38 #include <boost/algorithm/string/predicate.hpp>
39 #include <boost/core/ignore_unused.hpp>
68 int shapedim =
m_fields[0]->GetShapeDimension();
70 for (
int j = 0; j < shapedim; ++j)
91 "No TESTTYPE defined in session.");
92 std::string TestTypeStr =
m_session->GetSolverInfo(
"TESTTYPE");
109 NekDouble SecondToDay = 60.0 * 60.0 * 24.0;
114 m_g = (gms * SecondToDay * SecondToDay) / rad_earth;
118 m_session->LoadParameter(
"Omega", Omegams, 7.292 * 0.00001);
119 m_Omega = Omegams * SecondToDay;
130 NekDouble SecondToDay = 60.0 * 60.0 * 24.0;
135 m_g = (gms * SecondToDay * SecondToDay) / rad_earth;
139 m_session->LoadParameter(
"Omega", Omegams, 7.292 * 0.00001);
140 m_Omega = Omegams * SecondToDay;
142 m_H0 = 133681.0 / (rad_earth * gms);
143 m_k2 = 10.0 / (rad_earth * gms);
149 NekDouble SecondToDay = 60.0 * 60.0 * 24.0;
154 m_g = (gms * SecondToDay * SecondToDay) / rad_earth;
159 m_u0 =
m_u0 * SecondToDay / rad_earth;
161 m_session->LoadParameter(
"Omega", Omegams, 7.292 * 0.00001);
162 m_Omega = Omegams * SecondToDay;
164 m_H0 = 5960.0 / rad_earth;
165 m_hs0 = 2000.0 / rad_earth;
171 NekDouble SecondToDay = 60.0 * 60.0 * 24.0;
176 m_g = (gms * SecondToDay * SecondToDay) / rad_earth;
179 m_u0 =
m_u0 * SecondToDay / rad_earth;
181 m_session->LoadParameter(
"Omega", Omegams, 7.292 * 0.00001);
182 m_Omega = Omegams * SecondToDay;
191 m_hbar = 120.0 / rad_earth;
193 std::cout <<
"m_theta0 = " <<
m_theta0
195 <<
", m_hbar = " <<
m_hbar << std::endl;
201 NekDouble SecondToDay = 60.0 * 60.0 * 24.0;
206 m_g = (gms * SecondToDay * SecondToDay) / rad_earth;
208 m_session->LoadParameter(
"Omega", Omegams, 7.292 * 0.00001);
209 m_Omega = Omegams * SecondToDay;
214 m_angfreq = 7.848 * 0.000001 * SecondToDay;
215 m_K = 7.848 * 0.000001 * SecondToDay;
238 ASSERTL0(
false,
"Implicit unsteady Advection not set up.");
260 for (i = 0; i < nfields; ++i)
264 nvariables = nfields;
276 for (i = 0; i < nvariables; ++i)
289 "Only one of IO_CheckTime and IO_CheckSteps "
293 bool doCheckTime =
false;
299 NekDouble Mass = 0.0, Energy = 0.0, Enstrophy = 0.0, Vorticity = 0.0;
302 for (
int i = 0; i < nvariables; ++i)
322 std::cout <<
"Steps: " << std::setw(8) << std::left << step + 1
324 <<
"Time: " << std::setw(12) << std::left <<
m_time;
326 std::stringstream ss;
327 ss << cpuTime <<
"s";
328 std::cout <<
" CPU Time: " << std::setw(8) << std::left << ss.str()
342 Energy = (
ComputeEnergy(fieldsprimitive[0], fieldsprimitive[1],
343 fieldsprimitive[2]) -
351 fieldsprimitive[2]) -
355 std::cout <<
"dMass = " << std::setw(8) << std::left << Mass <<
" "
356 <<
", dEnergy = " << std::setw(8) << std::left << Energy
358 <<
", dEnstrophy = " << std::setw(8) << std::left
360 <<
", dVorticity = " << std::setw(8) << std::left
361 << Vorticity << std::endl
371 for (i = 0; i < nvariables; ++i)
395 if (
m_session->GetComm()->GetRank() == 0)
401 <<
"CFL time-step : " <<
m_timestep << std::endl;
404 if (
m_session->GetSolverInfo(
"Driver") !=
"SteadyState")
406 std::cout <<
"Time-integration : " << intTime <<
"s" << std::endl;
410 for (i = 0; i < nvariables; ++i)
419 for (i = 0; i < nvariables; ++i)
430 boost::ignore_unused(time);
433 int nvariables = inarray.size();
441 for (i = 0; i < nvariables; ++i)
454 for (i = 0; i < nvariables; ++i)
475 for (i = 0; i < nvariables; ++i)
477 m_fields[i]->MultiplyByElmtInvMass(modarray[i], modarray[i]);
478 m_fields[i]->BwdTrans(modarray[i], outarray[i]);
501 for (i = 0; i < nvariables; ++i)
503 physfield[i] = InField[i];
513 for (i = 0; i < nvariables; ++i)
524 Vmath::Vadd(ncoeffs, &tmp[0], 1, &OutField[i][0], 1,
533 for (i = 0; i < nvariables; ++i)
542 for (i = 0; i < nvariables; ++i)
545 m_fields[i]->AddFwdBwdTraceIntegral(numfluxFwd[i], numfluxBwd[i],
556 int ncoeffs = outarray[0].size();
557 int nq = physarray[0].size();
576 m_fields[0]->IProductWRTBase(tmp, tmpc);
578 Vmath::Vadd(ncoeffs, outarray[j + 1], 1, tmpc, 1, outarray[j + 1], 1);
586 int nq =
m_fields[0]->GetTotPoints();
597 Vmath::Vmul(nq, flux[1], 1, physfield[1], 1, flux[0], 1);
