdges, Nektar::MultiRegions::DisContField::m_periodicFaces, Nektar::MultiRegions::DisContField::m_periodicVerts, Nektar::MultiRegions::ExpList::m_session, and Nektar::MultiRegions::DisContField::SameTypeOfBoundaryConditions().

◆ ContField() [4/5]

Nektar::MultiRegions::ContField::ContField ( const ContField In,
bool  DeclareCoeffPhysArrays = true 
)

The copy constructor.

Initialises the object as a copy of an existing ContField object.

Parameters
InExisting ContField object.
DeclareCoeffPhysArraysbool to declare if m_phys and m_coeffs should be declared. Default is true

Definition at line 200 of file ContField.cpp.

201  : DisContField(In, DeclareCoeffPhysArrays), m_locToGloMap(In.m_locToGloMap),
202  m_globalMat(In.m_globalMat),
203  m_globalLinSysManager(In.m_globalLinSysManager), m_GJPData(In.m_GJPData)
204 {
205 }

◆ ContField() [5/5]

Nektar::MultiRegions::ContField::ContField ( const LibUtilities::SessionReaderSharedPtr pSession,
const ExpList In 
)

Copy constructor.

Constructs a continuous field as a copy of an existing explist field and adding all the boundary conditions.

Parameters
InExisting explist1D field .

Definition at line 213 of file ContField.cpp.

215  : DisContField(In), m_locToGloMap(),
217  std::bind(&ContField::GenGlobalLinSys, this, std::placeholders::_1),
218  std::string("GlobalLinSys"))
219 {
221  pSession, m_ncoeffs, In);
222 }

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

◆ ~ContField()

Nektar::MultiRegions::ContField::~ContField ( )
virtual

The default destructor.

Definition at line 227 of file ContField.cpp.

228 {
229 }

Member Function Documentation

◆ Assemble() [1/2]

void Nektar::MultiRegions::ContField::Assemble ( )
inline

Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Note
The array m_coeffs should be filled with the local coefficients \(\boldsymbol{\hat{u}}_l\) and that the resulting global coefficients \(\boldsymbol{\hat{u}}_g\) will be stored in m_coeffs.

Definition at line 304 of file ContField.h.

305 {
306  m_locToGloMap->Assemble(m_coeffs, m_coeffs);
307 }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:1158

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

◆ Assemble() [2/2]

void Nektar::MultiRegions::ContField::Assemble ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
) const
inline

Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Parameters
inarrayAn array of size \(N_\mathrm{eof}\) containing the local degrees of freedom \(\boldsymbol{x}_l\).
outarrayThe resulting global degrees of freedom \(\boldsymbol{x}_g\) will be stored in this array of size \(N_\mathrm{dof}\).

Definition at line 336 of file ContField.h.

338 {
339  m_locToGloMap->Assemble(inarray, outarray);
340 }

References m_locToGloMap.

◆ FwdTrans()

void Nektar::MultiRegions::ContField::FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)

Performs the global forward transformation of a function \(f(\boldsymbol{x})\), subject to the boundary conditions specified.

Given a function \(f(\boldsymbol{x})\) defined at the quadrature points, this function determines the unknown global coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) employing a discrete Galerkin projection from physical space to coefficient space. The operation is evaluated by the function GlobalSolve using the global mass matrix.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\hat{u}_g\) are stored in the array m_coeffs.

Parameters
SinAn ExpList, containing the discrete evaluation of \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.

Definition at line 248 of file ContField.cpp.

251 {
252  // Inner product of forcing
253  Array<OneD, NekDouble> wsp(m_ncoeffs);
254  IProductWRTBase(inarray, wsp);
255 
256  // Solve the system
257  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
258 
259  GlobalSolve(key, wsp, outarray);
260 }
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solves the linear system specified by the key key.
Definition: ContField.cpp:489
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function calculates the inner product of a function with respect to all local expansion modes .
Definition: ExpList.h:1787

References Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::IProductWRTBase(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by v_FwdTrans().

◆ GenGlobalLinSys()

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField::GenGlobalLinSys ( const GlobalLinSysKey mkey)
protected

Definition at line 551 of file ContField.cpp.

552 {
553  ASSERTL1(mkey.LocToGloMapIsDefined(),
554  "To use method must have a AssemblyMap "
555  "attached to key");
557 }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
std::shared_ptr< GlobalLinSys > GenGlobalLinSys(const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
This operation constructs the global linear system of type mkey.
Definition: ExpList.cpp:2413

References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalLinSys(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_locToGloMap.

◆ GetBndCondExpansions()

const Array< OneD, const MultiRegions::ExpListSharedPtr > & Nektar::MultiRegions::ContField::GetBndCondExpansions ( )
inline

Returns the boundary conditions expansion.

Definition at line 348 of file ContField.h.

349 {
350  return m_bndCondExpansions;
351 }

References Nektar::MultiRegions::DisContField::m_bndCondExpansions.

