Nektar++
PowerPressureArea.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: PowerPressureArea.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: PowerPressureArea class
33 //
34 ///////////////////////////////////////////////////////////////////////////////
36 
37 using namespace std;
38 
39 namespace Nektar
40 {
41 
42 std::string PowerPressureArea::className =
44  "Power", PowerPressureArea::create,
45  "Power law pressure area relationship for the arterial system");
46 
47 PowerPressureArea::PowerPressureArea(
50  : PulseWavePressureArea(pVessel, pSession)
51 {
52  m_session->LoadParameter("P_Collapse", P_Collapse,
53  -13.3322); // -10mmHg converted to kg / (cm s^2)
54 }
55 
57 {
58 }
59 
61  const NekDouble &A, const NekDouble &A0,
62  const NekDouble &dAUdx,
63  const NekDouble &gamma,
64  const NekDouble &alpha)
65 {
66  boost::ignore_unused(alpha);
67 
68  NekDouble c0 = 0.0;
69  GetC0(c0, beta, A0);
70 
71  NekDouble b = 0.0;
72  GetB(b, c0);
73 
74  P = m_PExt +
75  (2 * m_rho * c0 * c0 / b) *
76  (pow((A / A0), b / 2) - 1) // Power law by Smith/Canic/Mynard
77  - A0 * gamma * dAUdx / (A * sqrt(A)); // Viscoelasticity
78 }
79 
81  const NekDouble &A, const NekDouble &A0,
82  const NekDouble &alpha)
83 {
84  boost::ignore_unused(alpha);
85 
86  NekDouble c0 = 0.0;
87  GetC0(c0, beta, A0);
88 
89  NekDouble b = 0.0;
90  GetB(b, c0);
91 
92  c = c0 * pow((A / A0), b / 4); // Elastic
93 }
94 
96  const NekDouble &beta, const NekDouble &A,
97  const NekDouble &A0, const NekDouble &alpha)
98 {
99  NekDouble I = 0.0;
100  GetCharIntegral(I, beta, A, A0, alpha);
101 
102  W1 = u + I; // Elastic and assumes u0 = 0
103 }
104 
106  const NekDouble &beta, const NekDouble &A,
107  const NekDouble &A0, const NekDouble &alpha)
108 {
109  NekDouble I = 0.0;
110  GetCharIntegral(I, beta, A, A0, alpha);
111 
112  W2 = u - I; // Elastic and assumes u0 = 0
113 }
114 
116  const NekDouble &W2,
117  const NekDouble &beta,
118  const NekDouble &A0,
119  const NekDouble &alpha)
120 {
121  boost::ignore_unused(alpha);
122 
123  NekDouble c0 = 0.0;
124  GetC0(c0, beta, A0);
125 
126  NekDouble b = 0.0;
127  GetB(b, c0);
128 
129  A = A0 * pow(((b / (8 * c0)) * (W1 - W2) + 1), 4 / b);
130 }
131 
133  const NekDouble &W2)
134 {
135  u = (W1 + W2) / 2;
136 }
137 
139  const NekDouble &A,
140  const NekDouble &A0,
141  const NekDouble &alpha)
142 {
143  boost::ignore_unused(alpha);
144 
145  NekDouble c = 0.0;
146  NekDouble c0 = 0.0;
147 
148  GetC0(c0, beta, A0);
149  GetC(c, beta, A, A0);
150 
151  NekDouble b = 0.0;
152  GetB(b, c0);
153 
154  I = (4 / b) * (c - c0);
155 }
156 
160  const Array<OneD, NekDouble> &A0, const Array<OneD, NekDouble> &alpha,
161  const std::string &type)
162 {
163  // General formulation
164  if (type == "Bifurcation")
165  {
166  NekMatrix<NekDouble> J(6, 6);
168 
169  for (int i = 0; i < 3; ++i)
170  {
171  GetC(c[i], beta[i], Au[i], A0[i], alpha[i]);
