Nektar++
ProcessCFL.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessCFL.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes CFL number over the entire domain for the
32 // incompressible flow simulaiton. This is helpful in terms of debugging
33 // and tracing the evolution of CFL in time over the domain.
34 //
35 ////////////////////////////////////////////////////////////////////////////////
36 
37 #include <iostream>
38 #include <string>
39 using namespace std;
40 
41 #include <boost/core/ignore_unused.hpp>
42 
43 #include <GlobalMapping/Mapping.h>
45 
46 #include "ProcessCFL.h"
47 #include "ProcessMapping.h"
48 
49 namespace Nektar
50 {
51 namespace FieldUtils
52 {
53 
54 ModuleKey ProcessCFL::className = GetModuleFactory().RegisterCreatorFunction(
55  ModuleKey(eProcessModule, "CFL"), ProcessCFL::create,
56  "Computes CFL number for the entire domain for Incompressible flow.");
57 
58 ProcessCFL::ProcessCFL(FieldSharedPtr f) : ProcessModule(f)
59 {
60 }
61 
63 {
64 }
65 
66 void ProcessCFL::v_Process(po::variables_map &vm)
67 {
68  m_f->SetUpExp(vm);
69 
70  int expdim = m_f->m_graph->GetMeshDimension();
71  int nelmt = m_f->m_exp[0]->GetExpSize();
72  int nfields = m_f->m_variables.size();
73  m_spacedim = expdim;
74 
75  NekDouble timeStep = m_f->m_session->GetParameter("TimeStep");
76  NekDouble cLambda = 0.2; // Spencer's book
77 
78  if (m_f->m_numHomogeneousDir == 1)
79  {
80  m_spacedim = 3;
81  }
82  ASSERTL0(m_f->m_numHomogeneousDir != 2,
83  "CFL for 3DH2D simulations is not supported");
84  ASSERTL0(m_spacedim != 1, "Error: CFL for a 1D problem is not supported");
85 
86  // Append field names
87  m_f->m_variables.push_back("CFL");
88 
89  // Skip in case of empty partition
90  if (m_f->m_exp[0]->GetNumElmts() == 0)
91  {
92  return;
93  }
94  int npoints = m_f->m_exp[0]->GetNpoints();
95  Array<OneD, NekDouble> outfield(npoints);
96 
97  int nstrips;
98  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
99 
101  // add in new fields
102  for (int s = 0; s < nstrips; ++s)
103  {
104  Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
105  m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + 1) + nfields,
106  Exp);
107  }
108 
109  for (int s = 0; s < nstrips; ++s) // homogeneous strip varient
110  {
111  Array<OneD, Array<OneD, NekDouble>> velocityField(expdim);
112 
113  // Get the velocity field
114  GetVelocity(velocityField, s);
115 
116  // compute the max velocity in the std regions
117  Array<OneD, NekDouble> stdVel = GetMaxStdVelocity(velocityField);
118 
119  // get the maximum expansion order in each element
120  Array<OneD, int> expOrder =
121  m_f->m_exp[s * nfields + 0]->EvalBasisNumModesMaxPerExp();
122 
123  // compute the CFL number
124  Array<OneD, NekDouble> cfl(nelmt);
125  for (int el = 0; el < nelmt; ++el)
126  {
127  int order = std::max(expOrder[el] - 1, 1);
128  cfl[el] = timeStep * stdVel[el] * cLambda * order * order;
129  }
130 
131  int cnt = 0;
132  for (int el = 0; el < nelmt; ++el)
133  {
134  // using the field[0]==m_exp[s*nfields + 0]
135  int nquad = m_f->m_exp[s * nfields + 0]->GetExp(el)->GetTotPoints();
136  Vmath::Fill(nquad, cfl[el], &outfield[cnt], 1);
137  cnt += nquad;
138  }
139 
140  // temporary store the CFL number field for each strip
141  Vmath::Vcopy(npoints, outfield, 1,
142  m_f->m_exp[s * (nfields + 1) + nfields]->UpdatePhys(), 1);
143  m_f->m_exp[0]->FwdTransLocalElmt(
144  outfield, m_f->m_exp[s * (nfields + 1) + nfields]->UpdateCoeffs());
145  }
146 }
147 
149  int strip)
150 {
151  int expdim = m_f->m_graph->GetMeshDimension();
152  int nfields = m_f->m_variables.size();
153  int npoints = m_f->m_exp[0]->GetNpoints();
154  if (boost::iequals(m_f->m_variables[0], "u"))
155  {