◆ GetBndConditions()

const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField::GetBndConditions ( )
inline

Returns the boundary conditions.

Definition at line 354 of file ContField.h.

355 {
356  return m_bndConditions;
357 }

References Nektar::MultiRegions::DisContField::m_bndConditions.

Referenced by v_GetBndConditions().

◆ GetGJPForcing()

const GJPStabilisationSharedPtr Nektar::MultiRegions::ContField::GetGJPForcing ( )
inline

Definition at line 149 of file ContField.h.

150  {
151  // initialize if required
152  if (!m_GJPData)
153  {
155  GetSharedThisPtr());
156  }
157 
158  return m_GJPData;
159  }
std::shared_ptr< ExpList > GetSharedThisPtr()
Returns a shared pointer to the current object.
Definition: ExpList.h:1034

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::ExpList::GetSharedThisPtr(), and m_GJPData.

◆ GetGlobalLinSys()

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField::GetGlobalLinSys ( const GlobalLinSysKey mkey)
protected

Returns the linear system specified by the key mkey.

The function searches the map #m_globalLinSys to see if the global matrix has been created before. If not, it calls the function GenGlobalLinSys to generate the requested global system.

Parameters
mkeyThis key uniquely defines the requested linear system.

Definition at line 546 of file ContField.cpp.

547 {
548  return m_globalLinSysManager[mkey];
549 }

References m_globalLinSysManager.

Referenced by GlobalSolve().

◆ GetGlobalMatrix()

GlobalMatrixSharedPtr Nektar::MultiRegions::ContField::GetGlobalMatrix ( const GlobalMatrixKey mkey)
protected

Returns the global matrix specified by mkey.

Returns the global matrix associated with the given GlobalMatrixKey. If the global matrix has not yet been constructed on this field, it is first constructed using GenGlobalMatrix().

Parameters
mkeyGlobal matrix key.
Returns
Assocated global matrix.

Definition at line 516 of file ContField.cpp.

517 {
518  ASSERTL1(mkey.LocToGloMapIsDefined(),
519  "To use method must have a AssemblyMap "
520  "attached to key");
521 
522  GlobalMatrixSharedPtr glo_matrix;
523  auto matrixIter = m_globalMat->find(mkey);
524 
525  if (matrixIter == m_globalMat->end())
526  {
527  glo_matrix = GenGlobalMatrix(mkey, m_locToGloMap);
528  (*m_globalMat)[mkey] = glo_matrix;
529  }
530  else
531  {
532  glo_matrix = matrixIter->second;
533  }
534 
535  return glo_matrix;
536 }
std::shared_ptr< GlobalMatrix > GenGlobalMatrix(const GlobalMatrixKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
Generates a global matrix from the given key and map.
Definition: ExpList.cpp:2126
std::shared_ptr< GlobalMatrix > GlobalMatrixSharedPtr
Shared pointer to a GlobalMatrix object.
Definition: GlobalMatrix.h:86

References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalMatrix(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), m_globalMat, and m_locToGloMap.

◆ GetGlobalMatrixNnz()

int Nektar::MultiRegions::ContField::GetGlobalMatrixNnz ( const GlobalMatrixKey gkey)
inline

Definition at line 359 of file ContField.h.

360 {
361  ASSERTL1(gkey.LocToGloMapIsDefined(),
362  "To use method must have a AssemblyMap "
363  "attached to key");
364 
365  auto matrixIter = m_globalMat->find(gkey);
366 
367  if (matrixIter == m_globalMat->end())
368  {
369  return 0;
370  }
371  else
372  {
373  return matrixIter->second->GetNumNonZeroEntries();
374  }
375 
376  return 0;
377 }

References ASSERTL1, Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_globalMat.

◆ GetLocalToGlobalMap()

const AssemblyMapCGSharedPtr & Nektar::MultiRegions::ContField::GetLocalToGlobalMap ( ) const
inline

Returns the map from local to global level.

Definition at line 342 of file ContField.h.

343 {
344  return m_locToGloMap;
345 }

References m_locToGloMap.

◆ GlobalSolve()

void Nektar::MultiRegions::ContField::GlobalSolve ( const GlobalLinSysKey key,
const Array< OneD, const NekDouble > &  locrhs,
Array< OneD, NekDouble > &  inout,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)

Solves the linear system specified by the key key.