172  }
173 
174  J.SetValue(0, 0, 1);
175  J.SetValue(0, 1, 0);
176  J.SetValue(0, 2, 0);
177  J.SetValue(0, 3, c[0] / Au[0]);
178  J.SetValue(0, 4, 0);
179  J.SetValue(0, 5, 0);
180 
181  J.SetValue(1, 0, 0);
182  J.SetValue(1, 1, 1);
183  J.SetValue(1, 2, 0);
184  J.SetValue(1, 3, 0);
185  J.SetValue(1, 4, -c[1] / Au[1]);
186  J.SetValue(1, 5, 0);
187 
188  J.SetValue(2, 0, 0);
189  J.SetValue(2, 1, 0);
190  J.SetValue(2, 2, 1);
191  J.SetValue(2, 3, 0);
192  J.SetValue(2, 4, 0);
193  J.SetValue(2, 5, -c[2] / Au[2]);
194 
195  J.SetValue(3, 0, Au[0]);
196  J.SetValue(3, 1, -Au[1]);
197  J.SetValue(3, 2, -Au[2]);
198  J.SetValue(3, 3, uu[0]);
199  J.SetValue(3, 4, -uu[1]);
200  J.SetValue(3, 5, -uu[2]);
201 
202  J.SetValue(4, 0, 2 * uu[0]);
203  J.SetValue(4, 1, -2 * uu[1]);
204  J.SetValue(4, 2, 0);
205  J.SetValue(4, 3, 2 * c[0] * c[0] / Au[0]);
206  J.SetValue(4, 4, -2 * c[1] * c[1] / Au[1]);
207  J.SetValue(4, 5, 0);
208 
209  J.SetValue(5, 0, 2 * uu[0]);
210  J.SetValue(5, 1, 0);
211  J.SetValue(5, 2, -2 * uu[2]);
212  J.SetValue(5, 3, 2 * c[0] * c[0] / Au[0]);
213  J.SetValue(5, 4, 0);
214  J.SetValue(5, 5, -2 * c[2] * c[2] / Au[2]);
215 
216  invJ = J;
217  invJ.Invert();
218  }
219  else if (type == "Merge")
220  {
221  NekMatrix<NekDouble> J(6, 6);
223 
224  for (int i = 0; i < 3; ++i)
225  {
226  GetC(c[i], beta[i], Au[i], A0[i], alpha[i]);
227  }
228 
229  J.SetValue(0, 0, 1);
230  J.SetValue(0, 1, 0);
231  J.SetValue(0, 2, 0);
232  J.SetValue(0, 3, -c[0] / Au[0]);
233  J.SetValue(0, 4, 0);
234  J.SetValue(0, 5, 0);
235 
236  J.SetValue(1, 0, 0);
237  J.SetValue(1, 1, 1);
238  J.SetValue(1, 2, 0);
239  J.SetValue(1, 3, 0);
240  J.SetValue(1, 4, c[1] / Au[1]);
241  J.SetValue(1, 5, 0);
242 
243  J.SetValue(2, 0, 0);
244  J.SetValue(2, 1, 0);
245  J.SetValue(2, 2, 1);
246  J.SetValue(2, 3, 0);
247  J.SetValue(2, 4, 0);
248  J.SetValue(2, 5, c[2] / Au[2]);
249 
250  J.SetValue(3, 0, Au[0]);
251  J.SetValue(3, 1, -Au[1]);
252  J.SetValue(3, 2, -Au[2]);
253  J.SetValue(3, 3, uu[0]);
254  J.SetValue(3, 4, -uu[1]);
255  J.SetValue(3, 5, -uu[2]);
256 
257  J.SetValue(4, 0, 2 * uu[0]);
258  J.SetValue(4, 1, -2 * uu[1]);
259  J.SetValue(4, 2, 0);
260  J.SetValue(4, 3, 2 * c[0] * c[0] / Au[0]);
261  J.SetValue(4, 4, -2 * c[1] * c[1] / Au[1]);
262  J.SetValue(4, 5, 0);
263 
264  J.SetValue(5, 0, 2 * uu[0]);
265  J.SetValue(5, 1, 0);
266  J.SetValue(5, 2, -2 * uu[2]);
267  J.SetValue(5, 3, 2 * c[0] * c[0] / Au[0]);
268  J.SetValue(5, 4, 0);
269  J.SetValue(5, 5, -2 * c[2] * c[2] / Au[2]);
270 
271  invJ = J;
272  invJ.Invert();
273  }
274  else if (type == "Interface")
275  {
276  NekMatrix<NekDouble> J(4, 4);
278 
279  for (int i = 0; i < 2; ++i)
280  {
281  GetC(c[i], beta[i], Au[i], A0[i], alpha[i]);
282  }
283 
284  J.SetValue(0, 0, 1);
285  J.SetValue(0, 1, 0);
286  J.SetValue(0, 2, c[0] / Au[0]);
287  J.SetValue(0, 3, 0);
288 
