Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | List of all members
Nektar::FieldUtils::ProcessCFL Class Reference

This processing module calculates the CFL and adds it as an extra-field to the output file. More...

#include <ProcessCFL.h>

Inheritance diagram for Nektar::FieldUtils::ProcessCFL:
[legend]

Public Member Functions

 ProcessCFL (FieldSharedPtr f)
 
virtual ~ProcessCFL ()
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
- Public Member Functions inherited from Nektar::FieldUtils::Module
FIELD_UTILS_EXPORT Module (FieldSharedPtr p_f)
 
virtual ~Module ()=default
 
void Process (po::variables_map &vm)
 
std::string GetModuleName ()
 
std::string GetModuleDescription ()
 
const ConfigOptionGetConfigOption (const std::string &key) const
 
ModulePriority GetModulePriority ()
 
FIELD_UTILS_EXPORT void RegisterConfig (std::string key, std::string value="")
 Register a configuration option with a module. More...
 
FIELD_UTILS_EXPORT void PrintConfig ()
 Print out all configuration options for a module. More...
 
FIELD_UTILS_EXPORT void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
FIELD_UTILS_EXPORT void AddFile (std::string fileType, std::string fileName)
 
FIELD_UTILS_EXPORT void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 

Static Public Member Functions

static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 

Protected Member Functions

virtual void v_Process (po::variables_map &vm) override
 Write mesh to output file. More...
 
virtual std::string v_GetModuleName () override
 
virtual std::string v_GetModuleDescription () override
 
virtual ModulePriority v_GetModulePriority () override
 
void GetVelocity (Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
 
Array< OneD, NekDoubleGetMaxStdVelocity (const Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
 
- Protected Member Functions inherited from Nektar::FieldUtils::Module
 Module ()
 

Private Attributes

int m_spacedim
 

Additional Inherited Members

- Public Attributes inherited from Nektar::FieldUtils::Module
FieldSharedPtr m_f
 Field object. More...
 
- Protected Attributes inherited from Nektar::FieldUtils::Module
std::map< std::string, ConfigOptionm_config
 List of configuration values. More...
 
std::set< std::string > m_allowedFiles
 List of allowed file formats. More...
 

Detailed Description

This processing module calculates the CFL and adds it as an extra-field to the output file.

Definition at line 48 of file ProcessCFL.h.

Constructor & Destructor Documentation

◆ ProcessCFL()

Nektar::FieldUtils::ProcessCFL::ProcessCFL ( FieldSharedPtr  f)

Definition at line 58 of file ProcessCFL.cpp.

58  : ProcessModule(f)
59 {
60 }

◆ ~ProcessCFL()

Nektar::FieldUtils::ProcessCFL::~ProcessCFL ( )
virtual

Definition at line 62 of file ProcessCFL.cpp.

63 {
64 }

Member Function Documentation

◆ create()

static std::shared_ptr<Module> Nektar::FieldUtils::ProcessCFL::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 52 of file ProcessCFL.h.

53  {
55  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetMaxStdVelocity()

Array< OneD, NekDouble > Nektar::FieldUtils::ProcessCFL::GetMaxStdVelocity ( const Array< OneD, Array< OneD, NekDouble >> &  vel,
int  strip = 0 
)
protected

Definition at line 183 of file ProcessCFL.cpp.