600 Vmath::Vmul(nq, flux[1], 1, physfield[2], 1, flux[1], 1);
613 Vmath::Vmul(nq, tmp, 1, physfield[1], 1, flux[1], 1);
616 Vmath::Vmul(nq, flux[1], 1, physfield[1], 1, flux[0], 1);
626 Vmath::Vmul(nq, flux[1], 1, physfield[2], 1, flux[1], 1);
639 Vmath::Vmul(nq, tmp, 1, physfield[2], 1, flux[0], 1);
642 Vmath::Vmul(nq, flux[0], 1, physfield[2], 1, flux[1], 1);
645 Vmath::Vmul(nq, flux[0], 1, physfield[1], 1, flux[0], 1);
692 for (i = 0; i < nvariables; ++i)
699 for (i = 0; i < nvariables; ++i)
701 m_fields[i]->GetFwdBwdTracePhys(physfield[i], Fwd[i], Bwd[i]);
725 for (k = 0; k < nTraceNumPoints; ++k)
749 for (k = 0; k < nTraceNumPoints; ++k)
752 Fwd[2][k], Bwd[0][k] + DepthFwd[k], Bwd[1][k],
753 Bwd[2][k], numfluxF, numfluxB);
771 denomFwd = eF1n * eF2t - eF2n * eF1t;
772 denomBwd = eB1n * eB2t - eB2n * eB1t;
774 numfluxFwd[0][k] = numfluxF[0];
775 numfluxFwd[1][k] = (1.0 / denomFwd) *
776 (eF2t * numfluxF[1] - eF2n * numfluxF[2]);
779 (-1.0 * eF1t * numfluxF[1] + eF1n * numfluxF[2]);
781 numfluxBwd[0][k] = 1.0 * numfluxB[0];
782 numfluxBwd[1][k] = (1.0 / denomBwd) *
783 (eB2t * numfluxB[1] - eB2n * numfluxB[2]);
786 (-1.0 * eB1t * numfluxB[1] + eB1n * numfluxB[2]);
798 for (k = 0; k < nTraceNumPoints; ++k)
803 Fwd[2][k], Bwd[0][k] + DepthFwd[k], Bwd[1][k],
804 Bwd[2][k], numfluxF, numfluxB);
810 Fwd[2][k], Bwd[0][k] + DepthFwd[k],
811 Bwd[1][k], Bwd[2][k], numfluxF, numfluxB);
817 Fwd[2][k], Bwd[0][k] + DepthFwd[k], Bwd[1][k],
818 Bwd[2][k], numfluxF, numfluxB);
823 for (i = 0; i < nvariables; ++i)
833 numfluxFwd[i][k] = tmpF0 + tmpF1 + numfluxF[indx + 2];
834 numfluxBwd[i][k] = tmpB0 + tmpB1 + numfluxB[indx + 2];
842 ASSERTL0(
false,
"populate switch statement for upwind flux");
853 boost::ignore_unused(index);
870 hstarF = 0.5 * (cL + cR) + 0.25 * (uL - uRF);
874 hstarB = 0.5 * (cL + cR) + 0.25 * (uLB - uR);
885 numfluxF[0] = hfluxF;
886 numfluxF[1] = hufluxF;
887 numfluxF[2] = hvfluxF;
889 numfluxB[0] = hfluxB;
890 numfluxB[1] = hufluxB;
891 numfluxB[2] = hvfluxB;
907 SL = uL - cL *
sqrt(0.5 * ((hstar * hstar + hstar * hL) / (hL * hL)));
913 SR = uR + cR *
sqrt(0.5 * ((hstar * hstar + hstar * hR) / (hR * hR)));
917 if (fabs(hR * (uR - SR) - hL * (uL - SL)) <= 1.0e-15)
920 Sstar = (SL * hR * (uR - SR) - SR * hL * (uL - SL)) /
921 (hR * (uR - SR) - hL * (uL - SL));
926 huflux = uL * uL * hL + 0.5 * g * hL * hL;
927 hvflux = hL * uL * vL;
932 huflux = uR * uR * hR + 0.5 * g * hR * hR;
933 hvflux = hR * uR * vR;
937 if ((SL < 0) && (Sstar >= 0))
939 hC = hL * ((SL - uL) / (SL - Sstar));
943 hflux = hL * uL + SL * (hC - hL);
944 huflux = (uL * uL * hL + 0.5 * g * hL * hL) + SL * (huC - hL * uL);
945 hvflux = (uL * vL * hL) + SL * (hvC - hL * vL);
949 hC = hR * ((SR - uR) / (SR - Sstar));
953 hflux = hR * uR + SR * (hC - hR);
954 huflux = (uR * uR * hR + 0.5 * g * hR * hR) + SR * (huC - hR * uR);
955 hvflux = (uR * vR * hR) + SR * (hvC - hR * vR);
965 NekDouble MageF1, MageF2, MageB1, MageB2;
973 eF1_cdot_eB2, eF2_cdot_eB1, eF2_cdot_eB2);
977 uRF = (uR * eF1_cdot_eB1 + vR * eF1_cdot_eB2) / MageF1;
978 vRF = (uR * eF2_cdot_eB1 + vR * eF2_cdot_eB2) / MageF2;
980 numfluxF[0] = 0.5 * (hL * uL + hR * uRF);
981 numfluxF[1] = 0.5 * (hL * vL + hR * vRF);
985 0.5 * (hL * uL * uL + hR * uRF * uRF + 0.5 * g * (hL * hL + hR * hR));
986 numfluxF[4] = 0.5 * (hL * uL * vL + hR * uRF * vRF);
989 numfluxF[6] = 0.5 * (hL * uL * vL + hR * uRF * vRF);
991 0.5 * (hL * vL * vL + hR * vRF * vRF + 0.5 * g * (hL * hL + hR * hR));
996 uLB = (uL * eF1_cdot_eB1 + vL * eF2_cdot_eB1) / MageB1;
997 vLB = (uL * eF1_cdot_eB2 + vL * eF2_cdot_eB2) / MageB2;
999 numfluxB[0] = 0.5 * (hR * uR + hR * uLB);
1000 numfluxB[1] = 0.5 * (hR * vR + hR * vLB);
1004 0.5 * (hR * uR * uR + hR * uLB * uLB + 0.5 * g * (hR * hR + hL * hL));
1005 numfluxB[4] = 0.5 * (hR * uR * vR + hR * uLB * vLB);
1008 numfluxB[6] = 0.5 * (hR * uR * vR + hR * uLB * vLB);
1010 0.5 * (hR * vR * vR + hR * vLB * vLB + 0.5 * g * (hR * hR + hL * hL));
1020 NekDouble MageF1, MageF2, MageB1, MageB2;
1033 eF1_cdot_eB2, eF2_cdot_eB1, eF2_cdot_eB2);
