Nektar++
Deform.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: Deform.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Deformation of mesh from fields.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <string>
36 
37 #include <GlobalMapping/Deform.h>
41 #include <MultiRegions/ExpList.h>
44 #include <StdRegions/StdQuadExp.h>
45 #include <StdRegions/StdSegExp.h>
46 
47 using namespace std;
48 
49 namespace Nektar
50 {
51 namespace GlobalMapping
52 {
53 
54 /**
55  * @brief Update geometry according to displacement that is in current
56  * fields.
57  *
58  * @param graph The MeshGraph of the current geometry.
59  * @param fields The fields containing the displacement.
60  */
63  Array<OneD, Array<OneD, NekDouble>> &PhysVals, bool modal)
64 {
65  // Clear existing curvature.
66  SpatialDomains::CurveMap &curvedEdges = graph->GetCurvedEdges();
67  SpatialDomains::CurveMap &curvedFaces = graph->GetCurvedFaces();
68  curvedEdges.clear();
69  curvedFaces.clear();
70 
71  int i, j, k, l, dim;
72 
73  // Sets to hold IDs of updated vertices to avoid duplicating effort.
74  set<int> updatedVerts, updatedEdges, updatedFaces;
75 
76  dim = graph->GetSpaceDimension();
79 
80  for (i = 0; i < fields[0]->GetExpSize(); ++i)
81  {
82  LocalRegions::ExpansionSharedPtr exp = fields[0]->GetExp(i);
83  int offset = fields[0]->GetPhys_Offset(i);
84  int nquad = exp->GetTotPoints();
85 
86  // Extract displacement for this element, allocate storage for
87  // elemental coordinates.
88  for (j = 0; j < dim; ++j)
89  {
90  phys[j] = Array<OneD, NekDouble>(nquad, PhysVals[j] + offset);
91  coord[j] = Array<OneD, NekDouble>(nquad);
92  }
93 
94  // In 2D loop over edges.
95  if (dim == 2)
96  {
97  exp->GetCoords(coord[0], coord[1]);
98 
100  std::dynamic_pointer_cast<SpatialDomains::Geometry2D>(
101  exp->GetGeom());
102 
103  for (j = 0; j < exp->GetGeom()->GetNumEdges(); ++j)
104  {
105  SpatialDomains::Geometry1DSharedPtr edge = geom->GetEdge(j);
106 
107  // This edge has already been processed.
108  if (updatedEdges.find(edge->GetGlobalID()) !=
109  updatedEdges.end())
110  {
111  continue;
112  }
113 
114  // Extract edge displacement.
115  int nEdgePts = exp->GetTraceNumPoints(j);
116  Array<OneD, Array<OneD, NekDouble>> edgePhys(dim);
117  Array<OneD, Array<OneD, NekDouble>> edgeCoord(dim);
118 
119  const LibUtilities::BasisKey B(
120  LibUtilities::eModified_A, nEdgePts,
125 
126  for (k = 0; k < dim; ++k)
127  {
128  edgePhys[k] = Array<OneD, NekDouble>(nEdgePts);
129  edgeCoord[k] = Array<OneD, NekDouble>(nEdgePts);
130  exp->GetTracePhysVals(j, seg, phys[k], edgePhys[k]);
131  exp->GetTracePhysVals(j, seg, coord[k], edgeCoord[k]);
132  }
133 
134  // Update verts
135  for (k = 0; k < 2; ++k)
136  {
137  int id = edge->GetVid(k);
138  if (updatedVerts.find(id) != updatedVerts.end())
139  {
140  continue;
141  }
142 
143  SpatialDomains::PointGeomSharedPtr pt = edge->GetVertex(k);
144 
145  pt->UpdatePosition(
146  (*pt)(0) + edgePhys[0][k * (nEdgePts - 1)],
147  (*pt)(1) + edgePhys[1][k * (nEdgePts - 1)], (*pt)(2));
148 
149  updatedVerts.insert(id);
150  }
151 
152  // Update curve
155  edge->GetGlobalID(),
157 
158  for (k = 0; k < nEdgePts; ++k)
159  {
162  AllocateSharedPtr(dim, edge->GetGlobalID(),
163  edgeCoord[0][k] + edgePhys[0][k],
164  edgeCoord[1][k] + edgePhys[1][k],
165  0.0);
166 
167  curve->m_points.push_back(vert);
168  }
169 
170  curvedEdges[edge->GetGlobalID()] = curve;
171  updatedEdges.insert(edge->GetGlobalID());
172  }
173  }
174  else if (dim == 3)
175  {
176  exp->GetCoords(coord[0], coord[1], coord[2]);
177 
179  std::dynamic_pointer_cast<SpatialDomains::Geometry3D>(
180  exp->GetGeom());
181 
182  for (j = 0; j < exp->GetNtraces(); ++j)
183  {
184  SpatialDomains::Geometry2DSharedPtr face = geom->GetFace(j);
185 
187  exp->as<LocalRegions::Expansion3D>();
188 
189  // This edge has already been processed.