185 {
186  int nfields = m_f->m_variables.size();
187  int n_points_0 = m_f->m_exp[0]->GetExp(0)->GetTotPoints();
188  int n_element = m_f->m_exp[0]->GetExpSize();
189  int nvel = vel.size();
190  int cnt;
191 
192  NekDouble pntVelocity;
193 
194  // Getting the standard velocity vector
195  Array<OneD, Array<OneD, NekDouble>> stdVelocity(nvel);
196  Array<OneD, NekDouble> tmp;
197  Array<OneD, NekDouble> maxV(n_element, 0.0);
199 
200  for (int i = 0; i < nvel; ++i)
201  {
202  stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
203  }
204 
205  cnt = 0.0;
206  for (int el = 0; el < n_element; ++el)
207  {
208  int n_points = m_f->m_exp[0]->GetExp(el)->GetTotPoints();
209  ptsKeys = m_f->m_exp[0]->GetExp(el)->GetPointsKeys();
210 
211  // reset local space
212  if (n_points != n_points_0)
213  {
214  for (int j = 0; j < nvel; ++j)
215  {
216  stdVelocity[j] = Array<OneD, NekDouble>(n_points, 0.0);
217  }
218  n_points_0 = n_points;
219  }
220  else
221  {
222  for (int j = 0; j < nvel; ++j)
223  {
224  Vmath::Zero(n_points, stdVelocity[j], 1);
225  }
226  }
227 
228  Array<TwoD, const NekDouble> gmat = m_f->m_exp[strip * nfields + 0]
229  ->GetExp(el)
230  ->GetGeom()
231  ->GetMetricInfo()
232  ->GetDerivFactors(ptsKeys);
233 
234  if (m_f->m_exp[strip * nfields + 0]
235  ->GetExp(el)
236  ->GetGeom()
237  ->GetMetricInfo()
238  ->GetGtype() == SpatialDomains::eDeformed)
239  {
240  for (int j = 0; j < nvel; ++j)
241  {
242  for (int k = 0; k < nvel; ++k)
243  {
244  Vmath::Vvtvp(n_points, gmat[k * nvel + j], 1,
245  tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
246  stdVelocity[j], 1);
247  }
248  }
249  }
250  else
251  {
252  for (int j = 0; j < nvel; ++j)
253  {
254  for (int k = 0; k < nvel; ++k)
255  {
256  Vmath::Svtvp(n_points, gmat[k * nvel + j][0],
257  tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
258  stdVelocity[j], 1);
259  }
260  }
261  }
262  cnt += n_points;
263 
264  // Calculate total velocity in stdVelocity[0]
265  Vmath::Vmul(n_points, stdVelocity[0], 1, stdVelocity[0], 1,
266  stdVelocity[0], 1);
267  for (int k = 1; k < nvel; ++k)
268  {
269  Vmath::Vvtvp(n_points, stdVelocity[k], 1, stdVelocity[k], 1,
270  stdVelocity[0], 1, stdVelocity[0], 1);
271  }
272  pntVelocity = Vmath::Vmax(n_points, stdVelocity[0], 1);
273  maxV[el] = sqrt(pntVelocity);
274  }
275 
276  return maxV;
277 }
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
@ eDeformed
Geometry is curved or has non-constant factors.
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:945
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::SpatialDomains::eDeformed, Nektar::FieldUtils::Module::m_f, tinysimd::sqrt(), Vmath::Svtvp(), Vmath::Vmax(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_Process().

◆ GetVelocity()

void Nektar::FieldUtils::ProcessCFL::GetVelocity ( Array< OneD, Array< OneD, NekDouble >> &  vel,
int  strip = 0 
)
protected

Definition at line 148 of file ProcessCFL.cpp.

150 {
151  int expdim = m_f->m_graph->GetMeshDimension();
152  int nfields = m_f->m_variables.size();
153  int npoints = m_f->m_exp[0]->GetNpoints();
154  if (boost::iequals(m_f->m_variables[0], "u"))
155  {
156  // IncNavierStokesSolver
157  // Using expdim instead of spacedim
158  // This is because for 3DH1D, only a 2D plane will be considered
159  for (int i = 0; i < expdim; ++i)
160  {
161  vel[i] = Array<OneD, NekDouble>(npoints);
162  Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
163  vel[i], 1);
164  }
165  }
166  else if (boost::iequals(m_f->m_variables[0], "rho") &&
167  boost::iequals(m_f->m_variables[1], "rhou"))
168  {
169  // CompressibleFlowSolver
170  ASSERTL0(false, "CFL calculation is not supported for the compressible "
171  "flow simulations at the moment");
172  }
173  else
174  {
175  // Unknown
176  ASSERTL0(false, "Could not identify velocity for ProcessCFL");
177  }
178 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References ASSERTL0, Nektar::FieldUtils::Module::m_f, and Vmath::Vcopy().

Referenced by v_Process().

◆ v_GetModuleDescription()

virtual std::string Nektar::FieldUtils::ProcessCFL::v_GetModuleDescription ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 70 of file ProcessCFL.h.

71  {
72  return "Calculating CFL number over the domain for the Incompressible "
73  "flow simulation";
74  }

◆ v_GetModuleName()

virtual std::string Nektar::FieldUtils::ProcessCFL::v_GetModuleName ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 65 of file ProcessCFL.h.