1039 EigF[0] = velL -
sqrt(g * hL);
1041 EigF[2] = velL +
sqrt(g * hL);
1043 EigB[0] = velR -
sqrt(g * hR);
1045 EigB[2] = velR +
sqrt(g * hR);
1052 uRF = (uR * eF1_cdot_eB1 + vR * eF1_cdot_eB2) / MageF1;
1053 vRF = (uR * eF2_cdot_eB1 + vR * eF2_cdot_eB2) / MageF2;
1055 numfluxF[0] = 0.5 * (hL * uL + hR * uRF);
1056 numfluxF[1] = 0.5 * (hL * vL + hR * vRF);
1057 numfluxF[2] = 0.5 * lambdaF * (hL - hR);
1059 numfluxF[3] = 0.5 * (hL * uL * uL * MageF1 + hR * uRF * uRF * MageB1 +
1060 0.5 * g * (hL * hL + hR * hR));
1061 numfluxF[4] = 0.5 * (hL * uL * vL * MageF1 + hR * uRF * vRF * MageB1);
1062 numfluxF[5] = 0.5 * lambdaF * (uL * hL - uRF * hR);
1064 numfluxF[6] = 0.5 * (hL * uL * vL * MageF2 + hR * uRF * vRF * MageB2);
1065 numfluxF[7] = 0.5 * (hL * vL * vL * MageF2 + hR * vRF * vRF * MageB2 +
1066 0.5 * g * (hL * hL + hR * hR));
1067 numfluxF[8] = 0.5 * lambdaF * (vL * hL - vRF * hR);
1071 uLB = (uL * eF1_cdot_eB1 + vL * eF2_cdot_eB1) / MageB1;
1072 vLB = (uL * eF1_cdot_eB2 + vL * eF2_cdot_eB2) / MageB2;
1074 numfluxB[0] = 0.5 * (hR * uR + hR * uLB);
1075 numfluxB[1] = 0.5 * (hR * vR + hR * vLB);
1076 numfluxB[2] = 0.5 * lambdaB * (hL - hR);
1078 numfluxB[3] = 0.5 * (hR * uR * uR * MageB1 + hR * uLB * uLB * MageF1 +
1079 0.5 * g * (hR * hR + hL * hL));
1080 numfluxB[4] = 0.5 * (hR * uR * vR * MageB1 + hR * uLB * vLB * MageF1);
1081 numfluxB[5] = 0.5 * lambdaB * (uLB * hL - uR * hR);
1083 numfluxB[6] = 0.5 * (hR * uR * vR * MageB2 + hR * uLB * vLB * MageF2);
1084 numfluxB[7] = 0.5 * (hR * vR * vR * MageB2 + hR * vLB * vLB * MageF2 +
1085 0.5 * g * (hR * hR + hL * hL));
1086 numfluxB[8] = 0.5 * lambdaB * (vLB * hL - vR * hR);
1095 NekDouble MageF1, MageF2, MageB1, MageB2;
1108 eF1_cdot_eB2, eF2_cdot_eB1, eF2_cdot_eB2);
1115 SL = fabs(velL) +
sqrt(g * hL);
1116 SR = fabs(velR) +
sqrt(g * hR);
1126 uRF = (uR * eF1_cdot_eB1 + vR * eF1_cdot_eB2) / MageF1;
1127 vRF = (uR * eF2_cdot_eB1 + vR * eF2_cdot_eB2) / MageF2;
1129 numfluxF[0] = 0.5 * (hL * uL + hR * uRF);
1130 numfluxF[1] = 0.5 * (hL * vL + hR * vRF);
1131 numfluxF[2] = 0.5 * S * (hL - hR);
1134 0.5 * (hL * uL * uL + hR * uRF * uRF + 0.5 * g * (hL * hL + hR * hR));
1135 numfluxF[4] = 0.5 * (hL * uL * vL + hR * uRF * vRF);
1136 numfluxF[5] = 0.5 * S * (uL * hL - uRF * hR);
1138 numfluxF[6] = 0.5 * (hL * uL * vL + hR * uRF * vRF);
1140 0.5 * (hL * vL * vL + hR * vRF * vRF + 0.5 * g * (hL * hL + hR * hR));
1141 numfluxF[8] = 0.5 * S * (vL * hL - vRF * hR);
1145 uLB = (uL * eF1_cdot_eB1 + vL * eF2_cdot_eB1) / MageB1;
1146 vLB = (uL * eF1_cdot_eB2 + vL * eF2_cdot_eB2) / MageB2;
1148 numfluxB[0] = 0.5 * (hR * uR + hR * uLB);
1149 numfluxB[1] = 0.5 * (hR * vR + hR * vLB);
1150 numfluxB[2] = 0.5 * S * (hL - hR);
1153 0.5 * (hR * uR * uR + hR * uLB * uLB + 0.5 * g * (hR * hR + hL * hL));
1154 numfluxB[4] = 0.5 * (hR * uR * vR + hR * uLB * vLB);
1155 numfluxB[5] = 0.5 * S * (uLB * hL - uR * hR);
1157 numfluxB[6] = 0.5 * (hR * uR * vR + hR * uLB * vLB);
1159 0.5 * (hR * vR * vR + hR * vLB * vLB + 0.5 * g * (hR * hR + hL * hL));
1160 numfluxB[8] = 0.5 * S * (vLB * hL - vR * hR);
1169 NekDouble MF1x, MF1y, MF1z, MF2x, MF2y, MF2z;
1170 NekDouble MB1x, MB1y, MB1z, MB2x, MB2y, MB2z;
1189 MageF1 = MF1x * MF1x + MF1y * MF1y + MF1z * MF1z;
1190 MageF2 = MF2x * MF2x + MF2y * MF2y + MF2z * MF2z;
1191 MageB1 = MB1x * MB1x + MB1y * MB1y + MB1z * MB1z;
1192 MageB2 = MB2x * MB2x + MB2y * MB2y + MB2z * MB2z;
1194 eF1_cdot_eB1 = MF1x * MB1x + MF1y * MB1y + MF1z * MB1z;
1195 eF1_cdot_eB2 = MF1x * MB2x + MF1y * MB2y + MF1z * MB2z;
1196 eF2_cdot_eB1 = MF2x * MB1x + MF2y * MB1y + MF2z * MB1z;
1197 eF2_cdot_eB2 = MF2x * MB2x + MF2y * MB2y + MF2z * MB2z;
1204 int ncoeffs = outarray[0].size();
1205 int nq = physarray[0].size();
1240 m_fields[0]->IProductWRTBase(tmp, tmpc);
1241 Vmath::Vadd(ncoeffs, tmpc, 1, outarray[j + 1], 1, outarray[j + 1], 1);
1249 int ncoeffs = outarray[0].size();
1250 int nq = physarray[0].size();
1266 m_fields[0]->IProductWRTBase(tmp, tmpc);
1268 Vmath::Vadd(ncoeffs, tmpc, 1, outarray[j + 1], 1, outarray[j + 1], 1);