190  if (updatedFaces.find(face->GetGlobalID()) !=
191  updatedFaces.end())
192  {
193  continue;
194  }
195 
196  // Extract face displacement.
197  LibUtilities::BasisKey B0 = exp->GetTraceBasisKey(j, 0);
198  LibUtilities::BasisKey B1 = exp->GetTraceBasisKey(j, 1);
199  int nq0 = B0.GetNumPoints();
200  int nq1 = B1.GetNumPoints();
201 
202  ASSERTL1(B0.GetPointsType() ==
204  B1.GetPointsType() ==
206  "Deformation requires GLL points in both "
207  "directions on a face.");
208 
210 
212  StdRegions::Orientation orient = exp->GetTraceOrient(j);
213 
214  if (face->GetShapeType() == LibUtilities::eTriangle)
215  {
216  faceexp =
218  B0, B1);
219  }
220  else
221  {
222  faceexp = MemoryManager<
223  StdRegions::StdQuadExp>::AllocateSharedPtr(B0, B1);
224  }
225 
226  for (k = 0; k < dim; ++k)
227  {
228  Array<OneD, NekDouble> tmp(nq0 * nq1);
229  newPos[k] = Array<OneD, NekDouble>(nq0 * nq1);
230  exp3d->GetTracePhysVals(j, faceexp, phys[k], tmp, orient);
231  exp3d->GetTracePhysVals(j, faceexp, coord[k], newPos[k],
232  orient);
233  Vmath::Vadd(nq0 * nq1, tmp, 1, newPos[k], 1, newPos[k], 1);
234  }
235 
236  // Now interpolate face onto a more reasonable set of
237  // points.
238  int nq = max(nq0, nq1);
239  if (!modal)
240  nq--;
241 
242  LibUtilities::PointsKey edgePts(
245 
247 
248  for (k = 0; k < dim; ++k)
249  {
250  intPos[k] = Array<OneD, NekDouble>(nq * nq);
251  LibUtilities::Interp2D(faceexp->GetPointsKeys()[0],
252  faceexp->GetPointsKeys()[1],
253  newPos[k], edgePts, edgePts,
254  intPos[k]);
255  }
256 
257  int edgeOff[2][4][2] = {
258  {{0, 1}, {nq - 1, nq}, {nq * (nq - 1), -nq}, {-1, -1}},
259  {{0, 1},
260  {nq - 1, nq},
261  {nq * nq - 1, -1},
262  {nq * (nq - 1), -nq}}};
263 
264  for (k = 0; k < face->GetNumVerts(); ++k)
265  {
266  // Update verts
267  int id = face->GetVid(k);
268  const int o =
269  face->GetShapeType() - LibUtilities::eTriangle;
270 
271  if (updatedVerts.find(id) == updatedVerts.end())
272  {
274  face->GetVertex(k);
275  pt->UpdatePosition(intPos[0][edgeOff[o][k][0]],
276  intPos[1][edgeOff[o][k][0]],
277  intPos[2][edgeOff[o][k][0]]);
278  updatedVerts.insert(id);
279  }
280 
281  // Update edges
282  id = face->GetEid(k);
283  if (updatedEdges.find(id) == updatedEdges.end())
284  {
286  face->GetEdge(k);
290  edge->GetGlobalID(),
292 
293  const int offset = edgeOff[o][k][0];
294  const int pos = edgeOff[o][k][1];
295 
296  if (face->GetEorient(k) == StdRegions::eBackwards)
297  {
298  for (l = nq - 1; l >= 0; --l)
299  {
300  int m = offset + pos * l;
304  dim, edge->GetGlobalID(),
305  intPos[0][m], intPos[1][m],
306  intPos[2][m]);
307  curve->m_points.push_back(vert);
308  }
309  }
310  else
311  {
312  for (l = 0; l < nq; ++l)
313  {
314  int m = offset + pos * l;
318  dim, edge->GetGlobalID(),
319  intPos[0][m], intPos[1][m],
320  intPos[2][m]);
321  curve->m_points.push_back(vert);
322  }
323  }
324 
325  curvedEdges[edge->GetGlobalID()] = curve;
326  updatedEdges.insert(edge->GetGlobalID());
327  }
328  }
329 
330  // Update face-interior curvature
332  face->GetShapeType() == LibUtilities::eTriangle
335 
338  face->GetGlobalID(), pType);
339 
340  if (face->GetShapeType() == LibUtilities::eTriangle)
341  {
342  // This code is probably pretty crappy. Have to go from
343  // GLL-GLL points -> GLL-Gauss-Radau -> nodal triangle
344  // points.