Given a linear system specified by the key key,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}},\]

this function solves this linear system taking into account the boundary conditions specified in the data member m_bndCondExpansions. Therefore, it adds an array \(\boldsymbol{\hat{g}}\) which represents the non-zero surface integral resulting from the weak boundary conditions (e.g. Neumann boundary conditions) to the right hand side, that is,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}+ \boldsymbol{\hat{g}}.\]

Furthermore, it lifts the known degrees of freedom which are prescribed by the Dirichlet boundary conditions. As these known coefficients \(\boldsymbol{\hat{u}}^{\mathcal{D}}\) are numbered first in the global coefficient array \(\boldsymbol{\hat{u}}_g\), the linear system can be decomposed as,

\[\left[\begin{array}{cc} \boldsymbol{M}^{\mathcal{DD}}&\boldsymbol{M}^{\mathcal{DH}}\\ \boldsymbol{M}^{\mathcal{HD}}&\boldsymbol{M}^{\mathcal{HH}} \end{array}\right] \left[\begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array}\right]= \left[\begin{array}{c} \boldsymbol{\hat{f}}^{\mathcal{D}}\\ \boldsymbol{\hat{f}}^{\mathcal{H}} \end{array}\right]+ \left[\begin{array}{c} \boldsymbol{\hat{g}}^{\mathcal{D}}\\ \boldsymbol{\hat{g}}^{\mathcal{H}} \end{array}\right] \]

which will then be solved for the unknown coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) as,

\[ \boldsymbol{M}^{\mathcal{HH}}\boldsymbol{\hat{u}}^{\mathcal{H}}= \boldsymbol{\hat{f}}^{\mathcal{H}}+ \boldsymbol{\hat{g}}^{\mathcal{H}}- \boldsymbol{M}^{\mathcal{HD}}\boldsymbol{\hat{u}}^{\mathcal{D}}\]

Parameters
mkeyThis key uniquely defines the linear system to be solved.
locrhscontains the forcing term in local coefficient space
Note
inout contains initial guess and final output in local coeffs.

Definition at line 489 of file ContField.cpp.

493 {
494  int NumDirBcs = m_locToGloMap->GetNumGlobalDirBndCoeffs();
495  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
496 
497  // STEP 1: SET THE DIRICHLET DOFS TO THE RIGHT VALUE
498  // IN THE SOLUTION ARRAY
500 
501  // STEP 2: CALCULATE THE HOMOGENEOUS COEFFICIENTS
502  if (contNcoeffs - NumDirBcs > 0)
503  {
505  LinSys->Solve(locrhs, inout, m_locToGloMap, dirForcing);
506  }
507 }
virtual void v_ImposeDirichletConditions(Array< OneD, NekDouble > &outarray)
Impose the Dirichlet Boundary Conditions on outarray.
Definition: ContField.cpp:568
GlobalLinSysSharedPtr GetGlobalLinSys(const GlobalLinSysKey &mkey)
Returns the linear system specified by the key mkey.
Definition: ContField.cpp:546
std::shared_ptr< GlobalLinSys > GlobalLinSysSharedPtr
Pointer to a GlobalLinSys object.
Definition: GlobalLinSys.h:50

References GetGlobalLinSys(), m_locToGloMap, and v_ImposeDirichletConditions().

Referenced by FwdTrans(), LaplaceSolve(), MultiplyByInvMassMatrix(), v_HelmSolve(), v_LinearAdvectionDiffusionReactionSolve(), and v_LinearAdvectionReactionSolve().

◆ LaplaceSolve()

void Nektar::MultiRegions::ContField::LaplaceSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray,
const Array< OneD, Array< OneD, NekDouble >> &  variablecoeffs = NullNekDoubleArrayOfArray,
NekDouble  time = 0.0 
)

Solves the two-dimensional Laplace equation, subject to the boundary conditions specified.

Consider the two dimensional Laplace equation,

\[\nabla\cdot\left(\boldsymbol{\sigma}\nabla u(\boldsymbol{x})\right) = f(\boldsymbol{x}),\]

supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). In the equation above \(\boldsymbol{\sigma}\) is the (symmetric positive definite) diffusion tensor:

\[ \sigma = \left[ \begin{array}{cc} \sigma_{00}(\boldsymbol{x},t) & \sigma_{01}(\boldsymbol{x},t) \\ \sigma_{01}(\boldsymbol{x},t) & \sigma_{11}(\boldsymbol{x},t) \end{array} \right]. \]

Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:

\[\boldsymbol{L} \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]

where \(\boldsymbol{L}\) is the Laplacian matrix. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\boldsymbol{\hat{u}}_g\) are stored in the array m_coeffs.

Parameters
SinAn ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.
variablecoeffsThe (optional) parameter containing the coefficients evaluated at the quadrature points. It is an Array of (three) arrays which stores the laplacian coefficients in the following way

\[\mathrm{variablecoeffs} = \left[ \begin{array}{c} \left[\sigma_{00}(\boldsymbol{x_i},t)\right]_i \\ \left[\sigma_{01}(\boldsymbol{x_i},t)\right]_i \\ \left[\sigma_{11}(\boldsymbol{x_i},t)\right]_i \end{array}\right] \]

If this argument is not passed to the function, the following equation will be solved:

\[\nabla^2u(\boldsymbol{x}) = f(\boldsymbol{x}),\]

timeThe time-level at which the coefficients are evaluated

Definition at line 340 of file ContField.cpp.