1279 int ncoeffs = outarray[0].size();
1280 int nq = physarray[0].size();
1297 Vmath::Vmul(nq, physarray[1], 1, de0dt_cdot_e0, 1, Rott1, 1);
1298 Vmath::Vmul(nq, physarray[1], 1, de0dt_cdot_e1, 1, Rott2, 1);
1299 Vmath::Vvtvp(nq, physarray[2], 1, de1dt_cdot_e0, 1, Rott1, 1, Rott1, 1);
1300 Vmath::Vvtvp(nq, physarray[2], 1, de1dt_cdot_e1, 1, Rott2, 1, Rott2, 1);
1303 Vmath::Vmul(nq, &h[0], 1, &Rott1[0], 1, &Rott1[0], 1);
1304 Vmath::Vmul(nq, &h[0], 1, &Rott2[0], 1, &Rott2[0], 1);
1311 m_fields[0]->IProductWRTBase(Rott1, tmpc1);
1312 m_fields[0]->IProductWRTBase(Rott2, tmpc2);
1314 Vmath::Vadd(ncoeffs, tmpc1, 1, outarray[1], 1, outarray[1], 1);
1315 Vmath::Vadd(ncoeffs, tmpc2, 1, outarray[2], 1, outarray[2], 1);
1323 const int indm,
const int indk,
1328 int nq =
m_fields[0]->GetNpoints();
1342 Vmath::Vmul(nq, &physarray[j + 1][0], 1, &tmpderiv[0], 1,
1346 &outarray[0], 1, &outarray[0], 1);
1372 ASSERTL0(
false,
"Unknown projection scheme");
1385 for (
int n = 0; n <
m_fields[0]->GetBndConditions().size(); ++n)
1389 if (
m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
"eMG")
1393 ASSERTL0(
false,
"Illegal dimension");
1402 if (
m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
"eWall")
1406 ASSERTL0(
false,
"Illegal dimension");
1415 if (
m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
1418 for (
int i = 0; i < nvariables; ++i)
1420 m_fields[i]->EvaluateBoundaryConditions(time);
1423 cnt +=
m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
1433 int nvariables = physarray.size();
1437 for (i = 0; i < nvariables; ++i)
1440 m_fields[i]->ExtractTracePhys(physarray[i], Fwd0[i]);
1444 for (i = 0; i < nvariables; ++i)
1447 m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
1452 int e, id1, id2, npts;
1458 ->GetBndCondExpansions()[bcRegion]
1461 id1 =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
1462 id2 =
m_fields[0]->GetTrace()->GetPhys_Offset(
1463 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt + e));
1481 &tmp_n[0], 1, &tmp_n[0], 1);
1486 1, &tmp_t[0], 1, &tmp_t[0], 1);
1506 &tmp_u[0], 1, &tmp_u[0], 1);
1507 Vmath::Vdiv(npts, &tmp_u[0], 1, &denom[0], 1, &tmp_u[0], 1);
1514 &tmp_v[0], 1, &tmp_v[0], 1);
1515 Vmath::Vdiv(npts, &tmp_v[0], 1, &denom[0], 1, &tmp_v[0], 1);
1522 ASSERTL0(
false,
"Illegal expansion dimension");
1526 for (i = 0; i < nvariables; ++i)
1530 ->GetBndCondExpansions()[bcRegion]
1531 ->UpdatePhys())[id1],
1549 for (
int i = 0; i <
m_fields.size(); ++i)
1581 NekDouble sin_varphi, cos_varphi, sin_theta, cos_theta;
1583 for (
int j = 0; j < nq; ++j)
1590 sin_theta, cos_theta);
1609 NekDouble phi, theta, sin_varphi, cos_varphi, sin_theta, cos_theta;
1615 thetac =
m_pi / 6.0;
1617 for (
int j = 0; j < nq; ++j)
1624 sin_theta, cos_theta);
1626 if ((
std::abs(sin(phic) - sin_varphi) +
1627 std::abs(sin(thetac) - sin_theta)) < Tol)
1629 std::cout <<
"A point " << j
1630 <<
" is coincient with the singularity "
1635 phi = atan2(sin_varphi, cos_varphi);
1636 theta = atan2(sin_theta, cos_theta);
1639 dist2 = (phi - phic) * (phi - phic) +
1640 (theta - thetac) * (theta - thetac);
1642 if (dist2 > hRad * hRad)
1644 dist2 = hRad * hRad;
1652 std::cout <<
"No point is coincident with the singularity point"
1660 for (
int j = 0; j < nq; ++j)
1691 std::cout <<
"Water Depth (m_depth) was generated with mag = "
1730 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
1742 for (
int j = 0; j < nq; ++j)
1753 tmp = -1.0 * cos_varphi * cos_theta * sin(
m_alpha) +
1755 outarray[j] = 2.0 *
m_Omega * tmp;
1764 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
1773 for (
int j = 0; j < nq; ++j)
1782 outarray[j] = 2.0 *
m_Omega * sin_theta;
1787 bool dumpInitialConditions,
1790 boost::ignore_unused(domain);
1812 for (
int i = 0; i <
m_fields.size(); ++i)
1845 for (
int i = 0; i <
m_fields.size(); ++i)
1874 for (
int i = 0; i <
m_fields.size(); ++i)
1903 for (
int i = 0; i <
m_fields.size(); ++i)
1932 for (
int i = 0; i <
m_fields.size(); ++i)
1961 for (
int i = 0; i <
m_fields.size(); ++i)
1974 if (dumpInitialConditions)
1988 boost::ignore_unused(time);