66  {
67  return "ProcessCFL";
68  }

◆ v_GetModulePriority()

virtual ModulePriority Nektar::FieldUtils::ProcessCFL::v_GetModulePriority ( )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 76 of file ProcessCFL.h.

77  {
78  return eModifyExp;
79  }

References Nektar::FieldUtils::eModifyExp.

◆ v_Process()

void Nektar::FieldUtils::ProcessCFL::v_Process ( po::variables_map &  vm)
overrideprotectedvirtual

Write mesh to output file.

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 66 of file ProcessCFL.cpp.

67 {
68  m_f->SetUpExp(vm);
69 
70  int expdim = m_f->m_graph->GetMeshDimension();
71  int nelmt = m_f->m_exp[0]->GetExpSize();
72  int nfields = m_f->m_variables.size();
73  m_spacedim = expdim;
74 
75  NekDouble timeStep = m_f->m_session->GetParameter("TimeStep");
76  NekDouble cLambda = 0.2; // Spencer's book
77 
78  if (m_f->m_numHomogeneousDir == 1)
79  {
80  m_spacedim = 3;
81  }
82  ASSERTL0(m_f->m_numHomogeneousDir != 2,
83  "CFL for 3DH2D simulations is not supported");
84  ASSERTL0(m_spacedim != 1, "Error: CFL for a 1D problem is not supported");
85 
86  // Append field names
87  m_f->m_variables.push_back("CFL");
88 
89  // Skip in case of empty partition
90  if (m_f->m_exp[0]->GetNumElmts() == 0)
91  {
92  return;
93  }
94  int npoints = m_f->m_exp[0]->GetNpoints();
95  Array<OneD, NekDouble> outfield(npoints);
96 
97  int nstrips;
98  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
99 
101  // add in new fields
102  for (int s = 0; s < nstrips; ++s)
103  {
104  Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
105  m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + 1) + nfields,
106  Exp);
107  }
108 
109  for (int s = 0; s < nstrips; ++s) // homogeneous strip varient
110  {
111  Array<OneD, Array<OneD, NekDouble>> velocityField(expdim);
112 
113  // Get the velocity field
114  GetVelocity(velocityField, s);
115 
116  // compute the max velocity in the std regions
117  Array<OneD, NekDouble> stdVel = GetMaxStdVelocity(velocityField);
118 
119  // get the maximum expansion order in each element
120  Array<OneD, int> expOrder =
121  m_f->m_exp[s * nfields + 0]->EvalBasisNumModesMaxPerExp();
122 
123  // compute the CFL number
124  Array<OneD, NekDouble> cfl(nelmt);
125  for (int el = 0; el < nelmt; ++el)
126  {
127  int order = std::max(expOrder[el] - 1, 1);
128  cfl[el] = timeStep * stdVel[el] * cLambda * order * order;
129  }
130 
131  int cnt = 0;
132  for (int el = 0; el < nelmt; ++el)
133  {
134  // using the field[0]==m_exp[s*nfields + 0]
135  int nquad = m_f->m_exp[s * nfields + 0]->GetExp(el)->GetTotPoints();
136  Vmath::Fill(nquad, cfl[el], &outfield[cnt], 1);
137  cnt += nquad;
138  }
139 
140  // temporary store the CFL number field for each strip
141  Vmath::Vcopy(npoints, outfield, 1,
142  m_f->m_exp[s * (nfields + 1) + nfields]->UpdatePhys(), 1);
143  m_f->m_exp[0]->FwdTransLocalElmt(
144  outfield, m_f->m_exp[s * (nfields + 1) + nfields]->UpdateCoeffs());
145  }
146 }
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
Definition: ProcessCFL.cpp:183
void GetVelocity(Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
Definition: ProcessCFL.cpp:148
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45

References ASSERTL0, Vmath::Fill(), GetMaxStdVelocity(), GetVelocity(), Nektar::FieldUtils::Module::m_f, m_spacedim, and Vmath::Vcopy().

Member Data Documentation

◆ className

ModuleKey Nektar::FieldUtils::ProcessCFL::className
static
Initial value:
"Computes CFL number for the entire domain for Incompressible flow.")
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
Definition: ProcessCFL.h:52
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49

Definition at line 56 of file ProcessCFL.h.

◆ m_spacedim

int Nektar::FieldUtils::ProcessCFL::m_spacedim
private

Definition at line 87 of file ProcessCFL.h.

Referenced by v_Process().