345 {
346  // Inner product of forcing
347  Array<OneD, NekDouble> wsp(m_ncoeffs);
348  IProductWRTBase(inarray, wsp);
349 
350  // Note -1.0 term necessary to invert forcing function to
351  // be consistent with matrix definition
352  Vmath::Neg(m_ncoeffs, wsp, 1);
353 
354  // Forcing function with weak boundary conditions
355  int i, j;
356  int bndcnt = 0;
357  Array<OneD, NekDouble> sign =
358  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsSign();
359  const Array<OneD, const int> map =
360  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsMap();
361 
362  // Add weak boundary conditions to forcing
363  for (i = 0; i < m_bndCondExpansions.size(); ++i)
364  {
365  if (m_bndConditions[i]->GetBoundaryConditionType() ==
367  m_bndConditions[i]->GetBoundaryConditionType() ==
369  {
370  const Array<OneD, NekDouble> bndcoeff =
372 
373  if (m_locToGloMap->GetSignChange())
374  {
375  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
376  {
377  wsp[map[bndcnt + j]] += sign[bndcnt + j] * bndcoeff[j];
378  }
379  }
380  else
381  {
382  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
383  {
384  wsp[map[bndcnt + j]] += bndcoeff[bndcnt + j];
385  }
386  }
387  }
388 
389  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
390  }
391 
392  StdRegions::VarCoeffMap varcoeffs;
393  varcoeffs[StdRegions::eVarCoeffD00] = variablecoeffs[0];
394  varcoeffs[StdRegions::eVarCoeffD01] = variablecoeffs[1];
395  varcoeffs[StdRegions::eVarCoeffD11] = variablecoeffs[3];
396  varcoeffs[StdRegions::eVarCoeffD22] = variablecoeffs[5];
398  factors[StdRegions::eFactorTime] = time;
399 
400  // Solve the system
401  GlobalLinSysKey key(StdRegions::eLaplacian, m_locToGloMap, factors,
402  varcoeffs);
403 
404  GlobalSolve(key, wsp, outarray, dirForcing);
405 }
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:15
int GetNcoeffs(void) const
Returns the total number of local degrees of freedom .
Definition: ExpList.h:1641
const Array< OneD, const NekDouble > & GetCoeffs() const
This function returns (a reference to) the array (implemented as m_coeffs) containing all local expa...
Definition: ExpList.h:2100
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:240
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:282
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518

References Nektar::StdRegions::eFactorTime, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::StdRegions::eVarCoeffD00, Nektar::StdRegions::eVarCoeffD01, Nektar::StdRegions::eVarCoeffD11, Nektar::StdRegions::eVarCoeffD22, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), Nektar::MultiRegions::ExpList::IProductWRTBase(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Vmath::Neg(), and sign.

◆ LinearAdvectionEigs()

void Nektar::MultiRegions::ContField::LinearAdvectionEigs ( const NekDouble  ax,
const NekDouble  ay,
Array< OneD, NekDouble > &  Real,
Array< OneD, NekDouble > &  Imag,
Array< OneD, NekDouble > &  Evecs = NullNekDouble1DArray 
)

Compute the eigenvalues of the linear advection operator.

Constructs the GlobalLinearSysKey for the linear advection operator with the supplied parameters, and computes the eigenvectors and eigenvalues of the associated matrix.

Parameters
axAdvection parameter, x.
ayAdvection parameter, y.
RealComputed eigenvalues, real component.
ImagComputed eigenvalues, imag component.
EvecsComputed eigenvectors.

Definition at line 417 of file ContField.cpp.

421 {
422  // Solve the system
423  Array<OneD, Array<OneD, NekDouble>> vel(2);
424  Array<OneD, NekDouble> vel_x(m_npoints, ax);
425  Array<OneD, NekDouble> vel_y(m_npoints, ay);
426  vel[0] = vel_x;
427  vel[1] = vel_y;
428 
429  StdRegions::VarCoeffMap varcoeffs;
430  varcoeffs[StdRegions::eVarCoeffVelX] =
431  Array<OneD, NekDouble>(m_npoints, ax);
432  varcoeffs[StdRegions::eVarCoeffVelY] =
433  Array<OneD, NekDouble>(m_npoints, ay);
435  factors[StdRegions::eFactorTime] = 0.0;
437  factors, varcoeffs);
438 
440  Gmat->EigenSolve(Real, Imag, Evecs);
441 }
std::shared_ptr< DNekMat > GenGlobalMatrixFull(const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap)
Definition: ExpList.cpp:2260
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75

References CG_Iterations::ax, Nektar::StdRegions::eFactorTime, Nektar::StdRegions::eLinearAdvectionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, Nektar::MultiRegions::ExpList::GenGlobalMatrixFull(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_npoints.

◆ MultiplyByInvMassMatrix()

void Nektar::MultiRegions::ContField::MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)

Multiply a solution by the inverse mass matrix.

Computes the matrix vector product \( \mathbf{y} = \mathbf{M}^{-1}\mathbf{x} \).

Parameters
inarrayInput vector \(\mathbf{x}\).
outarrayOutput vector \(\mathbf{y}\).