156  // IncNavierStokesSolver
157  // Using expdim instead of spacedim
158  // This is because for 3DH1D, only a 2D plane will be considered
159  for (int i = 0; i < expdim; ++i)
160  {
161  vel[i] = Array<OneD, NekDouble>(npoints);
162  Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
163  vel[i], 1);
164  }
165  }
166  else if (boost::iequals(m_f->m_variables[0], "rho") &&
167  boost::iequals(m_f->m_variables[1], "rhou"))
168  {
169  // CompressibleFlowSolver
170  ASSERTL0(false, "CFL calculation is not supported for the compressible "
171  "flow simulations at the moment");
172  }
173  else
174  {
175  // Unknown
176  ASSERTL0(false, "Could not identify velocity for ProcessCFL");
177  }
178 }
179 
180 /**
181  *
182  */
184  const Array<OneD, Array<OneD, NekDouble>> &vel, int strip)
185 {
186  int nfields = m_f->m_variables.size();
187  int n_points_0 = m_f->m_exp[0]->GetExp(0)->GetTotPoints();
188  int n_element = m_f->m_exp[0]->GetExpSize();
189  int nvel = vel.size();
190  int cnt;
191 
192  NekDouble pntVelocity;
193 
194  // Getting the standard velocity vector
195  Array<OneD, Array<OneD, NekDouble>> stdVelocity(nvel);
197  Array<OneD, NekDouble> maxV(n_element, 0.0);
199 
200  for (int i = 0; i < nvel; ++i)
201  {
202  stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
203  }
204 
205  cnt = 0.0;
206  for (int el = 0; el < n_element; ++el)
207  {
208  int n_points = m_f->m_exp[0]->GetExp(el)->GetTotPoints();
209  ptsKeys = m_f->m_exp[0]->GetExp(el)->GetPointsKeys();
210 
211  // reset local space
212  if (n_points != n_points_0)
213  {
214  for (int j = 0; j < nvel; ++j)
215  {
216  stdVelocity[j] = Array<OneD, NekDouble>(n_points, 0.0);
217  }
218  n_points_0 = n_points;
219  }
220  else
221  {
222  for (int j = 0; j < nvel; ++j)
223  {
224  Vmath::Zero(n_points, stdVelocity[j], 1);
225  }
226  }
227 
228  Array<TwoD, const NekDouble> gmat = m_f->m_exp[strip * nfields + 0]
229  ->GetExp(el)
230  ->GetGeom()
231  ->GetMetricInfo()
232  ->GetDerivFactors(ptsKeys);
233 
234  if (m_f->m_exp[strip * nfields + 0]
235  ->GetExp(el)
236  ->GetGeom()
237  ->GetMetricInfo()
238  ->GetGtype() == SpatialDomains::eDeformed)
239  {
240  for (int j = 0; j < nvel; ++j)
241  {
242  for (int k = 0; k < nvel; ++k)
243  {
244  Vmath::Vvtvp(n_points, gmat[k * nvel + j], 1,
245  tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
246  stdVelocity[j], 1);
247  }
248  }
249  }
250  else
251  {
252  for (int j = 0; j < nvel; ++j)
253  {
254  for (int k = 0; k < nvel; ++k)
255  {
256  Vmath::Svtvp(n_points, gmat[k * nvel + j][0],
257  tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
258  stdVelocity[j], 1);
259  }
260  }
261  }
262  cnt += n_points;
263 
264  // Calculate total velocity in stdVelocity[0]
265  Vmath::Vmul(n_points, stdVelocity[0], 1, stdVelocity[0], 1,
266  stdVelocity[0], 1);
267  for (int k = 1; k < nvel; ++k)
268  {
269  Vmath::Vvtvp(n_points, stdVelocity[k], 1, stdVelocity[k], 1,
270  stdVelocity[0], 1, stdVelocity[0], 1);
271  }
272  pntVelocity = Vmath::Vmax(n_points, stdVelocity[0], 1);
273  maxV[el] = sqrt(pntVelocity);
274  }
275 
276  return maxV;
277 }
278 } // namespace FieldUtils
279 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
Definition: ProcessCFL.cpp:183
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Definition: ProcessCFL.cpp:66
void GetVelocity(Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
Definition: ProcessCFL.cpp:148
Abstract base class for processing modules.
Definition: Module.h:292
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
@ eDeformed
Geometry is curved or has non-constant factors.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:945
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294