1990 int nq =
m_fields[0]->GetNpoints();
1996 m_fields[0]->GetCoords(x0, x1, x2);
2009 for (
int i = 0; i < nq; ++i)
2011 eta0[i] = (0.771 * 0.395 * 0.395 * (1.0 / cosh(0.395 * x0[i])) *
2012 (1.0 / cosh(0.395 * x0[i]))) *
2013 (3.0 + 6.0 * x1[i] * x1[i]) / (4.0) *
2014 exp(-0.5 * x1[i] * x1[i]);
2015 uvec[0][i] = (0.771 * 0.395 * 0.395 * (1.0 / cosh(0.395 * x0[i])) *
2016 (1.0 / cosh(0.395 * x0[i]))) *
2017 (-9.0 + 6.0 * x1[i] * x1[i]) / (4.0) *
2018 exp(-0.5 * x1[i] * x1[i]);
2019 uvec[1][i] = (-2.0 * 0.395 * tanh(0.395 * x0[i])) *
2020 (0.771 * 0.395 * 0.395 * (1.0 / cosh(0.395 * x0[i])) *
2021 (1.0 / cosh(0.395 * x0[i]))) *
2022 (2.0 * x1[i]) * exp(-0.5 * x1[i] * x1[i]);
2055 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
2074 for (
int j = 0; j < nq; ++j)
2085 tmp = -1.0 * cos_varphi * cos_theta * sin(
m_alpha) +
2092 sin_theta * cos_varphi * sin(
m_alpha));
2095 uvec[0][j] = -1.0 * uhat * sin_varphi - vhat * sin_theta * cos_varphi;
2096 uvec[1][j] = uhat * cos_varphi - vhat * sin_theta * sin_varphi;
2097 uvec[2][j] = vhat * cos_theta;
2143 int nq =
m_fields[0]->GetTotPoints();
2155 int nq =
m_fields[0]->GetTotPoints();
2184 int nq =
m_fields[0]->GetTotPoints();
2215 int nq =
m_fields[0]->GetTotPoints();
2229 Vmath::Vadd(nq, tmp, 1, Vorticity, 1, Vorticity, 1);
2234 int nq =
m_fields[0]->GetNpoints();
2256 1, &velcoeff[0], 1, &velcoeff[0], 1);
2260 m_fields[0]->PhysDeriv(velcoeff, Dtmp0, Dtmp1, Dtmp2);
2270 1, &vellc[0], 1, &vellc[0], 1);
2277 1, &vellc[0], 1, &vellc[0], 1);
2284 1, &vellc[0], 1, &vellc[0], 1);
2297 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
2318 for (
int j = 0; j < nq; ++j)
2331 cos_varphi * cos(
m_Omega * time) - sin_varphi * sin(
m_Omega * time);
2333 sin_varphi * cos(
m_Omega * time) + cos_varphi * sin(
m_Omega * time);
2334 tmp = -1.0 * TR * sin(
m_alpha) * cos_theta + cos(
m_alpha) * sin_theta;
2336 eta[j] = -1.0 * (
m_u0 * tmp +
m_Omega * sin_theta) *
2339 eta[j] = 0.5 * eta[j] /
m_g;
2347 uvec[0][j] = -1.0 * uhat * sin_varphi - vhat * sin_theta * cos_varphi;
2348 uvec[1][j] = uhat * cos_varphi - vhat * sin_theta * sin_varphi;
2349 uvec[2][j] = vhat * cos_theta;
2396 boost::ignore_unused(time);
2401 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
2420 for (
int j = 0; j < nq; ++j)
2431 sin_theta * sin_theta;
2433 uhat =
m_u0 * cos_theta;
2436 uvec[0][j] = -1.0 * uhat * sin_varphi - vhat * sin_theta * cos_varphi;
2437 uvec[1][j] = uhat * cos_varphi - vhat * sin_theta * sin_varphi;
2438 uvec[2][j] = vhat * cos_theta;
2485 boost::ignore_unused(time);
2490 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
2512 for (
int j = 0; j < nq; ++j)
2521 Ttheta = atan2(sin_theta, cos_theta);
2522 Tphi = atan2(sin_varphi, cos_varphi);
2528 dth = Ttheta / Nint;
2529 eta[j] = dth * 0.5 *
2531 for (
int i = 1; i < Nint - 1; i++)
2536 eta[j] = (-1.0 /
m_g) * eta[j];
2541 eta[j] = eta[j] +
m_hbar * cos_theta * exp(-9.0 * Tphi * Tphi) *
2542 exp(-225.0 * (
m_pi / 4.0 - Ttheta) *
2543 (
m_pi / 4.0 - Ttheta));
2546 uvec[0][j] = -1.0 * uhat * sin_varphi - vhat * sin_theta * cos_varphi;
2547 uvec[1][j] = uhat * cos_varphi - vhat * sin_theta * sin_varphi;
2548 uvec[2][j] = vhat * cos_theta;
2596 NekDouble sin_theta, cos_theta, sin_varphi, cos_varphi;
2617 NekDouble cos2theta, cosRtheta, cos6theta, cos2Rtheta, cosRm1theta;
2618 NekDouble cos2phi, cos4phi, sin4phi, cos8phi;
2624 phi0 = 40.0 *
m_pi / 180.0;
2625 theta0 = 50.0 *
m_pi / 180.0;
2627 x0d = cos(phi0) * cos(theta0);
2628 y0d = sin(phi0) * cos(theta0);
2631 for (
int j = 0; j < nq; ++j)
2644 cos2theta = cos_theta * cos_theta;
2645 cosRm1theta = cos_theta * cos2theta;
2646 cosRtheta = cos2theta * cos2theta;
2647 cos6theta = cos2theta * cosRtheta;
2648 cos2Rtheta = cosRtheta * cosRtheta;
2651 Ath = tmp * cos2theta +
2652 0.25 *
m_K *
m_K * cos6theta *
2653 ((R + 1.0) * cosRtheta + (2 * R * R - R - 2.0) * cos2theta -
2657 Bth = tmp * cosRtheta *
2658 ((R * R + 2 * R + 2) - (R + 1.0) * (R + 1.0) * cos2theta);
2661 0.25 *
m_K *
m_K * cos2Rtheta * ((R + 1.0) * cos2theta - (R + 2.0));