Definition at line 283 of file ContField.cpp.

287 {
288 
289  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
290  GlobalSolve(key, inarray, outarray);
291 }

References Nektar::StdRegions::eMass, GlobalSolve(), and m_locToGloMap.

Referenced by v_MultiplyByInvMassMatrix(), and v_SmoothField().

◆ SetGJPForcing()

void Nektar::MultiRegions::ContField::SetGJPForcing ( const GJPStabilisationSharedPtr GJPData)
inline

Definition at line 161 of file ContField.h.

163  {
164  m_GJPData = GJPData;
165  }

References m_GJPData.

◆ v_ClearGlobalLinSysManager()

void Nektar::MultiRegions::ContField::v_ClearGlobalLinSysManager ( void  )
protectedvirtual

Reset the GlobalLinSys Manager

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1028 of file ContField.cpp.

1029 {
1030  m_globalLinSysManager.ClearManager("GlobalLinSys");
1031 }

References m_globalLinSysManager.

◆ v_FillBndCondFromField() [1/2]

void Nektar::MultiRegions::ContField::v_FillBndCondFromField ( void  )
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 627 of file ContField.cpp.

628 {
629  int bndcnt = 0;
630 
631  Array<OneD, NekDouble> sign =
632  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsSign();
633  const Array<OneD, const int> bndmap =
634  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsMap();
635 
636  for (int i = 0; i < m_bndCondExpansions.size(); ++i)
637  {
638  Array<OneD, NekDouble> &coeffs = m_bndCondExpansions[i]->UpdateCoeffs();
639 
640  if (m_locToGloMap->GetSignChange())
641  {
642  for (int j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); ++j)
643  {
644  coeffs[j] = sign[bndcnt + j] * m_coeffs[bndmap[bndcnt + j]];
645  }
646  }
647  else
648  {
649  for (int j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); ++j)
650  {
651  coeffs[j] = m_coeffs[bndmap[bndcnt + j]];
652  }
653  }
654 
655  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
656  }
657 }

References Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::ExpList::m_coeffs, m_locToGloMap, and sign.

◆ v_FillBndCondFromField() [2/2]

void Nektar::MultiRegions::ContField::v_FillBndCondFromField ( const int  nreg)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 659 of file ContField.cpp.

660 {
661  int bndcnt = 0;
662 
663  ASSERTL1(nreg < m_bndCondExpansions.size(),
664  "nreg is out or range since this many boundary "
665  "regions to not exist");
666 
667  Array<OneD, NekDouble> sign =
668  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsSign();
669  const Array<OneD, const int> bndmap =
670  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsMap();
671 
672  // Now fill in all other Dirichlet coefficients.
673  Array<OneD, NekDouble> &coeffs = m_bndCondExpansions[nreg]->UpdateCoeffs();
674 
675  for (int j = 0; j < nreg; ++j)
676  {
677  bndcnt += m_bndCondExpansions[j]->GetNcoeffs();
678  }
679 
680  if (m_locToGloMap->GetSignChange())
681  {
682  for (int j = 0; j < (m_bndCondExpansions[nreg])->GetNcoeffs(); ++j)
683  {
684  coeffs[j] = sign[bndcnt + j] * m_coeffs[bndmap[bndcnt + j]];
685  }
686  }
687  else
688  {
689  for (int j = 0; j < (m_bndCondExpansions[nreg])->GetNcoeffs(); ++j)
690  {
691  coeffs[j] = m_coeffs[bndmap[bndcnt + j]];
692  }
693  }
694 }

References ASSERTL1, Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::ExpList::m_coeffs, m_locToGloMap, and sign.

◆ v_FwdTrans()

void Nektar::MultiRegions::ContField::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Template method virtual forwarder for FwdTrans().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 562 of file ContField.cpp.

564 {
565  FwdTrans(inarray, outarray);
566 }
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Performs the global forward transformation of a function , subject to the boundary conditions specifi...
Definition: ContField.cpp:248

References FwdTrans().

◆ v_GetBndConditions()

const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField::v_GetBndConditions ( void  )
protectedvirtual

Template method virtual forwarder for GetBndConditions().

Reimplemented from Nektar::MultiRegions::DisContField.

Definition at line 1020 of file ContField.cpp.

1021 {
1022  return GetBndConditions();
1023 }
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions()
Returns the boundary conditions.
Definition: ContField.h:354

References GetBndConditions().

◆ v_GlobalToLocal() [1/2]

void Nektar::MultiRegions::ContField::v_GlobalToLocal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}^{e}[i] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]$ \\ \> \> continue \\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the scatter operation \(\boldsymbol{\hat{u}}_l=\mathcal{A}\boldsymbol{\hat{u}}_g\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Note
The array m_coeffs should be filled with the global coefficients \(\boldsymbol{\hat{u}}_g\) and that the resulting local coefficients \(\boldsymbol{\hat{u}}_l\) will be stored in m_coeffs.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 720 of file ContField.cpp.