289  J.SetValue(1, 0, 0);
290  J.SetValue(1, 1, 1);
291  J.SetValue(1, 2, 0);
292  J.SetValue(1, 3, -c[1] / Au[1]);
293 
294  J.SetValue(2, 0, Au[0]);
295  J.SetValue(2, 1, -Au[1]);
296  J.SetValue(2, 2, uu[0]);
297  J.SetValue(2, 3, -uu[1]);
298 
299  J.SetValue(3, 0, 2 * uu[0]);
300  J.SetValue(3, 1, -2 * uu[1]);
301  J.SetValue(3, 2, 2 * c[0] * c[0] / Au[0]);
302  J.SetValue(3, 3, -2 * c[1] * c[1] / Au[1]);
303 
304  invJ = J;
305  invJ.Invert();
306  }
307 }
308 
310  const NekDouble &A0)
311 {
312  // Reference c0 from the beta law
313  c0 = sqrt(beta * sqrt(A0) / (2 * m_rho));
314 
315  /*
316  // Empirical approximation from Olufsen et al (1999)
317  NekDouble k1 = 3E3;
318  NekDouble k2 = -9;
319  NekDouble k3 = 337;
320  NekDouble PI = 3.14159265359;
321 
322  NekDouble R0 = sqrt(A0 / PI);
323 
324  c0 = sqrt(2 / (3 * m_rho) * (k1 * exp(k2 * R0) + k3));
325  */
326 }
327 
329 {
330  b = 2 * m_rho * c0 * c0 / (m_PExt - P_Collapse);
331 }
332 
333 } // namespace Nektar
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
virtual void v_GetCharIntegral(NekDouble &I, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &alpha=0.5) override
void GetC0(NekDouble &c0, const NekDouble &beta, const NekDouble &A0)
virtual void v_GetUFromChars(NekDouble &u, const NekDouble &W1, const NekDouble &W2) override
virtual void v_GetW2(NekDouble &W2, const NekDouble &u, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &alpha=0.5) override
virtual void v_GetPressure(NekDouble &P, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &dAUdx, const NekDouble &gamma=0, const NekDouble &alpha=0.5) override
virtual void v_GetJacobianInverse(NekMatrix< NekDouble > &invJ, const Array< OneD, NekDouble > &Au, const Array< OneD, NekDouble > &uu, const Array< OneD, NekDouble > &beta, const Array< OneD, NekDouble > &A0, const Array< OneD, NekDouble > &alpha, const std::string &type) override
void GetB(NekDouble &b, const NekDouble &c0)
virtual void v_GetAFromChars(NekDouble &A, const NekDouble &W1, const NekDouble &W2, const NekDouble &beta, const NekDouble &A0, const NekDouble &alpha=0.5) override
virtual void v_GetC(NekDouble &c, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &alpha=0.5) override
virtual void v_GetW1(NekDouble &W1, const NekDouble &u, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &alpha=0.5) override
void GetCharIntegral(NekDouble &I, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &alpha=0.5)
void GetC(NekDouble &c, const NekDouble &beta, const NekDouble &A, const NekDouble &A0, const NekDouble &alpha=0.5)
LibUtilities::SessionReaderSharedPtr m_session
std::shared_ptr< SessionReader > SessionReaderSharedPtr
@ beta
Gauss Radau pinned at x=-1,.
Definition: PointsType.h:61
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
PressureAreaFactory & GetPressureAreaFactory()
double NekDouble
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294