2664 cos2phi = 2.0 * cos_varphi * cos_varphi - 1.0;
2665 cos4phi = 2.0 * cos2phi * cos2phi - 1.0;
2666 cos8phi = 2.0 * cos4phi * cos4phi - 1.0;
2669 sin4phi = 4.0 * sin_varphi * cos_varphi * cos2phi;
2671 eta[j] =
m_H0 + (1.0 /
m_g) * (Ath + Bth * cos4phi + Cth * cos8phi);
2677 (1.0 + (1.0 / 40.0) * (x0j * x0d + x1j * y0d + x2j * z0d));
2683 m_K * cosRm1theta * (R * sin_theta * sin_theta - cos2theta) *
2685 vhat = -1.0 *
m_K * R * cosRm1theta * sin_theta * sin4phi;
2687 uvec[0][j] = -1.0 * uhat * sin_varphi - vhat * sin_theta * cos_varphi;
2688 uvec[1][j] = uhat * cos_varphi - vhat * sin_theta * sin_varphi;
2689 uvec[2][j] = vhat * cos_theta;
2742 f = 2.0 *
m_Omega * sin(theta);
2744 dh = f * uphi + tan(theta) * uphi * uphi;
2769 int nq =
m_fields[0]->GetTotPoints();
2770 int ncoeffs =
m_fields[0]->GetNcoeffs();
2772 NekDouble rad_earth = 6.37122 * 1000000;
2777 std::vector<std::string> variables(nvariables);
2779 variables[0] =
"eta";
2780 variables[1] =
"hstar";
2781 variables[2] =
"vorticity";
2782 variables[3] =
"ux";
2783 variables[4] =
"uy";
2784 variables[5] =
"uz";
2785 variables[6] =
"null";
2789 std::vector<Array<OneD, NekDouble>> fieldcoeffs(nvariables);
2790 for (
int i = 0; i < nvariables; ++i)
2797 &fieldphys[0][0], 1);
2804 Vmath::Smul(nq, rad_earth, &fieldphys[1][0], 1, &fieldphys[1][0], 1);
2818 &fieldphys[k + indx][0], 1);
2820 &fieldphys[k + indx][0], 1, &fieldphys[k + indx][0], 1);
2823 for (
int i = 0; i < nvariables; ++i)
2825 m_fields[0]->FwdTrans(fieldphys[i], fieldcoeffs[i]);
2838 if (physin[0].get() == physout[0].get())
2842 for (
int i = 0; i < 3; ++i)
2853 Vmath::Vdiv(nq, tmp[1], 1, tmp[0], 1, physout[1], 1);
2856 Vmath::Vdiv(nq, tmp[2], 1, tmp[0], 1, physout[2], 1);
2864 Vmath::Vdiv(nq, physin[1], 1, physin[0], 1, physout[1], 1);
2867 Vmath::Vdiv(nq, physin[2], 1, physin[0], 1, physout[2], 1);
2878 if (physin[0].get() == physout[0].get())
2882 for (
int i = 0; i < 3; ++i)
2893 Vmath::Vmul(nq, physout[0], 1, tmp[1], 1, physout[1], 1);
2896 Vmath::Vmul(nq, physout[0], 1, tmp[2], 1, physout[2], 1);
2904 Vmath::Vmul(nq, physout[0], 1, physin[1], 1, physout[1], 1);
2907 Vmath::Vmul(nq, physout[0], 1, physin[2], 1, physout[2], 1);
2951 int nq =
m_fields[0]->GetTotPoints();
2956 NekDouble theta, phi, sin_theta, cos_theta, sin_varphi, cos_varphi;
2981 for (k = 0; k < nq; ++k)
2987 Re =
sqrt(xp * xp + yp * yp + zp * zp);
2994 theta = atan2(sin_theta, cos_theta);
2995 phi = atan2(sin_varphi, cos_varphi);
2997 cosntheta3 = cos(n * theta) * cos(n * theta) * cos(n * theta);
2999 beta_theta = -4.0 * n * cosntheta3 * cos(m * phi) * sin(n * theta) / Re;
3000 beta_phi = -m * cosntheta3 * sin(m * phi) / Re;
3002 thetax = -1.0 * cos_varphi * sin_theta;
3003 thetay = -1.0 * sin_varphi * sin_theta;
3006 phix = -1.0 * sin_varphi;
3010 uvec[0][k] = alpha * (beta_theta * thetax + beta_phi * phix);
3011 uvec[1][k] = alpha * (beta_theta * thetay + beta_phi * phiy);
3012 uvec[2][k] = alpha * (beta_theta * thetaz + beta_phi * phiz);
3014 vorticityexact[k] = -4.0 * n / Re / Re * cos_theta * cos_theta *
3015 cos_varphi * cos(m * phi) * sin(n * theta);
3021 std::cout <<
"chi migi1" << std::endl;
3032 Vmath::Vsub(nq, vorticityexact, 1, vorticitycompt, 1, vorticitycompt, 1);
3034 std::cout <<
"Vorticity: L2 error = " <<
AvgAbsInt(vorticitycompt)
3035 <<
", Linf error = " <<
Vmath::Vamax(nq, vorticitycompt, 1)
3043 boost::ignore_unused(exactsoln);
3045 int nq =
m_fields[field]->GetNpoints();
3050 if (
m_fields[field]->GetPhysState() ==
false)
3068 &exactsolution[0], 1, &exactsolution[0], 1);
3069 Vmath::Vabs(nq, exactsolution, 1, exactsolution, 1);
3071 L2error = (
m_fields[0]->Integral(exactsolution)) / L2exact;
3088 Vmath::Vvtvp(nq, exactv, 1, exactv, 1, tmp, 1, tmp, 1);
3091 L2exact =
m_fields[1]->Integral(tmp);
3100 Vmath::Vvtvp(nq, exactv, 1, exactv, 1, tmp, 1, tmp, 1);
3103 L2error = (
m_fields[1]->Integral(tmp)) / L2exact;
3117 if (Normalised ==
true)
3124 L2error =
sqrt(L2error * L2error / Vol);
3140 boost::ignore_unused(exactsoln);