722 {
723  m_locToGloMap->GlobalToLocal(inarray, outarray);
724 }

References m_locToGloMap.

◆ v_GlobalToLocal() [2/2]

void Nektar::MultiRegions::ContField::v_GlobalToLocal ( void  )
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 726 of file ContField.cpp.

727 {
728  m_locToGloMap->GlobalToLocal(m_coeffs, m_coeffs);
729 }

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

◆ v_HelmSolve()

void Nektar::MultiRegions::ContField::v_HelmSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::ConstFactorMap factors,
const StdRegions::VarCoeffMap pvarcoeff,
const MultiRegions::VarFactorsMap varfactors,
const Array< OneD, const NekDouble > &  dirForcing,
const bool  PhysSpaceForcing 
)
protectedvirtual

Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified.

Consider the two dimensional Helmholtz equation,

\[\nabla^2u(\boldsymbol{x})-\lambda u(\boldsymbol{x}) = f(\boldsymbol{x}),\]

supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:

\[\left(\boldsymbol{L}+\lambda\boldsymbol{M}\right) \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]

where \(\boldsymbol{L}\) and \(\boldsymbol{M}\) are the Laplacian and mass matrix respectively. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve. It is assumed #m_coeff contains an initial estimate for the solution.

The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object inarray.

Parameters
inarrayAn ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys.
factorsThe parameter \(\lambda\) of the Helmholtz equation is specified through the factors map

Reimplemented from Nektar::MultiRegions::DisContField.

Definition at line 807 of file ContField.cpp.

815 {
816  int i, j;
817 
818  //----------------------------------
819  // Setup RHS Inner product
820  //----------------------------------
821  // Inner product of forcing
822  Array<OneD, NekDouble> wsp(m_ncoeffs);
823  if (PhysSpaceForcing)
824  {
825  IProductWRTBase(inarray, wsp);
826  // Note -1.0 term necessary to invert forcing function to
827  // be consistent with matrix definition
828  Vmath::Neg(m_ncoeffs, wsp, 1);
829  }
830  else
831  {
832  Vmath::Smul(m_ncoeffs, -1.0, inarray, 1, wsp, 1);
833  }
834 
835  int bndcnt = 0;
836  Array<OneD, NekDouble> sign =
837  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsSign();
838  const Array<OneD, const int> map =
839  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsMap();
840  // Add weak boundary conditions to forcing
841  for (i = 0; i < m_bndCondExpansions.size(); ++i)
842  {
843  if (m_bndConditions[i]->GetBoundaryConditionType() ==
845  m_bndConditions[i]->GetBoundaryConditionType() ==
847  {
848  const Array<OneD, NekDouble> bndcoeff =
850 
851  if (m_locToGloMap->GetSignChange())
852  {
853  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
854  {
855  wsp[map[bndcnt + j]] += sign[bndcnt + j] * bndcoeff[j];
856  }
857  }
858  else
859  {
860  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
861  {
862  wsp[map[bndcnt + j]] += bndcoeff[j];
863  }
864  }
865  }
866  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
867  }
868 
870 
871  StdRegions::VarCoeffMap varcoeff(pvarcoeff);
872  if (factors.count(StdRegions::eFactorGJP))
873  {
874  // initialize if required
875  if (!m_GJPData)
876  {
878  GetSharedThisPtr());
879  }
880 
881  if (m_GJPData->IsSemiImplicit())
882  {
884  }
885 
886  // to set up forcing need initial guess in physical space
887  Array<OneD, NekDouble> phys(m_npoints), tmp;
888  BwdTrans(outarray, phys);
889  NekDouble scale = -1.0 * factors.find(StdRegions::eFactorGJP)->second;
890 
891  m_GJPData->Apply(
892  phys, wsp,
893  pvarcoeff.count(StdRegions::eVarCoeffGJPNormVel)
894  ? pvarcoeff.find(StdRegions::eVarCoeffGJPNormVel)->second
896  scale);
897 
898  varcoeff.erase(StdRegions::eVarCoeffGJPNormVel);
899  }
900 
901  GlobalLinSysKey key(mtype, m_locToGloMap, factors, varcoeff, varfactors);
902 
903  GlobalSolve(key, wsp, outarray, dirForcing);
904 }
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function elementally evaluates the backward transformation of the global spectral/hp element exp...
Definition: ExpList.h:1849
static Array< OneD, NekDouble > NullNekDouble1DArray
double NekDouble
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::ExpList::BwdTrans(), Nektar::StdRegions::eFactorGJP, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHelmholtzGJP, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::StdRegions::eVarCoeffGJPNormVel, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::ExpList::GetSharedThisPtr(), GlobalSolve(), Nektar::MultiRegions::ExpList::IProductWRTBase(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_GJPData, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::ExpList::m_npoints, Vmath::Neg(), Nektar::NullNekDouble1DArray, sign, and Vmath::Smul().