345  const LibUtilities::BasisKey B0(
349  const LibUtilities::BasisKey B1(
352  nq, LibUtilities::eGaussRadauMAlpha1Beta0));
353  StdRegions::StdNodalTriExp nodalTri(B0, B1, pType);
354  StdRegions::StdTriExp tri(B0, B1);
355 
356  for (k = 0; k < dim; ++k)
357  {
358  Array<OneD, NekDouble> nodal(nq * nq);
359 
361  faceexp->GetBasis(0)->GetBasisKey(),
362  faceexp->GetBasis(1)->GetBasisKey(), newPos[k], B0,
363  B1, nodal);
364 
365  Array<OneD, NekDouble> tmp1(nq * (nq + 1) / 2);
366  Array<OneD, NekDouble> tmp2(nq * (nq + 1) / 2);
367 
368  tri.FwdTrans(nodal, tmp1);
369  nodalTri.ModalToNodal(tmp1, tmp2);
370  newPos[k] = tmp2;
371  }
372 
373  for (l = 0; l < nq * (nq + 1) / 2; ++l)
374  {
377  AllocateSharedPtr(dim, face->GetGlobalID(),
378  newPos[0][l], newPos[1][l],
379  newPos[2][l]);
380  curve->m_points.push_back(vert);
381  }
382  }
383  else
384  {
385  for (l = 0; l < nq * nq; ++l)
386  {
389  AllocateSharedPtr(dim, face->GetGlobalID(),
390  intPos[0][l], intPos[1][l],
391  intPos[2][l]);
392  curve->m_points.push_back(vert);
393  }
394  }
395 
396  curvedFaces[face->GetGlobalID()] = curve;
397  updatedFaces.insert(face->GetGlobalID());
398  }
399  }
400  }
401 
402  // Reset geometry information
403  for (i = 0; i < fields.size(); ++i)
404  {
405  fields[i]->Reset();
406  }
407 }
408 } // namespace GlobalMapping
409 } // namespace Nektar
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Describes the specification for a Basis.
Definition: Basis.h:50
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:130
PointsType GetPointsType() const
Return type of quadrature.
Definition: Basis.h:153
Defines a specification for a set of points.
Definition: Points.h:59
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
void ModalToNodal(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void UpdateGeometry(SpatialDomains::MeshGraphSharedPtr graph, Array< OneD, MultiRegions::ExpListSharedPtr > &fields, Array< OneD, Array< OneD, NekDouble >> &PhysVals, bool modal)
Update geometry according to displacement that is in current fields.
Definition: Deform.cpp:61
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:106
@ eNodalTriElec
2D Nodal Electrostatic Points on a Triangle
Definition: PointsType.h:83
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:53
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:44
@ eOrtho_B
Principle Orthogonal Functions .
Definition: BasisType.h:46
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
std::shared_ptr< Expansion3D > Expansion3DSharedPtr
Definition: Expansion2D.h:50
std::shared_ptr< Curve > CurveSharedPtr
Definition: Curve.hpp:60
std::unordered_map< int, CurveSharedPtr > CurveMap
Definition: Curve.hpp:61
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:172
std::shared_ptr< PointGeom > PointGeomSharedPtr
Definition: Geometry.h:59
std::shared_ptr< Geometry2D > Geometry2DSharedPtr
Definition: Geometry.h:65
std::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry.h:63
std::shared_ptr< Geometry3D > Geometry3DSharedPtr
Definition: Geometry3D.h:52
std::shared_ptr< StdExpansion2D > StdExpansion2DSharedPtr
std::shared_ptr< StdExpansion1D > StdExpansion1DSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359