3144 if (
m_fields[field]->GetPhysState() ==
false)
3150 int nq =
m_fields[field]->GetNpoints();
3174 1, &exactsolution[0], 1);
3196 Vmath::Vsub(nq, &exactu[0], 1, &tmpu[0], 1, &tmpu[0], 1);
3197 Vmath::Vsub(nq, &exactv[0], 1, &tmpv[0], 1, &tmpv[0], 1);
3199 Vmath::Vmul(nq, &tmpu[0], 1, &tmpu[0], 1, &tmpu[0], 1);
3200 Vmath::Vmul(nq, &tmpv[0], 1, &tmpv[0], 1, &tmpv[0], 1);
3202 Vmath::Vadd(nq, &tmpu[0], 1, &tmpv[0], 1, &Lerr[0], 1);
3206 Vmath::Vmul(nq, &exactu[0], 1, &exactu[0], 1, &tmpu[0], 1);
3207 Vmath::Vmul(nq, &exactv[0], 1, &exactv[0], 1, &tmpv[0], 1);
3208 Vmath::Vadd(nq, &tmpu[0], 1, &tmpv[0], 1, &uT[0], 1);
#define ASSERTL0(condition, msg)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
NekDouble TimePerTest(unsigned int n)
Returns amount of seconds per iteration in a test with n iterations.
void ComputeVorticity(const Array< OneD, const NekDouble > &u, const Array< OneD, const NekDouble > &v, Array< OneD, NekDouble > &Vorticity)
void AddCoriolis(Array< OneD, Array< OneD, NekDouble >> &physarray, Array< OneD, Array< OneD, NekDouble >> &outarray)
void UnstableJetFlow(unsigned int field, const NekDouble time, Array< OneD, NekDouble > &outfield)
virtual void v_InitObject(bool DeclareFields=true) override
Initialise the object.
NekDouble ComputeUnstableJetuphi(const NekDouble theta)
MMFSWE(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Session reader.
void AddElevationEffect(Array< OneD, Array< OneD, NekDouble >> &physarray, Array< OneD, Array< OneD, NekDouble >> &outarray)
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
virtual ~MMFSWE()
Destructor.
void RossbyWave(unsigned int field, Array< OneD, NekDouble > &outfield)
void ComputeNablaCdotVelocity(Array< OneD, NekDouble > &vellc)
virtual NekDouble v_L2Error(unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised) override
Virtual function for the L_2 error computation between fields and a given exact solution.
void GetSWEFluxVector(const int i, const Array< OneD, const Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, NekDouble >> &flux)
void AddDivForGradient(Array< OneD, Array< OneD, NekDouble >> &physarray, Array< OneD, Array< OneD, NekDouble >> &outarray)
void WeakDGSWEDirDeriv(const Array< OneD, Array< OneD, NekDouble >> &InField, Array< OneD, Array< OneD, NekDouble >> &OutField)
void EvaluateStandardCoriolis(Array< OneD, NekDouble > &outarray)
static std::string className
Name of class.
void PrimitiveToConservative()
virtual void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time) override
void IsolatedMountainFlow(unsigned int field, const NekDouble time, Array< OneD, NekDouble > &outfield)
Array< OneD, NekDouble > m_coriolis
Coriolis force.
void ComputeMagAndDot(const int index, NekDouble &MageF1, NekDouble &MageF2, NekDouble &MageB1, NekDouble &MageB2, NekDouble &eF1_cdot_eB1, NekDouble &eF1_cdot_eB2, NekDouble &eF2_cdot_eB1, NekDouble &eF2_cdot_eB2)
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the RHS.
void Compute_demdt_cdot_ek(const int indm, const int indk, const Array< OneD, const Array< OneD, NekDouble >> &physarray, Array< OneD, NekDouble > &outarray)
void AverageFlux(const int index, NekDouble hL, NekDouble uL, NekDouble vL, NekDouble hR, NekDouble uR, NekDouble vR, Array< OneD, NekDouble > &numfluxF, Array< OneD, NekDouble > &numfluxB)
void Checkpoint_Output_Cartesian(std::string outname)
void Computehhuhvflux(NekDouble hL, NekDouble uL, NekDouble vL, NekDouble hR, NekDouble uR, NekDouble vR, NekDouble hstar, NekDouble &hflux, NekDouble &huflux, NekDouble &hvflux)
virtual NekDouble v_LinfError(unsigned int field, const Array< OneD, NekDouble > &exactsoln) override
Virtual function for the L_inf error computation between fields and a given exact solution.
void TestVorticityComputation()
void RiemannSolverHLLC(const int index, NekDouble hL, NekDouble uL, NekDouble vL, NekDouble hR, NekDouble uR, NekDouble vR, Array< OneD, NekDouble > &numfluxF, Array< OneD, NekDouble > &numfluxB)
virtual void v_DoInitialise() override
Sets up initial conditions.