◆ v_ImposeDirichletConditions()

void Nektar::MultiRegions::ContField::v_ImposeDirichletConditions ( Array< OneD, NekDouble > &  outarray)
protectedvirtual

Impose the Dirichlet Boundary Conditions on outarray.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 568 of file ContField.cpp.

569 {
570  int i, j;
571  int bndcnt = 0;
572 
573  Array<OneD, NekDouble> sign =
574  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsSign();
575  const Array<OneD, const int> map =
576  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsMap();
577 
578  for (i = 0; i < m_bndCondExpansions.size(); ++i)
579  {
580  if (m_bndConditions[i]->GetBoundaryConditionType() ==
582  {
583  const Array<OneD, NekDouble> bndcoeff =
585 
586  if (m_locToGloMap->GetSignChange())
587  {
588  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
589  {
590  outarray[map[bndcnt + j]] = sign[bndcnt + j] * bndcoeff[j];
591  }
592  }
593  else
594  {
595  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
596  {
597  outarray[map[bndcnt + j]] = bndcoeff[j];
598  }
599  }
600  }
601  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
602  }
603 
604  // communicate local Dirichlet coeffs that are just
605  // touching a dirichlet boundary on another partition
606  set<int> &ParallelDirBndSign = m_locToGloMap->GetParallelDirBndSign();
607 
608  for (auto &it : ParallelDirBndSign)
609  {
610  outarray[it] *= -1;
611  }
612 
613  m_locToGloMap->UniversalAbsMaxBnd(outarray);
614 
615  for (auto &it : ParallelDirBndSign)
616  {
617  outarray[it] *= -1;
618  }
619 
620  set<ExtraDirDof> &copyLocalDirDofs = m_locToGloMap->GetCopyLocalDirDofs();
621  for (auto &it : copyLocalDirDofs)
622  {
623  outarray[std::get<0>(it)] = outarray[std::get<1>(it)] * std::get<2>(it);
624  }
625 }

References Nektar::SpatialDomains::eDirichlet, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, and sign.

Referenced by GlobalSolve().

◆ v_LinearAdvectionDiffusionReactionSolve()

void Nektar::MultiRegions::ContField::v_LinearAdvectionDiffusionReactionSolve ( const Array< OneD, Array< OneD, NekDouble >> &  velocity,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const NekDouble  lambda,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
protectedvirtual

First compute the inner product of forcing function with respect to base, and then solve the system with the linear advection operator.

Parameters
velocityArray of advection velocities in physical space
inarrayForcing function.
outarrayResult.
lambdareaction coefficient
dirForcingDirichlet Forcing.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 917 of file ContField.cpp.

922 {
923  // Inner product of forcing
924  Array<OneD, NekDouble> wsp(m_ncoeffs);
925  IProductWRTBase(inarray, wsp);
926 
927  // Note -1.0 term necessary to invert forcing function to
928  // be consistent with matrix definition
929  Vmath::Neg(m_ncoeffs, wsp, 1);
930 
931  // Forcing function with weak boundary conditions
932  int i, j;
933  int bndcnt = 0;
934  Array<OneD, NekDouble> sign =
935  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsSign();
936  const Array<OneD, const int> map =
937  m_locToGloMap->GetBndCondCoeffsToLocalCoeffsMap();
938  // Add weak boundary conditions to forcing
939  for (i = 0; i < m_bndCondExpansions.size(); ++i)
940  {
941  if (m_bndConditions[i]->GetBoundaryConditionType() ==
943  m_bndConditions[i]->GetBoundaryConditionType() ==
945  {
946  const Array<OneD, NekDouble> bndcoeff =
948 
949  if (m_locToGloMap->GetSignChange())
950  {
951  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
952  {
953  wsp[map[bndcnt + j]] += sign[bndcnt + j] * bndcoeff[j];
954  }
955  }
956  else
957  {
958  for (j = 0; j < (m_bndCondExpansions[i])->GetNcoeffs(); j++)
959  {
960  wsp[map[bndcnt + j]] += bndcoeff[bndcnt + j];
961  }
962  }
963  }
964 
965  bndcnt += m_bndCondExpansions[i]->GetNcoeffs();
966  }
967 
968  // Solve the system
970  factors[StdRegions::eFactorLambda] = lambda;
971  StdRegions::VarCoeffMap varcoeffs;
972  varcoeffs[StdRegions::eVarCoeffVelX] = velocity[0];
973  varcoeffs[StdRegions::eVarCoeffVelY] = velocity[1];
974  if (m_expType == e3D)
975  {
976  varcoeffs[StdRegions::eVarCoeffVelZ] = velocity[2];
977  }
978 
980  m_locToGloMap, factors, varcoeffs);
981 
982  GlobalSolve(key, wsp, outarray, dirForcing);
983 }
ExpansionType m_expType
Exapnsion type.
Definition: ExpList.h:1119

References Nektar::MultiRegions::e3D, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eLinearAdvectionDiffusionReaction, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, Nektar::StdRegions::eVarCoeffVelZ, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), Nektar::MultiRegions::ExpList::IProductWRTBase(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, Nektar::MultiRegions::ExpList::m_expType, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Vmath::Neg(), and sign.