NekDouble ComputeEnstrophy(const Array< OneD, const NekDouble > &eta, const Array< OneD, const NekDouble > &u, const Array< OneD, const NekDouble > &v)
void NumericalSWEFlux(Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, NekDouble >> &numfluxFwd, Array< OneD, Array< OneD, NekDouble >> &numfluxBwd)
virtual void v_GenerateSummary(SolverUtils::SummaryList &s) override
Print Summary.
virtual void v_SetInitialConditions(const NekDouble initialtime, bool dumpInitialConditions, const int domain) override
NekDouble ComputeMass(const Array< OneD, const NekDouble > &eta)
void EvaluateWaterDepth(void)
void UnsteadyZonalFlow(unsigned int field, const NekDouble time, Array< OneD, NekDouble > &outfield)
NekDouble ComputeEnergy(const Array< OneD, const NekDouble > &eta, const Array< OneD, const NekDouble > &u, const Array< OneD, const NekDouble > &v)
void LaxFriedrichFlux(const int index, NekDouble hL, NekDouble uL, NekDouble vL, NekDouble hR, NekDouble uR, NekDouble vR, Array< OneD, NekDouble > &numfluxF, Array< OneD, NekDouble > &numfluxB)
NekDouble ComputeUnstableJetEta(const NekDouble theta)
void EvaluateCoriolis(void)
void EvaluateCoriolisForZonalFlow(Array< OneD, NekDouble > &outarray)
Array< OneD, Array< OneD, NekDouble > > m_velocity
Advection velocity.
void WallBoundary2D(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble >> &physarray)
virtual void v_DoSolve() override
Solves an unsteady problem.
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble >> &inarray, NekDouble time)
void TestSWE2Dproblem(const NekDouble time, unsigned int field, Array< OneD, NekDouble > &outfield)
void AddRotation(Array< OneD, Array< OneD, NekDouble >> &physarray, Array< OneD, Array< OneD, NekDouble >> &outarray)
Array< OneD, Array< OneD, NekDouble > > m_Derivdepth
void ConservativeToPrimitive()
void SteadyZonalFlow(unsigned int field, Array< OneD, NekDouble > &outfield)
void RusanovFlux(const int index, NekDouble hL, NekDouble uL, NekDouble vL, NekDouble hR, NekDouble uR, NekDouble vR, Array< OneD, NekDouble > &numfluxF, Array< OneD, NekDouble > &numfluxB)
Array< OneD, NekDouble > m_depth
Still water depth.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the projection.
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
int m_expdim
Expansion dimension.
LibUtilities::CommSharedPtr m_comm
Communicator.
NekDouble m_timestep
Time step size.
int m_infosteps
Number of time steps between outputting status information.
NekDouble m_time
Current time of simulation.
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT NekDouble LinfError(unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
Linf error computation.
SOLVER_UTILS_EXPORT void EvaluateExactSolution(int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
Evaluates an exact solution.
NekDouble m_fintime
Finish time of the simulation.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
NekDouble m_checktime
Time between checkpoints.
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
SOLVER_UTILS_EXPORT int GetExpSize()
std::string m_sessionName
Name of the session.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > ErrorExtraPoints(unsigned int field)
Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
int m_steps
Number of steps to take.
int m_NumQuadPointsError
Number of Quadrature points used to work out the error.
int m_checksteps
Number of steps between checkpoints.
SOLVER_UTILS_EXPORT void SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Initialise the data in the dependent fields.
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
SOLVER_UTILS_EXPORT int GetTotPoints()
A base class for PDEs which include an advection component.
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > CartesianToMovingframes(const Array< OneD, const Array< OneD, NekDouble >> &uvec, unsigned int field)
Array< OneD, Array< OneD, NekDouble > > m_DivMF
Array< OneD, Array< OneD, NekDouble > > m_nperpcdotMFFwd
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
Array< OneD, Array< OneD, NekDouble > > m_nperpcdotMFBwd
SOLVER_UTILS_EXPORT NekDouble AvgAbsInt(const Array< OneD, const NekDouble > &inarray)
Array< OneD, Array< OneD, NekDouble > > m_movingframes
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_MFtraceFwd
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_MFtraceBwd
SOLVER_UTILS_EXPORT void MMFInitObject(const Array< OneD, const Array< OneD, NekDouble >> &Anisotropy, const int TangentXelem=-1)
SOLVER_UTILS_EXPORT void CopyBoundaryTrace(const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, const BoundaryCopyType BDCopyType, const int var=0, const std::string btype="NoUserDefined")
Array< OneD, Array< OneD, NekDouble > > m_ncdotMFBwd
SOLVER_UTILS_EXPORT void CartesianToSpherical(const NekDouble x0j, const NekDouble x1j, const NekDouble x2j, NekDouble &sin_varphi, NekDouble &cos_varphi, NekDouble &sin_theta, NekDouble &cos_theta)
SurfaceType m_surfaceType
Array< OneD, Array< OneD, NekDouble > > m_ncdotMFFwd
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_CurlMF
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
std::vector< int > m_intVariables
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
std::vector< std::pair< std::string, std::string > > SummaryList
EquationSystemFactory & GetEquationSystemFactory()
@ eAverage
averaged (or centred) flux
@ eLaxFriedrich
Lax-Friedrich flux.
@ eHLLC
Harten-Lax-Leer Contact wave flux.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
The above copyright notice and this permission notice shall be included.
@ SIZE_TestType
Length of enum list.
const char *const TestTypeMap[]
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
void Neg(int n, T *x, const int incx)
Negate x = -x.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Zero(int n, T *x, const int incx)
Zero vector.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
T Vamax(int n, const T *x, const int incx)
Return the maximum absolute element in x called vamax to avoid conflict with max.
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
scalarT< T > abs(scalarT< T > in)
scalarT< T > sqrt(scalarT< T > in)