◆ v_LinearAdvectionReactionSolve()

void Nektar::MultiRegions::ContField::v_LinearAdvectionReactionSolve ( const Array< OneD, Array< OneD, NekDouble >> &  velocity,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const NekDouble  lambda,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
protectedvirtual

First compute the inner product of forcing function with respect to base, and then solve the system with the linear advection operator.

Parameters
velocityArray of advection velocities in physical space
inarrayForcing function.
outarrayResult.
lambdareaction coefficient
dirForcingDirichlet Forcing.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 994 of file ContField.cpp.

999 {
1000  // Inner product of forcing
1001  Array<OneD, NekDouble> wsp(m_ncoeffs);
1002  IProductWRTBase(inarray, wsp);
1003 
1004  // Solve the system
1006  factors[StdRegions::eFactorLambda] = lambda;
1007  StdRegions::VarCoeffMap varcoeffs;
1008  varcoeffs[StdRegions::eVarCoeffVelX] = velocity[0];
1009  varcoeffs[StdRegions::eVarCoeffVelY] = velocity[1];
1011  factors, varcoeffs);
1012 
1013  GlobalSolve(key, wsp, outarray, dirForcing);
1014 }

References Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eLinearAdvectionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, GlobalSolve(), Nektar::MultiRegions::ExpList::IProductWRTBase(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

◆ v_LocalToGlobal() [1/2]

void Nektar::MultiRegions::ContField::v_LocalToGlobal ( bool  useComm)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 765 of file ContField.cpp.

767 {
768  m_locToGloMap->LocalToGlobal(m_coeffs, m_coeffs, useComm);
769 }

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

◆ v_LocalToGlobal() [2/2]

void Nektar::MultiRegions::ContField::v_LocalToGlobal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  useComm 
)
protectedvirtual

Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{-1}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.

Note
The array m_coeffs should be filled with the local coefficients \(\boldsymbol{\hat{u}}_l\) and that the resulting global coefficients \(\boldsymbol{\hat{u}}_g\) will be stored in m_coeffs. Also if useComm is set to false then no communication call will be made to check if all values are consistent over processors

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 759 of file ContField.cpp.

761 {
762  m_locToGloMap->LocalToGlobal(inarray, outarray, useComm);
763 }

References m_locToGloMap.

◆ v_MultiplyByInvMassMatrix()

void Nektar::MultiRegions::ContField::v_MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Template method virtual forwarder for MultiplyByInvMassMatrix().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 774 of file ContField.cpp.

777 {
778  MultiplyByInvMassMatrix(inarray, outarray);
779 }
void MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Multiply a solution by the inverse mass matrix.
Definition: ContField.cpp:283

References MultiplyByInvMassMatrix().

◆ v_SmoothField()

void Nektar::MultiRegions::ContField::v_SmoothField ( Array< OneD, NekDouble > &  field)
protectedvirtual

Template method virtual forwarded for SmoothField().

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 265 of file ContField.cpp.

266 {
267  int Ncoeffs = m_locToGloMap->GetNumLocalCoeffs();
268  Array<OneD, NekDouble> tmp1(Ncoeffs);
269  Array<OneD, NekDouble> tmp2(Ncoeffs);
270 
271  IProductWRTBase(field, tmp1);
272  MultiplyByInvMassMatrix(tmp1, tmp2);
273  BwdTrans(tmp2, field);
274 }

References Nektar::MultiRegions::ExpList::BwdTrans(), Nektar::MultiRegions::ExpList::IProductWRTBase(), m_locToGloMap, and MultiplyByInvMassMatrix().

Member Data Documentation

◆ m_GJPData

GJPStabilisationSharedPtr Nektar::MultiRegions::ContField::m_GJPData
protected

Data for Gradient Jump Penalisation (GJP) stabilisaiton.

Definition at line 186 of file ContField.h.

Referenced by GetGJPForcing(), SetGJPForcing(), and v_HelmSolve().

◆ m_globalLinSysManager

LibUtilities::NekManager<GlobalLinSysKey, GlobalLinSys> Nektar::MultiRegions::ContField::m_globalLinSysManager
protected

A manager which collects all the global linear systems being assembled, such that they should be constructed only once.

Definition at line 183 of file ContField.h.

Referenced by GetGlobalLinSys(), and v_ClearGlobalLinSysManager().

◆ m_globalMat

GlobalMatrixMapShPtr Nektar::MultiRegions::ContField::m_globalMat
protected

(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.

Definition at line 177 of file ContField.h.

Referenced by GetGlobalMatrix(), and GetGlobalMatrixNnz().

◆ m_locToGloMap

AssemblyMapCGSharedPtr Nektar::MultiRegions::ContField::m_locToGloMap
protected